煤油脱硫剂、脱硫方法和使用该煤油脱硫剂的燃料电池系统的制作方法

文档序号:3435753阅读:637来源:国知局

专利名称::煤油脱硫剂、脱硫方法和使用该煤油脱硫剂的燃料电池系统的制作方法煤油脱硫剂、脱硫方法和使用该煤油脱硫剂的燃料电池系统发明领域本发明涉及煤油脱硫剂。本发明也涉及使用该试剂使含硫煤油脱硫的方法。而且,本发明涉及配有装有该试剂的脱硫设备的燃料电池系统。
背景技术
:燃料电池具有效率高的特点,因为它能直接从由燃料燃烧引起的自由能变化中提取电能。而且,燃料电池不排放任何有害物质,因此已经被广泛应用于多种用途。特别地,固体聚合物电解质燃料电池具有功率密度高、尺寸紧凑和低温操作的特点。用于燃料电池的燃料气体一般含有氢气作为主要组分。燃料气体的原料的例子包括烃,例如天燃气、LPG、石脑油和煤油;醇,例如甲醇和乙醇;和醚,例如二甲醚。通过使含有烃和氢气的原料与水蒸气一起在高温下在催化剂上进行处理、使用含氧气体部分氧化,或在水蒸气和含氧气体共存的系统中经历自回收(self-recovering)型转化,对其进行转化,以产生基本上被用作燃料电池的氢燃料的氢气。然而,在上述原料中存在除氢以外的元素,因此,烃源的杂质不可避免地混入燃料电池的燃料气体中。例如,一氧化碳使得用作燃料电池电催化剂的铂基金属中毒。因此,如果一氧化碳存在于燃料气体中,那么燃料电池将不能获得充足功率输出的特点。特别地,在较低温度下工作的燃料电池经受一氧化碳吸收,这样更可能被毒化。因此,必须降低使用固体聚合物电解质燃料电池的系统的燃料气体中的一氧化碳浓度。通常,应用这样一个方法,其中,使原料转化产生的转化气中的一氧化碳与水蒸气反应,以转化成氢气和二氧化碳,然后通过选择性氧化除去微量剩余的一氧化碳。最终,一氧化碳浓度降到足够更低浓度的氢燃料被送入燃料电池的负极,并在电催化剂上转化成质子和电子。这样产生的质子通过电解质转移到正极,并与氧气和通过外电路的电子反应,从而产生水。当电子通过电池的外电路时,产生了电流。所述用于原料转化和用于除去一氧化碳而产生用于燃料电池的燃料氢气的每一步骤的催化剂,以及用于负极电极的催化剂,通常在其中贵金属和铜被还原的状态下使用。在这样的状态下,引起了硫充作反催化剂的问题,并由此降低了氢气产生过程的产率和燃料电池催化剂的活性,导致其效率降低。因此,考虑必须充分除去含在原料中的硫,以使得在氢气产生步骤中使用的催化剂和电极催化剂能够展现其原始功能。硫的去除,即脱硫步骤,基本上在氢气产生步骤开始时进行,因为硫含量必须被降低至这样的水平以使得在其后立即进行的转化步骤中使用的催化剂充分展现其功能。通常,据说硫含量的水平是O.1质量ppra或更低或0.05质量ppm(50质量ppb)或更低。然而,最近脱硫所要求的功能已经变得更严格,并被要求降低硫含量至0.02质量ppm(2G质量ppb)或更低。为了除去用于燃料电池的原料中的硫,一个方法目前被认为是合适的,在该方法中,使用脱硫催化剂使难脱硫的有机硫化合物加氢脱硫,以将其转化成容易通过吸附一次性除去的硫化氢,然后使用合适的吸附剂处理该硫化氢。然而,普通的加氢脱硫催化剂在增加氢气压力的条件下使用。在这种其中所述催化剂用于燃料电池系统的情况下,技术的发展已经促使在大气压下或最高1MPa下使用加氢脱疏催化剂。结果是,在当前情况下,传统催化剂不能满足该发展的要求。已经进行了许多研究以开发甚至在低压条件下能展现足够脱硫功能的催化剂。例如,已经提出了其中使用镍基脱硫剂使煤油脱硫,然后水蒸气转化以生产氢气的方法(例如,见下面的专利文献1和2)。然而,这些方法具有局限性,就过程来说,能脱硫的温度范围是4150-300T。使用Cu-Zn基催化剂的方案已经被提出(例如,见下面的专利文献3和4)。然而,与镍相比,该脱硫剂即使在相对高的温度下使用,碳沉积更少,但脱硫活性更低。因此,产生一个问题,该试剂能使轻烃例如天燃气、LPG和石脑油脱硫,但不足以使煤油脱疏。或者,已经提出一个其中使用活性炭或化学液体来进行脱疏的方法(见下面的专利文献5)。然而,据报道,这些脱硫剂当它们被活化时在正常温度下能有效脱硫,但所述试剂的原料被限制于在正常温度下是气体的那些。Ni-Zn基脱硫剂的使用已经被提出(见下面的专利文献6)。然而,所述试剂以如下前提为基础它在共存氢气中在压力下使用,因此,由于更少的镍含量,所述试剂在没有共存氢气的低压下脱硫功能下降。(1)专利文献l:日本专利申请公开号1-188404(2)专利文献2:日本专利申请公开号1-188405(3)专利文献3:日本专利申请公开号2-302302(4)专利文献4:日本专利申请公开号2-302303(5)专利文献5:日本专利申请公开号1-143155(6)专利文献6:日本专利申请公开号2001-6229
发明内容如上所述,所述用于原料转化步骤和所实施的用于去除一氧化碳以为燃料电池产生氢气的每个步骤的催化剂,和所述用于其负极的电极的催化剂,通常在其中贵金属和铜被还原的状态下使用。产生了硫充作反催化剂的问题,因此降低了此状态下氢气生成过程和燃料电池的催化剂活性,导致其效率的降低。因此必须充分除去含在原料中的硫,以使得在氢气生产步骤中使用的催化剂和电极催化剂能够展现其初始功能。而且,也必须在低压条件下使难脱硫的物质(hardsulfuricsubstance)有效脱硫。此外,既然烃(例如煤油)具有大的碳数,例如约12,并且也含有芳烃,则没有氢气共存时的脱硫将导致脱硫剂的退化,主要是由于在该试剂上的硫积累和碳沉积导致其活性位消失。因此,现在期望提供一种能尽可能防止碳沉积的脱硫剂。作为对上述问题的广泛探索和研究的结果,基于如下发现完成了本发明非常重要的是抑制脱硫剂被碳沉积导致退化,以有效除去含在煤油中的硫;和发现了能抑制碳形成的脱硫剂。本发明提供了使用特殊脱硫剂的脱硫方法,以及具有含该脱辟u剂的脱,琉i殳备的燃料电池系统。即,本发明提供了煤油脱硫剂,其包含45-75质量%的氧化镍、3-40质量%的氧化锌、10-25质量%的二氧化硅、5质量%或更少的氧化铝和0.1质量%或更少的钠,并且具有为200mVg或更大的BET比表面积。所述氧化铝含量优选为1质量%或更少。本发明也提供了使煤油脱硫的方法,其中在-50~40(TC的温度和常压到0.9MPa的压力下使用上述煤油脱硫剂。而且,本发明提供了配有装有上述脱硫剂的脱硫设备的燃料电池系统。发明效果本发明的脱硫剂能抑制由碳沉积导致的退化,并因此能在低压条件下除去含在煤油中的硫。因此,本发明的脱硫剂适合用在燃料电池系统中。本发明的最佳实施模式下面将详细描述本发明。本发明的脱硫剂基本上由氧化镍、氧化锌和二氧化硅组成,并且可以通过煅烧前体而生成,所述前体通过共沉淀含镍、锌和二氧化硅的组分而形成。氧化镍形式的镍含量必须是45-75质量%,优选55-70质量%。如果所述镍含量低于45质量%或更低,所述得到的脱硫剂作为脱硫剂的功能将降低。如果所述镍含量高于75质量%,所述BET比表面积将更小,并且得到的脱硫剂的功能将降低。氧化锌形式的锌含量必须是3-40质量%,优选5-30质量%。如果所述氧化锌含量低于3质量%,所述得到的脱硫剂将缺少锌的作用(锌的作用是通过限制煤油中的双环芳烃的形成而抑制在该试剂上的碳沉积),因此由于碳沉积而退化。如果所述锌含量高于40质量o/。,镍和二氧化硅的比例将相对更小,导致得到的脱硫剂功能下降。二氧化硅可以是选自二氧化硅粉末、硅溶胶和硅胶的至少一种类型。二氧化硅的含量必须是10-25质量%,优选15-20质量%。低于10质量%的二氧化硅含量不是优选的,因为所得到的脱疏剂的表面积将是小的。高于25质量%的二氧化硅含量将降低氧化锌的比例,并导致得到的脱硫剂的功能变差。所使用的二氧化硅的BET比表面积优选为250m7g或更大,更优选300mVg或更大。对二氧化硅的BET比表面积的上限没有特别的限制。然而,它一般是IOOOmVg或更小。氧化铝的含量必须是5质量%或更小,优选1质量%或更小,更优选0.5质量%或更小。既然氧化铝的存在有助于所述脱硫剂的碳沉积,所述氧化铝的含量必须是5质量%或更小。更小的氧化铝含量是更优选的。本发明的脱硫剂的BET比表面积必须是200raVg或更大,优选250mVg或更大。对于所述BET比表面积的上限没有特别的限制。然而,所述上限优选为1000mVg或更小。低于200raVg的BET表面积不是优选的,因为不能获得足够的功能。当使用脱硫剂使煤油脱硫时,如果碳沉积量增加,所述试剂脱硫功能很快退化并因此不能使脱硫煤油中的硫含量降到20质量ppm或更低。如果脱硫剂上含碳量大于5质量%,那么它明显退化。因此,必须在碳沉积量不超过5质量%的条件下使煤油脱疏。通常煤油含有单环、双环和三环芳烃,它们易于碳沉积,并使脱硫剂和转化催化剂退化。特别地,认为芳烃环数越多,脱硫剂退化越多。脱硫过程中单环芳烃数量降低,和双环芳烃数量增加。因此认为所述双环芳烃数量增加是因为单环的环烷烃苯(naphthenebenzenes)一般为萘满被脱氢并变为双环的萘。因此,所消除的氬被用于脱硫反应,并有利于脱疏,但也多半有利于碳沉积而引起的退化。既然还原态镍脱硫剂具有高的脱氢性质,并由于碳沉积而退化,那么要求开发能抑制碳沉积的脱石危剂。本发明的脱硫剂能抑制由碳沉积引起的退化,并因此也能抑制放置在脱硫器后面的转化催化剂的退化。所述脱硫剂能在氢气的存在下使用,并且在这样的情况下改进了耐久性。用于形成含镍、锌和二氧化硅的组分共沉淀过程具体实施如下使二氧化硅与镍化合物和锌化合物的水溶液混合,并逐滴向其中加入碱;或使二氧化硅与碱的水溶液混合,并向其中逐滴加入镍化合物和锌化合物的水溶液,以产生由镍化合物、锌化合物和二氧化珪形成的沉淀,由此制备所述脱碌L剂的前体。所述镍化合物和锌化合物可以是镍和锌的氯化物、硝酸盐、硫酸盐、有机酸盐和氢氧化物。具体地,优选的例子包括氯化镍、硝酸镍、硫酸镍、乙酸镍、氢氧化镍、氯化锌、硝酸锌、硫酸锌、乙酸锌和氢氧化锌。所述碱可以是氨、碳酸钠、碳酸氢钠或碳酸钾的水溶液。在使所述镍化合物、锌化合物和二氧化硅沉淀后,过滤这样形成的沉淀(所述脱硫剂的前体),然后用离子交换水洗涤。如果洗涤不充分,氯、痕量硝酸、痕量乙酸、钠或钾残留在催化剂上,并对脱硫剂的功能有负面影响。因此,所述沉淀必须被充分洗涤。如果使用离子交换水洗涤得不充分,可以使用洗涤液体,它是氨的水溶液或碱例如碳酸钠、碳酸氢钠或碳酸钾的水溶液。在这种情况下,优选所沉淀的产物首先用碱的水溶液洗涤,然后用离子交换水洗涤。既然钠对脱硫剂的功能有负面影响,希望洗涤该沉淀直到残留钠含量降至0.l质量%或更小,优选0.05质量%或更小。所述沉淀产物被洗涤后,将其碾碎和干燥。此后,煅烧干燥的产物。如果沉淀后洗涤不充分,煅烧后可以再次进行洗涤。在这种情况下,可以使用离子交换水或上面提到的碱的水溶液。对于干燥所碾碎的沉淀的方法没有特别的限制。所述方法的例子包括在空气中自然干燥和在减压下脱气干燥。通常,所碾碎的沉淀在100-150。C的温度下在空气气氛中干燥5-15小时。对于煅烧所述干燥产物的方法没有特别的限制。通常,所述干燥产物在空气气氛中在200-600。C、优选250-450。C的温度下煅烧0.1-10小时,优选1-5小时。当使用以上述方法制备的脱硫剂时,所述试剂可以经过一个反应,如它经过或可以经过用氢气还原等前处理。还原条件是这样的,其中温度是150-500°C,优选250-400°C,并且时间是0.1-15小时,优选2-10小时。对于所述脱硫剂的形状没有特别的限制。可以原样使用以粉末形式生产的脱硫剂。或者,所述脱硫剂可以被压片成成型产品,它可以被破碎、然后筛分以在合适的范围内。又或者,所述脱硫剂可以是挤出的产物。为了成型,可以将合适的粘合剂加入到所述脱硫剂中。对于所述粘结剂没有特别的限制。然而,既然常规的氧化铝粘结剂有利于碳的形成,则成型产品中该粘结剂的含量是5质量%或更小,优选1质量%或更小。或者,可能使用包括除氧化铝以外的物质(例如碳黑、二氧化硅、二氧化硅氧化镁、二氧化钛、氧化锆、它们的复合氧化物或有机物)的成型剂。所添加的粘结剂的上限量通常是30质量%或更少,优选10质量%或更少。只要所述粘结剂能给起到作用,对于其下限量没有特别的限制。下限量通常是0.5质量%或更多,优选1质量%或更多。9本发明中用作原料的煤油是含有疏的煤油。所述煤油的硫含量是0.l-3G质量ppm,优选1-25质量ppm,更优选5-2Q质量ppm。在此应用的词语"硫",统指通常含在烃中的各种硫、无机疏化合物和有机錄"匕合物。对于使用本发明的脱硫剂的脱硫,脱硫压力优选为在常压到0.9MPa范围内的低压,鉴于经济效率和燃料电池系统的安全性,特别优选常压到0.7MPa。只要所述煤油中的硫含量能被降低,对于反应温度没有特别的限制。考虑启动设备的时间,优选所述脱硫剂从低温开始有效工作。考虑正常的操作周期,反应温度优选为-50~400。C,更优选0-300°C,特别优选100-260。C。如果空速(SV)过高,脱硫不可能进行。另一方面,如果SV太低,装置变得太大。因此,空速被设定在一个合适的范围。当使用液态原料时,SV优选为0.01-15h—、更优选0.05-5h_1,特别优选0.1-3h—'。本发明的脱^5危方法的特征在于,即使没有氢气存在它也能使煤油充分脱硫。然而,可以引入少量的氢气。氬气的流量例如是0.05-1.0NL每克煤油。对于其中使用本发明的脱硫方法的脱硫装置的模式没有特别的限制。例如,可以使用循环型固定床模式。所述脱硫装置的形状可以是任何已知的适合于方法目的形状,例如圓柱形的或平板形的。使用本发明的脱硫剂和脱硫方法的燃料电池系统,在没有氢气共存的情况下,能够使含有上述硫的煤油的硫含量降低到20质量ppm或更低。通过紫外荧光法测量所述硫含量。硫含量已经被脱硫至20质量ppm或更低的所述烃经过转化步骤、变换步骤和一氧化碳选择性氧化步骤,从而形成富氢气体。所述这样形成的富氢气体能用作燃料电池的燃料。对于转化步骤没有特别的限制。可以使用水蒸气转化(其中通过使原料与水蒸气共同在催化剂上在高温下处理来转化原料)、用含氧气体部分氧化或自热转化(其中所述原料在水蒸气和含氧气体共存的系统中经过自热回收型转化反应)。对于转化的反应条件没有特别的限制。然而,反应温度优选为10200-1000°C,特别优选500-850。C。反应压力优选为常压到1MPa,特别优选常压到0.2MPa。LHSV优选为0.01-40h、特别优选0.1-10如果所述电池是固体氧化物型燃料电池,则由转化步骤产生的含有一氧化碳和氢气的混合气体,可以用作燃料电池的燃料。对于需要除去一氧化碳的燃料电池,例如磷酸型燃料电池或固体聚合物型燃料电池,所述混合气体能适合地用来为这样的燃料电池生产氲气。可以使用任何已知的方法为这些燃料电池生产氬气。例如,可以通过变换步骤和一氧化碳选择性氧化步骤生产氢气。所述变换步骤是这样一个步骤,其中使用含有铁-铬的混合氧化物、锌-锌、铂、钌和铱的混合氧化物的催化剂,使一氧化碳和水反应,转化成氢气和一氧化碳,以及,例如所述一氧化碳含量被降低到2体积%或更少,优选l体积°/。或更少,更优选0.5体积%或更少。应的条件没有特别的限制。然而,所述反应温度优选为120-500。C,特别优选150-450。C。所述压力优选为常压到1MPa,特别优选常压到0.2MPa。GHSV优选为100-50000h—、特别优选300-10000h一1。通常,通过该步骤产生的混合气体可以用作磷酸燃料电池的燃料。然而,对于固体聚合物燃料电池,必须进一步降低所述一氧化碳浓度,因此,希望提供用于除去一氧化碳的步骤。对该步骤没有特别的限制。因此,有可能使用多种方法,例如吸附分离、氢气分离膜法和一氧化碳选择性氧化步骤。特别优选使用所述一氧化碳选择性氧化步骤,因为用于该步骤的装置被小型化和因为经济效率。在该步骤中,使所述一氧化碳浓度降低的方式是,加入其量为残留一氧化碳摩尔数0.5-IO倍摩尔,优选O.7-5倍摩尔,更优选1-3倍摩尔的氧气,使用含有铁、钴、镍、钌、铑、钇、锇、铱、柏、锌、银和金的催化剂,以将一氧化碳选择性地转化为二氧化碳。对于该方法的反应条件没有特别的限制。然而,反应温度优选为80-350。C,特别优选100-300°C。压力优选从常压到1MPa,特别优选从常压到0.2MPa。GHSV优选为1000-50000h_1,特别优选3000-30000h—1。或者,也可以在其氧化的同时,通过使所述共存的氢气与一氧化碳反应生成甲烷而降低一氧化碳的浓度。下面将参照图1描述本发明的燃料电池系统的实例。燃料罐3中的原料(煤油)通过燃料泵4流入到脱硫器5中。因此,如果必要,可以从一氧化碳选择性氧化反应器11或低温变换反应器IO加入含氢气体。所述脱硫装置5装有本发明的脱硫剂。在所述脱硫器5中已经被脱硫的燃料与通过水泵1从水罐1供应的水混合,然后送入蒸发器6并进入转化器7。所述转化器7使用加热炉18加热。可以使用燃料电池17的正极排放的气体作为所述加热炉18的燃料。然而,如果必要,从燃料泵4泵出的燃料可以用于补充炉的燃料。被装入所述转化器7的催化剂可以是含镍、含钌或含铑的催化剂。使以该方式产生的含氢气和一氧化碳的气体,按次序通过高温变换反应器9、低温变换反应器10和一氧化碳选择性氧化反应器11,由此使所述一氧化碳浓度降低到对燃料电池的特性没有负面影响的程度。用在这些反应器中的催化剂的例子包括用于所述高温变换反应器9的含铁-铬的催化剂、用于所述低温变换反应器10的含铜-锌的催化剂和用于所述一氧化碳选择性氧化反应器11的含钌催化剂。固体聚合物燃料电池17包括正极12、负极13和固体聚合物电解质14。通过上述方法产生的含高纯氢气的燃料气体和空气鼓风机提供的空气分别进入正极和负极。如果需要,所述燃料气体和空气可以经过适当的加湿处理(没有显示加湿设备)后而被引入。因此,在正极进行其中氢气变成质子并释放电子的反应;同时,在负极进行其中氧气获得电子和质子从而变成水的反应。为了促进这些反应,铂黑和具有活性炭栽体的Pt或Pt-Ru合金催化剂用作正极;而铂黑和具有活性炭载体的Pt催化剂用作负极。通常,如果必要,所述正极和负极的催化剂都与四氟乙烯(一种低分子量的聚合物电解质膜材料)和活性炭一起形成多孔催化剂层。接下来,所迷多孔催化剂层被层压在已知产品名为例如NaHon(DuPontKabushikiKaisha)、Gore(JGI)Flemion(ASAHIGLASSCO.,LTD.)或Aciplex(AsahikaseiCorporation)的聚合物电解质膜的两侧,由此形成MEA(膜电极组)。而且,所述MEA被一对隔板夹在中间以组装燃料电池,所述隔板包括金属材料、石墨、碳复合物并具有气体进料功能、电流收集功能和对负极尤其重要的排水功能。电负载15被电力连接到正极和负极上。所述正极的排气消耗在加湿炉18,而所述附件的排气从排气装置16放出。实施例在下文中,将通过下面的实施例和对比例更详细地描述本发明,所述实施例和对比例不应该被理解为限制本发明的范围。实施例1将272.5g六水合硝酸镍(可商购得到的特级试剂)和54.8g六水合硝酸锌(可商购得到的特级试剂)溶解在离子交换水中,以制备2500ral水溶液,此后称之为液体A。将130.8g碳酸钠(可商购得到的特级试剂)溶解在离子交换水中,并将其与50g可商购得到的硅溶胶(颗粒直径大约15nm,二氧化硅含量15.0g)混合,以制备1000ml溶液,此后称之为液体B。将液体A与液体B在40°C的温度下混合,同时搅拌以形成沉淀。用离子交换水洗涤该沉淀后,将所述得到的饼碾碎,然后在120°C的温度下干燥10小时并在360°C的温度下煅烧4小时,由此产生100g煅烧后的粉末。所述煅烧后的粉末具有以下组成,其中NiO/ZnO/SiO2-0质量。/。/15质量%/15质量%和残留Na含量是0.05质量%或更少。挤出所得到的粉末以产生6cn]3的、直径1.0咖的脱硫剂(BET比表面积260mVg),然后将其装入直径为1.27cm的循环型反应管中,并在350。C的温度下在水蒸气中还原3小时。所得到的脱硫剂13进行脱硫试验,其中使JISNo.l煤油(硫含量7质量ppra,单环芳烃含量19.0体积%,双环芳烃含量0.4体积%;三环芳烃含量0.1体积%)在没有氬气共存的情况下脱硫,反应温度为220°C,反应压力为0.3MPa(表压)以及LHSV为4.0h_1。表1列出了该煤油的硫含量和经过500小时后从系统中取样出来的脱疏剂上积聚的碳量。实施例2将166.6g四水合乙酸镍(可商购得到的特级试剂)和80.9g二水合乙酸锌(可商购得到的特级试剂)溶解在离子交换水中,以制备3000ml水溶液,此后称之为液体A。将121.Gg碳酸钠(可商购得到的特级试剂)溶解在离子交换水中,并将其与66g可商购得到的硅溶胶(颗粒直径大约15nm,二氧化硅含量20.0g)混合,以制备1200ml溶液,此后称之为液体B。将液体A与液体B在40°C的温度下混合,同时搅拌以形成沉淀。用离子交换水洗涤该沉淀后,将所得到的饼碾碎,然后在120。C的温度下干燥10小时以及在360°C的温度下煅烧4小时,由此产生100g煅烧后的粉末。所述煅烧后的粉末具有以下组成,其中NiO/ZnO/SiO2-50质量。/Q/3(J质量"/Q/'20质量%和残留Na含量是0.05质量%或更少。挤出所得到的粉末以产生6(^3的、直径1.0ram的脱硫剂(BET比表面积270mVg),然后将其装入直径1.27era的循环型反应管,并在350°C的温度下在水蒸气中还原3小时。所得到的脱硫剂进行脱硫试验,其中使JISNo.l煤油(硫含量7质量ppni,单环芳烃含量19.0体积%,双环芳烃含量0.4体积%;三环芳烃含量0.1体积°/0在没有氢气共存的情况下脱硫,反应温度为220。C,反应压力为0.3MPa(表压)和LHSV为4.0h—'。表1列出了该煤油的硫含量和经过500小时后从系统中取样出来的脱硫剂上积聚的碳量。实施例3将233.6g六水合硝酸镍(可商购得到的特级试剂)和54.8g六水合硝酸锌(可商购得到的特级试剂)溶解在离子交换水中,以制备2500ml水溶液,此后称之为液体A。将115.1g碳酸钠(可商购得到的特级试剂)溶解在离子交换水中,并将其与83g可商购得到的硅溶胶(颗粒直径大约15nra,二氧化硅含量25.0g)混合,以制备1200ml溶液,此后称之为液体B。将液体A与液体B在40°C的温度下混合,同时搅拌以形成沉淀。用离子交换水洗涤所述沉淀后,将所得到的饼碾碎,然后在120°C的温度下干燥10小时以及在360°C的温度下煅烧4小时,由此产生100g煅烧后的粉末。所述煅烧后的粉末具有以下组成,其中NiO/ZnO/SiO2-60质量Q/。/15质量o/。/25质量%和残留Na含量是0.05质量%或更少。将3质量%的可商购得到的氧化铝粉末作为粘结剂加入到所得到的粉末中。捏合并挤出所述混合物以产生6cn^的、直径1.0mm的脱硫剂(BET比表面积250mVg),然后将其装入直径1."era的循环型反应管中,并在350°C的温度下在水蒸气中还原3小时。所得到的脱硫剂进行脱硫试验,其中使JISNo.l煤油(硫含量7质量ppra,单环芳烃含量19.0体积%,双环芳烃含量0.4体积%;三环芳烃含量0.1体积%)在没有氢气共存的情况下脱硫,反应温度为^0。C,反应压力为0.3MPa(表压)和LHSV为4.0h—1。表1列出了该煤油的硫含量和经过500小时后从系统中取样出来的脱硫剂上积聚的碳量。对比例1将136.3g六水合硝酸镍(可商购得到的特级试剂)和182.8g六水合硝酸锌(可商购得到的特级试剂)溶解在离子交换水中,以制备2800ml水溶液,此后称之为液体A。将126.3g碳酸钠(可商购得到的特级试剂)溶解在离子交换水中,并将其与"g可商购得到的硅溶胶(颗粒直径大约15nm,二氧化硅含量15.Gg)混合,以制备1200ml溶液,此后称之为液体B。将液体A与液体B在40°C的温度下混合,同时搅拌以形成沉淀。用离子交换水洗涤所述沉淀后,将所得到的饼碾碎,然后在120°C的温度下干燥10小时以及在360°C的温度下煅烧4小时,由此产生100g煅烧后的粉末。所述煅烧后的粉末具有以下组成,其中NiO/ZnO/SiO2-35质量M/50质量。/Q/15质量%和残留Na含量是0.05质量%或更少。挤出所得到的粉末以产生6cii^的、直径1.0mm的脱碌u剂(BET比表面积250mVg),然后将其装入直径1.27cm的循环型反应管中,并在350°C的温度下在水蒸气中还原3小时。所得到的脱硫剂进行脱硫试验,其中使JISNo.l煤油(硫含量7质量ppm,单环芳烃含量19.0体积%,双环芳烃含量0.4体积%;三环芳烃含量0.1体积%)在没有氢气共存的情况下脱硫,反应温度为22(TC,反应压力为0.3MPa(表压)和LHSV为4.0h_1。表1列出了该煤油的硫含量和经过400小时后从系统中取样出来的脱硫剂上积聚的碳量。对比例2将233.2g四水合乙酸镍(可商购得到的特级试剂)和40.5g二水合乙酸锌(可商购得到的特级试剂)溶解在离子交换水中,以制备3000ml水溶液,此后称之为液体A。将130.8g碳酸钠(可商购得到的特级试剂)溶解在离子交换水中,并将其与15.0g可商购得到的y-氧化铝(BET比表面积230raVg)混合,以制备1200ml溶液,此后称之为液体B。将液体A与液体B在40。C的温度下混合,同时搅拌以形成沉淀。用离子交换水洗涤所述沉淀后,将所得到的饼碾碎,然后在120。C的温度下干燥10小时和在360°C的温度下煅烧4小时,由此产生50g煅烧后的粉末。所述煅烧后的粉末具有以下组成,其中NiO/ZnO/Al203-70质量。/。/15质量%/15质量%和残留Na含量是0.05质量%或更少。挤出所得到的粉末以产生6cii^的、直径1.0mm的脱硫剂(BET比表面积190mVg),然后将其装入直径l.27cm的循环型反应管中,并在350°C的温度下在水蒸气中还原3小时。所得到的脱硫剂进行脱硫试验,其中使JISNo.l煤油(硫含量7质量ppra,单环芳烃含量19.0体积%,双环芳烃含量0.4体积%;三环芳烃含量0.1体积%)在没有氢气共存的情况下脱硫,反应温度为220。C,反应压力为0.3MPa(表压)和LHSV为4.0h—、表1列出了该煤油的硫含量和经过250小时后从系统中取样出来的脱硫剂上积聚的碳量。对比例3将136.3g四水合乙酸镍(可商购得到的特级试剂)溶解在离子交换水中,以制备1400ml水溶液,此后称之为液体A。将54.6g碳酸钠(可商购得到的特级试剂)溶解在离子交换水中,并将其与50g可商购得到的硅溶胶(颗粒直径大约15nm,二氧化硅含量15.0g)混合,以制备600ml溶液,此后称之为液体B。将液体A与液体B在40。C的温度下混合,同时搅拌以形成沉淀。用离子交换水洗涤所述沉淀后,将所得到的饼碾碎,然后在120。C的温度下干燥10小时以及在360°C的温度下煅烧4小时,由此产生50g煅烧后的粉末。该煅烧后的粉末具有以下组成,其中NiO/SiO2=70质量%/30质量%和残留Na含量是0.05质量%或更少。挤出所得到的粉末以形成6ci^的直径1.0mm的脱石克剂(BET比表面积300mVg),然后将其装入直径1.27cm的循环型反应管中,并在350°C的温度下在水蒸气中还原3小时。所得到的脱硫剂进行脱硫试验,其中使JISNo.1煤油(硫含量7质量ppra,单环芳烃含量19.0体积%,双环芳烃含量0.4体积%;三环芳烃含量0.1体积%)在没有氢气共存的情况下脱硫,反应温度为220。C,反应压力为0.3MPa(表压)和LHSV为4.0h-1。表1列出了该煤油的硫含量和经过200小时后从系统中取样出来的脱硫剂上积聚的碳量。对比例4将233.6g六水合硝酸镍(可商购得到的特级试剂)和54.8g六水合硝酸锌(可商购得到的特级试剂)溶解在离子交换水中,以制17备2500ml水溶液,此后称之为液体A。将115.1g碳酸钠(可商购得到的特级试剂)溶解在离子交换水中,并将其与83g可商购得到的硅溶胶(颗粒直径大约15nm,二氧化硅含量25.Gg)混合,以制备1200mi溶液,此后称之为液体B。将液体A与液体B在40°C的温度下混合,同时搅拌以形成沉淀。用离子交换水洗涤所述沉淀后,将所得到的饼碾碎,然后在120°C的温度下干燥10小时以及在360°C的温度下煅烧4小时,由此产生100g煅烧后的粉末。所述煅烧后的粉末具有以下组成,其中NiO/ZnO/SiO产60质量Q/Q/15质量%/25质量%和残留Na含量是0.05质量%的或更少。将7质量%的可商购得到的氧化铝粉末作为粘结剂加入到所得到的粉末中。捏合并挤出该混合物以产生6cii^的、直径1.0mm的脱硫剂(BET比表面积240mVg),然后将其装入直径1.27era的循环型反应管中,并在350°C的温度下在水蒸气中还原3小时。所得到的脱硫剂进行脱硫试验,其中使JISNo.l煤油(硫含量7质量ppra,单环芳烃含量19.0体积%,双环芳烃含量G.4体积%;三环芳烃含量0.1体积%)在没有氬气共存的情况下脱硫,反应温度为220°C,反应压力为0.3MPa(表压)和LHSV为4.0h_1。表1列出了该煤油的硫含量和经过400小时后从系统中取样出来的脱硫剂上积聚的碳量。对比例5将272.5g六水合硝酸镍(可商购得到的特级试剂)和54.8g六水合硝酸锌(可商购得到的特级试剂)溶解在离子交换水中,以制备2500ml水溶液,此后称之为液体A。将130.8g碳酸钠(可商购得到的特级试剂)溶解在离子交换水中,并将其与sog可商购得到的硅溶胶(颗粒直径大约15nm,二氧化硅含量15.0g)混合,以制备1000ml溶液,此后称之为液体B。将液体A与液体B在40°C的温度下混合,同时搅拌以形成沉淀。用离子交换水洗涤所述沉淀后,将所得到的饼碾碎,然后在120。C的温度下干燥10小时以及在360°C的温度下煅烧4小时,由此产生100g煅烧后的粉末。所述煅烧后的粉末具有以下组成,其中NiO/ZnO/SiO产70质量。/Q/15质量%/15质量%和残留Na含量是0.2质量%或更少。挤出所得到的粉末以产生6cm'的直径1.0mm的脱硫剂(BET比表面积260mVg),然后将其装入直径1.27cm的循环型反应管中,并在350°C的温度下在水蒸气中还原3小时。所得到的脱硫剂进行脱硫试验,其中使JISNo.1煤油(硫含量7质量ppm,单环芳烃含量19.0体积°/。,双环芳烃含量0.4体积°/。;三环芳烃含量0.1体积%)在没有氢气共存的情况下脱硫,反应温度为220。C,反应压力为0.3MPa(表压)和LHSV为4.0h_1。表1列出了该煤油的硫含量和经过400小时后从系统中取样出来的脱硫剂上积聚的碳量。在图1显示的燃料电池系统中,在脱硫器5中装入实施例1中产生的脱硫剂,并使用JISNo.1煤油(硫含量27质量ppm)作为燃料进行电力产生试验。在200小时操作过程中,所述脱硫器工作正常,并且没有发现所述脱硫剂活性降低。所述脱硫条件是这样的,其中温度为220。C,压力为0.25MPa(表压),没有氢气循环,以及LHSV是0.5h—\因此,所述水蒸气转化在以下条件下进行,其中使用钌催化剂,S/C-3,温度是700。C,以及LHSV是lh人所述变换步骤(在反应器10中)在以下条件下进行,其中使用Cu-Zn催化剂,温度为200。C,以及GHSV是2000h人所述一氧化碳选择性氧化步骤(在反应器11中)在以下条件下进行,其中使用钌催化剂,02/CO=3,温度为1S0。C,以及GHSV是5000h—\所述燃料电池工作正常,并且电负载14运行顺利。表l<table>tableseeoriginaldocumentpage20</column></row><table>附图简述图1是举例说明本发明的燃料电池系统的实施例的示意图。(数字描述)1水罐2水泵3燃料罐4燃料泵5脱硫器6蒸发器7转化器8空气鼓风机^9高温变换反应器IO低温变换反应器11一氧化碳选择性氧化反应器12正极13负极14固体聚合物电解质15电负载16排气装置17固体聚合物燃料电池18加热炉工业应用性本发明的脱硫剂能抑制由碳沉积引起的退化,因此能在低压条件下除去含在煤油中的硫。因此,所述脱硫剂适合用在燃料电池系统中。2权利要求1.煤油脱硫剂,包含45-75质量%的氧化镍、3-40质量%的氧化锌、10-25质量%的二氧化硅、5质量%或更少的氧化铝以及0.1质量%或更少的钠,并且具有为200m2/g或更大的BET比表面积。2.根据权利要求1的煤油脱硫剂,其中所述氧化铝含量是1质量%或更少。3.使煤油脱硫的方法,其中在-50-400。C的温度下和常压-0.9MPa的压力下使用根据权利要求1或2的煤油脱硫剂。4.燃料电池系统,其包括装有根据权利要求1或2的脱硫剂的脱硫设备。全文摘要公开了煤油脱硫剂,其能够在低压条件下有效除去煤油中的硫含量,同时对碳沉积具有优异的抑制作用。所述煤油脱硫剂含有45-75质量%的氧化镍、3-40质量%的氧化锌和10-25质量%的二氧化硅,同时含有不大于5质量%的氧化铝和不大于0.1质量%的钠。该煤油脱硫剂具有不低于200m<sup>2</sup>/g的BET比表面积。文档编号C01B3/38GK101558137SQ20078004573公开日2009年10月14日申请日期2007年10月30日优先权日2006年11月7日发明者宫泽一则,濑川敦司,足立伦明,驹见辰三郎申请人:新日本石油株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1