多孔质陶瓷的制造方法、多孔质陶瓷、承烧板和烧结窑具与流程

文档序号:14690796发布日期:2018-06-15 20:22阅读:224来源:国知局
多孔质陶瓷的制造方法、多孔质陶瓷、承烧板和烧结窑具与流程

本发明涉及一种多孔质陶瓷的制造方法、多孔质陶瓷、承烧板和烧结窑具。



背景技术:

以往,用作从气体或液体中去除杂质的过滤器或吸附剂、汽车尾气浄化用催化剂的担载材料等,在陶瓷中形成大量气孔而得到的多孔质陶瓷被应用于多种用途。

作为这样的多孔质陶瓷的制造方法,已知有使用凝胶化冻结法的方法,即,使在水溶性高分子的水溶液中分散陶瓷颗粒而得到的悬浊体(浆料)凝胶化之后进行冻结(例如参照专利文献1)。

专利文献1:专利第5176198号公报



技术实现要素:

然而,在记载于专利文献1的制造方法中,通过改变冻结温度或陶瓷颗粒的混合量来得到具有各种孔径、气孔率的多孔质陶瓷,但是在制造耐热冲击性和弯曲强度优异的多孔质陶瓷方面仍有改善的空间。

本发明鉴于上述情况而完成,其目的在于提供一种耐热冲击性和弯曲强度优异的多孔质陶瓷的制造方法、多孔质陶瓷、承烧板和烧结窑具。

本发明涉及的多孔质陶瓷的制造方法,包括:使悬浊体凝胶化的工序;使凝胶化的上述悬浊体冻结而生成冻结体的工序;去除上述冻结体中生长的冰而生成气孔的工序;以及对去除了上述冰的上述冻结体进行烧结的工序。悬浊体包含陶瓷颗粒、水溶性高分子和水。凝胶化之前的上述悬浊体在20℃下的粘度η(mPa·s)和上述陶瓷颗粒的平均粒径d(μm)具有下述关系:η≥950×d-0.77。

根据本发明,能够提供一种耐热冲击性和弯曲强度优异的多孔质陶瓷的制造方法、多孔质陶瓷、承烧板和烧结窑具。

附图说明

图1是说明实施方式涉及的多孔质陶瓷的制造方法概要的说明图。

图2A是表示实施方式涉及的烧结窑具的结构概要的立体示意图。

图2B是图2A所示的烧结窑具的主视示意图。

图3是利用实施例1制作的多孔质陶瓷的部分截面图。

图4A是利用实施例8制作的多孔质陶瓷的部分截面图。

图4B是利用实施例8制作的多孔质陶瓷的部分截面图。

图5是用于说明平均孔径和孔径偏差的测量方法的图。

图6是表示实施方式涉及的多孔质陶瓷的制造方法的一个示例的流程图。

图7是说明以往的多孔质陶瓷的制造方法的概要的说明图。

图8是利用比较例1制作的多孔质陶瓷的部分截面图。

符号说明

1、1a 陶瓷颗粒

2、2a 水溶性高分子

3、3a 水

4、4a 悬浊体

5、5a 冰

6、6a 冻结体

7、7a 下表面

8、8a 上表面

9、9a 陶瓷骨架

10、10a 气孔

11、11a 多孔质陶瓷

12、12a 冷却装置

13 烧结窑具

14 基座

15 板部

16 支承部

17 承烧板

17a 上表面

18 被烧结物

具体实施方式

下面,参照附图对本发明提供的多孔质陶瓷的制造方法、多孔质陶瓷、承烧板和烧结窑具的实施方式进行详细说明。另外,本发明不局限于以下所示的实施方式。

本实施方式涉及的多孔质陶瓷与以往的多孔质陶瓷的共同之处在于,能够利用包括凝胶化、冻结、干燥、脱脂和烧结的各工序的制造方法制作。而在本实施方式涉及的多孔质陶瓷的制造方法中,由于凝胶化之前的悬浊体在20℃下的粘度η和陶瓷颗粒的平均粒径d具有特定的关系,所以与以往的制造方法相比能形成具有不同特性的多孔质陶瓷。以下,与以往技术进行比较地说明本实施方式涉及的多孔质陶瓷和多孔质陶瓷的制造方法。

图1是说明本实施方式涉及的多孔质陶瓷的制造方法的概要的说明图,图7是说明以往的使用凝胶冻结法的多孔质陶瓷的制造方法概要的说明图。另外,在图1、图7中,从左侧起依次示出了上述制造工序中的凝胶化、冻结和烧结的各工序,而省略了与干燥、脱脂的各工序对应的图示。

首先,对凝胶化工序进行说明。凝胶化工序是将包含陶瓷颗粒1、水溶性高分子2和水3、且陶瓷颗粒1均匀地分散在水溶性高分子2的水溶液中的悬浊体4注入模具中使其凝胶化的工序。通过悬浊体4的凝胶化,形成以陶瓷颗粒1分散在水溶性高分子2的水溶液中的状态暂时固定的结构体(凝胶体)。

接着,对冻结工序进行说明。冻结工序是对凝胶化的悬浊体4进行冷却来生成冻结体6的工序。在对凝胶化的悬浊体4进行冷却时,从水溶性高分子2的水溶液中分离出的水3变成冰5的状态,在形成晶体结构的同时生长。其结果,能够得到冻结体6,该冻结体6包括陶瓷颗粒1、水溶性高分子2的水溶液凝胶化的部分(未图示)、以及结晶的冰5的部分。

在以往的制造方法中,例如将冷却装置12a配置在下表面7a侧从一侧对凝胶化的包含水溶性高分子2a的悬浊体4a进行冷却时,凝胶化的悬浊体4a中的水3a从下表面7a侧开始冻结而变成冰5a的状态,该冰5a晶体从下表面7a侧向上表面8a侧生长。而且,在冰5a晶体生长时,会产生足够使例如平均粒径为0.01~5μm左右的较小的陶瓷颗粒1a移动的程度的挤压力。因此,如果陶瓷颗粒1a位于冰5a晶体要生长的方向上,则由于凝胶化而暂时固定的陶瓷颗粒1以被排除到生长的冰5a晶体周围的方式移动。

这样,在图7所示的以往的制造方法中,如果从一个方向对凝胶化的悬浊体4a进行冷却,则陶瓷颗粒1a以包围从一侧向另一侧呈柱状生长的冰5a晶体的方式重新排列,由此会得到陶瓷颗粒1a的分布产生疏密的冻结体6a。

与此相对,在本实施方式涉及的多孔质陶瓷的制造方法中,使用粘性被调整成随着所用的陶瓷颗粒1的平均粒径d变小而悬浊体4的粘度η增大的悬浊体4。具体而言,凝胶化之前的悬浊体4在20℃下的粘度η(mPa·s)和陶瓷颗粒1的平均粒径d(μm)具有η≥950×d-0.77的关系。

如果平均粒径d和粘度η具有这样的关系,则即使冰5晶体生长而与陶瓷颗粒1接近或碰撞,陶瓷颗粒1无论大小都能够抵抗伴随冰5晶体生长而产生的挤压力。因此,通常认为该部位的陶瓷颗粒1在冻结工序中也几乎不移动,而停留在作为凝胶体被保持的位置。

而且,冰5每次与陶瓷颗粒1碰撞都改变晶体的生长方向,并且使晶体从配置有冷却装置12的下表面7的一侧向上表面8的一侧呈之字形地生长。此外,由于冰5晶体呈之字形地生长,所以认为根据情况邻近的冰5晶体一边彼此反复碰撞或接触一边生长。因此,在本实施方式涉及的多孔质陶瓷的制造方法中,即使如图1所示那样从下表面7侧对凝胶化的悬浊体4进行冷却,作为结果也能够得到具有冰5在陶瓷颗粒1之间不定向生长的部位的冻结体6。

这样,在本实施方式涉及的多孔质陶瓷的制造方法中,即使在从一个方向对凝胶化的悬浊体4进行冷却的情况下,也能够得到具有冰5在均匀分散的陶瓷颗粒1之间不定向生长的部位的冻结体6。而且,特别是在上述的平均粒径d和粘度η具有η≥1630×d-0.77的关系时,能够得到整体上冰5呈不定向生长的冻结体6。

接着,对干燥工序进行说明。干燥工序是去除冻结体6中生长的冰5而生成气孔10的工序。在例如通过冻结干燥使其中生长了冰5的冻结体6干燥时,冰5晶体升华消失,取而代之形成气孔10。即,干燥工序是将冰5置换成气孔10的工序。

接着,对脱脂工序进行说明。脱脂工序是从在干燥工序中生成气孔10的冻结体6中去除水溶性高分子2等有机成分的工序。具体而言,根据陶瓷颗粒1的种类,在预先设定的温度条件下进行将水溶性高分子2等有机成分分解而去除的处理。

最后,对烧结工序进行说明。烧结工序是对将冰5和水溶性高分子2等有机成分去除而形成气孔10的冻结体6进行烧结来制作多孔质陶瓷11的工序。通过烧结而得到的多孔质陶瓷11具有在上述干燥工序中形成的气孔10、以及陶瓷颗粒1以包围气孔10的方式彼此结合而致密化的陶瓷骨架9。

烧结后所得到的多孔质陶瓷11根据在冻结工序中生成的冻结体6形状不同而具有不同形状。即,在以往的制造方法中,如图7所示那样,生成在从一侧至另一侧形成的柱状气孔10a的周围形成陶瓷骨架9a的多孔质陶瓷11a。而在本实施方式涉及的多孔质陶瓷11的制造方法中,呈三维网状地形成陶瓷骨架9而使气孔10不定向地形成,由此生成耐热冲击性和弯曲强度优异的多孔质陶瓷11(参照图3)。这里,气孔10“不定向地形成”是指气孔10的平均纵横比为1~2、优选为1~1.4。另外,气孔10的平均纵横比能够利用记载在后述实施例中的方法测量。

在本实施方式涉及的多孔质陶瓷11的制造方法中,陶瓷颗粒1只要能够在烧结工序中适当地进行烧结即可,没有特别限制。具体而言,作为陶瓷颗粒1,例如能够使用氧化锆、氧化铝、二氧化硅、二氧化钛、碳化硅、碳化硼、氮化硅、氮化硼、堇青石、羟基磷灰石、赛隆、锆石、钛酸铝和莫来石中的一种以上,不过不局限于此。其中,在使用氧化锆作为陶瓷颗粒1的情况下,优选通过混合95质量%以上的使氧化钙、氧化镁或氧化钇等固溶后稳定而得到的完全稳定化的氧化锆,使得对温度变化的稳定性得到提高。此外,例如可以使用氧化铝和二氧化硅制作莫来石或者使用氧化锆和氧化铝制作复合体等,根据所期望的特性组合使用多个陶瓷颗粒1。

此外,实际应用中,优选陶瓷颗粒1的平均粒径为100μm以下。如果陶瓷颗粒1的平均粒径超过100μm,则有时难以根据所期望的多孔质陶瓷11的形状和大小对陶瓷颗粒1适当地进行烧结。这里,“平均粒径”是指在激光衍射式粒度分布测量装置(湿法)中基于换算成球当量直径的体积基准的粒度分布而得到的中值粒径(d50)。另外,只要能够得到相同的结果即可,测量方法没有限制。

悬浊体4中的陶瓷颗粒1的混合量优选为1~50vol%的范围,更优选为1~30vol%。如果陶瓷颗粒1的混合量小于1vol%,则存在例如在干燥工序中无法维持形状的情况,并且难以制作具有期望的强度的多孔质陶瓷11。此外,如果陶瓷颗粒1的混合量超过50vol%,则存在得到的多孔质陶瓷11的气孔率降低,不会充分地表现出作为多孔体而期望的特征的情况。这里,“气孔率”是指基于JISR1634:2008中规定的方法,利用阿基米德法而得到的值。在该测量中,由于不考虑封闭孔,所以也将其称为“显气孔率”。另外,在本实施方式中,由于几乎不形成封闭孔,所以能够将该“显气孔率”当作“气孔率”。

此外,为了对陶瓷颗粒1适当地进行烧结,也可以在悬浊体4中混合与陶瓷颗粒1的种类对应的一种或两种以上的烧结助剂。作为烧结助剂的具体示例,能够列举氧化铝、碳酸钙、氧化钇、碳化硼、氧化铈等,不过不局限于此。另外,作为烧结助剂添加的碳酸钙(CaCO3)因烧结而分解,以氧化钙(CaO)的形式残存在多孔质陶瓷11中。

此外,为了使悬浊体4适当地凝胶化,如果需要也可以添加与水溶性高分子2的种类对应的pH调整剂或引发剂、交联剂等各种添加剂。

此外,作为水溶性高分子2,只要能够从凝胶化工序起至干燥工序为止稳定地保持陶瓷颗粒1的分散,并且在冻结工序中不阻碍冰5的形成即可,其种类和混合量没有限制。具体而言,作为水溶性高分子2,例如能够使用N-烷基酰胺类高分子、N-异丙基丙烯酰胺类高分子、磺甲基化丙烯酰胺类高分子、N-二甲基氨基丙基甲基丙烯酰胺类高分子、聚烷基丙烯酰胺类高分子、藻酸、藻酸钠、藻酸铵、聚乙烯亚胺、羧甲基纤维素、羟甲基纤维素、甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素、羟乙基甲基纤维素、聚丙烯酸钠、聚乙二醇、聚氧化乙烯、聚乙烯醇、聚乙烯吡咯烷酮、羧基乙烯基聚合物、淀粉、明胶、琼脂、果胶、葡甘露聚糖、黄原胶、刺槐豆胶、卡拉胶、瓜尔胶和结冷胶中的一种以上,不过不局限于此。其中,在使用具有通过冷却使悬浊体4凝胶化的特性的水溶性高分子2的情况下,为了在制作悬浊体4时与陶瓷颗粒1和水3的混合变得容易,实际应用中优选水溶性高分子2的凝胶化温度为50℃以下。另外,作为这样的水溶性高分子2的具体示例,能够列举明胶、琼脂、卡拉胶和结冷胶。

另外,为了使陶瓷颗粒1容易在悬浊体4中均匀分散,例如可以使用聚羧酸类分散剂、马来酸类分散剂等分散剂。此外,为了将悬浊体4的粘度η调整成所期望的与陶瓷颗粒1的平均粒径d对应的程度,也可以混合能够与水溶性高分子2组合使用的水溶性的增稠剂。作为这样的增稠剂的具体示例,例如能够列举增粘多糖类、纤维素衍生物类、聚乙烯类、聚酯纤维类、聚酰胺类、聚乙二醇类、聚乙烯醇类、聚环氧烷类、聚丙烯酸类以及将它们组合而得到的化合物等,不过不局限于此。另外,例示的增稠剂存在与上述水溶性高分子2重复的情况,不过这里将在上述凝胶化工序中不会凝胶化的成分规定为“增稠剂”。

此外,在冻结工序中,可以利用公知的冷却装置12。具体而言,可以列举使用下述各种冷却方法的冷却装置12:将使悬浊体4凝胶化而得到的凝胶体的下表面7侧与例如冷却的金属板等固体进行接触;与模具一起浸渍在冷却的液体中等。此外,例如也可以使用乙醇冷却装置作为冷却装置12,该乙醇冷却装置通过使冷却至规定温度的乙醇从相向的一侧向另一侧,以不会在乙醇的液面附近产生沉淀或起伏地流动的方式循环,而使液面附近的温度保持恒定。使用具有这种结构的乙醇冷却装置,使装有悬浊体4的模具的底面与冷却的乙醇的液面接触或浸渍在其中并进行保持,生成冻结体6,由此能够制作孔径偏差较小的多孔质陶瓷11。

此外,冻结工序中的凝胶体的冻结温度,只要能够将凝胶体中的水3冻结来生成冰5即可,没有限制。另外,根据水溶性高分子2的种类不同,存在由于水溶性高分子2与水3的相互作用,凝胶体在比-10℃高的温度下不冻结的情况,因此优选-10℃以下的冻结温度。

此外,在干燥工序中,能够使用通过一边抑制冻结体6内外的干燥速度之差一边逐渐地将冰5置换成气孔10来防止出现裂纹的干燥方法。具体而言,能够通过对冻结体6进行冻结干燥、或者将冻结体6浸渍到水溶性有机溶剂或水溶性有机溶剂水溶液中进行风干,将冰5置换成气孔10。

例如,在将冻结体6浸渍在水溶性有机溶剂或水溶性有机溶剂水溶液中时,冻结体6中的冰5融解,与水溶性有机溶剂混合。通过执行一次或多次该操作,首先冻结体6中的原本是冰5的部分被置换成水溶性有机溶剂。然后,使内部由水溶性有机溶剂置换了的冻结体6在大气中或减压条件下进行干燥时,在冻结工序中原本是冰5的部分被置换成气孔10。

在使用水溶性有机溶剂的干燥工序中,作为水溶性有机溶剂,使用不侵蚀水溶性高分子2并且挥发性比水3高的溶剂。具体而言,能够列举甲醇、乙醇、异丙醇、丙酮、乙酸乙酯等,不过不局限于此。通过单独使用或多种并用这些水溶性有机溶剂而执行一次或多次干燥,在冻结体6内原本是冰5的部分形成气孔10。

此外,在脱脂工序中,例如应用300℃~900℃的脱脂温度。此时,例如在对碳化硅、氮化硅等非氧化物陶瓷进行脱脂的情况下,优选在氩或氮等惰性气体环境下进行脱脂。而例如在以氧化铝、氧化锆、磷灰石等氧化物陶瓷作为原料的情况下,优选在大气环境中进行脱脂。

然后,在烧结工序中,根据所用的陶瓷颗粒1的种类和混合量、目标的硬度等,通过适当调整烧结温度、烧结时间和烧结环境,来制作耐热冲击性和弯曲强度优异的多孔质陶瓷11。

这样得到的多孔质陶瓷11的气孔率优选为50%~99%的范围,更优选为70%~99%。如果陶瓷颗粒1的气孔率小于50%,则使用本实施方式涉及的多孔质陶瓷11的制造方法的必要性降低。此外,如果陶瓷颗粒1的气孔率超过99%,则存在例如在干燥工序中无法维持形状的情况,并且难以制作具有期望的强度的多孔质陶瓷11。

此外,实际应用中优选多孔质陶瓷11具有平均孔径为10μm~300μm的连通孔,更优选为10μm~100μm。另外,平均孔径能够利用记载在后述实施例中的方法测量。

此外,实际应用中优选多孔质陶瓷11的平均弯曲强度为10MPa以上。此外,实际应用中优选多孔质陶瓷11的耐热冲击性为450℃以上,更优选为600℃以上。另外,平均弯曲强度和耐热冲击性能够用记载在后述实施例中的方法测量。

这样制作出的多孔质陶瓷11能够作为例如在制造多层陶瓷电容器等电子元件的过程中包括的、对电子元件进行烧结的工序中所用的烧结窑具使用。在该烧结工序中,使作为被烧结物的电子元件载置于烧结窑具,在窑炉内进行烧结。

以下,利用图2A、图2B来说明能够应用本实施方式涉及的多孔质陶瓷11的烧结窑具。另外,在图2A、图2B中,为了使说明容易理解,规定相互正交的X轴方向、Y轴方向和Z轴方向,并且以Z轴正方向为铅垂向上方向。

图2A是表示本实施方式涉及的烧结窑具的结构概要的立体示意图,图2B是从Y轴的负侧观察图2A所示的烧结窑具时的主视示意图。

如图2A、图2B所示,烧结窑具13具有基座14和承烧板17。而且,在烧结窑具13的承烧板17之上载置有被烧结物18。

被烧结物18是例如多层陶瓷电容器等的电子元件。即,上述烧结窑具13是电子元件用烧结窑具。另外,在上述说明中,设被烧成物18为多层陶瓷电容器,不过这仅是例示,而不局限于此。即,被烧结物18可以是例如片式电感器或半导体基板等要进行烧的电子元件,其可以是任意种类的电子元件。

将烧结窑具13以被烧结物18载置于承烧板17的上表面17a的状态配置在未图示的窑炉内,实施对被烧结物18进行烧结的工序。

烧结窑具13的基座14具有板部15和支承部16。板部15采用能够在上表面载置承烧板17的形状,具体而言例如呈大致平板状且俯视时呈大致矩形形状。

支承部16具有多个(例如具有4个,在图2A中有一个看不见),形成在板部15的下表面侧的适当位置。具体而言,支承部16以从板部15的下表面的四个角部向Z轴负方向突出的方式形成,支承板部15。

此外,基座14不局限于图2A、图2B所示的形状。即,基座14例如也可以是匣钵(sagger)或支架等,总之是能够载置承烧板17的形状即可。而且,基座14和承烧板17不需要分开设置,也可以形成为一体。

此外,板部15的形状不局限于上述的大致矩形形状。即,板部15的形状例如也可以是正方形或三角形等多边形、或者圆形、椭圆形等其他形状。

此外,本实施方式的承烧板17采用在俯视时呈大致矩形形状且Z轴方向上的厚度比较薄的薄板状。这样,由于承烧板17采用薄板状,所以能够使承烧板17、进而使烧结窑具13自身轻量化。

作为如上述那样构成的烧结窑具,能够使用本实施方式涉及的多孔质陶瓷11。另外,构成基座14的板部15和支承部16既可以一体成型,也可以对单独制作的板部15和支承部16应用例如粘接、压接、烧结等其他各种接合方法来制作基座14。

此外,在使用本实施方式涉及的多孔质陶瓷11作为烧结窑具13的情况下,多孔质陶瓷11优选含有相对于作为陶瓷颗粒1而混合的完全稳定化氧化锆为0.01~1.5质量%的Al2O3和0.01~2.0质量%的CaO。如果本实施方式涉及的多孔质陶瓷11含有相对于完全稳定化氧化锆适量的Al2O3和CaO,则进一步提高耐热冲击性和弯曲强度。

这样,通过使用本实施方式涉及的多孔质陶瓷11作为烧结窑具13,在对被烧结物18进行烧结时窑炉内的热风穿过配置在被烧结物18下表面侧的基座14和承烧板17到达窑炉的下方和侧方。因此,能够减小窑炉内的温度不均,使被烧结物18高效地烧结。此外,在进行脱脂来去除混合在被烧结物18中的粘合剂等有机成分时,能够高效地从被烧结物18中去除有机成分。

另外,在图2A、图2B中示出了一个烧结窑具13,不过不局限于此,例如也可以在Z轴正方向上层叠多层烧结窑具13,一次性对载置在多层烧结窑具13上的多个被烧结物18进行烧结。

此外,在上述说明中,对将本实施方式涉及的多孔质陶瓷11应用于基座14和承烧板17进行了说明,不过也可以仅将多孔质陶瓷11应用于基座14和承烧板17中的一方。此外,也可以仅将本实施方式涉及的多孔质陶瓷11应用于构成基座14的板部15和支承部16中的一方。

接着,利用图6来详细说明制造本实施方式涉及的多孔质陶瓷11的方法。图6是表示制造本实施方式涉及的多孔质陶瓷11的处理步骤的流程图。

如图6所示,首先,将陶瓷颗粒1、水溶性高分子2和水3混合来制备悬浊体4(步骤S101)。此时可以添加烧结助剂或增稠剂、pH调整剂、引发剂、交联剂等各种添加剂。另外,水溶性高分子2可以使用在与陶瓷颗粒1混合之前预先与水3混合而成为水溶液的水溶性高分子,或者可以将预先混合水溶性高分子2和陶瓷颗粒1而得到的混合物添加到正在搅拌的水3中。而且,在使用分散剂的情况下,优选预先与陶瓷颗粒1混合。

接下来,使在步骤S101中制备的悬浊体4凝胶化而形成凝胶体(步骤S102)。为了促进悬浊体4的凝胶化,如果需要也可以加热悬浊体4。

接着,使凝胶体冻结而生成具有冰5晶体在不定向生长的部位的冻结体6(步骤S103)。接下来,使冻结体6干燥来去除生长的冰5晶体,从而生成气孔10(步骤S104)。

进而,进行从去除冰5而生成气孔10的冻结体6中去除水溶性高分子2等有机成分的脱脂(步骤S105),然后进行烧结(S106)。通过以上各工序,本实施方式涉及的多孔质陶瓷11的一连串制造工序结束。

如上所述,本实施方式涉及的多孔质陶瓷的制造方法,包括:使悬浊体凝胶化的工序;使凝胶化了的上述悬浊体冻结而生成冻结体的工序;去除在上述冻结体中生长的冰而生成气孔的工序;以及对去除了上述冰的上述冻结体进行烧结的工序。悬浊体包含陶瓷颗粒、水溶性高分子和水。凝胶化之前的上述悬浊体在20℃下的粘度η(mPa·s)与上述陶瓷颗粒的平均粒径d(μm)具有η≥950×d-0.77的关系。

因此,根据本实施方式涉及的多孔质陶瓷的制造方法,能够制作耐热冲击性和弯曲强度优异的多孔质陶瓷。

另外,在上述实施方式中,列举将用于使悬浊体4凝胶化而得到的凝胶体冻结的冷却装置12配置在凝胶体的一侧的示例进行了说明,不过不局限于此。例如,也可以是将凝胶体与模具一起载置在设定成规定冻结温度的冻结室内的方法,此外也可以是用隔热材料隔断上下表面而从侧面通过辐射传热进行冷却的方法。即,根据本实施方式涉及的多孔质陶瓷11的制造方法,不管冷却装置12的结构如何气孔10都在不定向地形成,生成耐热冲击性和弯曲强度优异的多孔质陶瓷11。

此外,在上述实施方式中,作为冷却装置12以乙醇冷却装置为例进行了说明,不过只要是凝固温度低、且直至使凝胶体冻结的所期望的温度为止还是液状的制冷剂即可,也可以使用乙醇以外的制冷剂。具体而言,能够列举甲醇、异丙醇、丙酮、乙二醇等,不过不局限于此。另外,可以单独使用或多种并用这些制冷剂,并且根据需要与水混和使用。

此外,在上述实施方式中,对脱脂工序(步骤S105)作为必要的工序进行了说明,不过也可以根据水溶性高分子2的种类和混合量将其省略。此时,水溶性高分子2在烧结工序(步骤S106)中分解而被去除。

另外,在本实施方式涉及的多孔质陶瓷11的制造方法中,凝胶化之前的悬浊体4在20℃下的粘度η与陶瓷颗粒1的平均粒径d的关系式通过如下方式得到。首先,作为本实施方式涉及的多孔质陶瓷11所要求的特性,关注气孔10的平均纵横比、平均弯曲强度、耐热冲击性。接着,改变陶瓷颗粒1的平均粒径d(μm)和凝胶化之前的悬浊体4在20℃下的粘度η(mPa·s)的值来制作多孔质陶瓷11,测量所得到的多孔质陶瓷11的上述三个特性。进一步,基于所有满足气孔10的平均纵横比为1~1.4、平均弯曲强度为10MPa以上、以及耐热冲击性为450℃以上等各条件的d和η的值来评价相关性,得到关系式η≥1630×d-0.77。然后,确认了通过使用被调整成满足该关系式的悬浊体4,能够制作耐热冲击性和弯曲强度优异的多孔质陶瓷11。

此外,还确认了:如果上述粘度η和平均粒径d具有950×d-0.77≤η<1630×d-0.77的关系,则气孔10虽然不会完全地不定向形成,局部会以具有取向性的方式形成,但是能够生成耐热冲击性和弯曲强度优异的多孔质陶瓷11。

实施例

实施例1

将平均粒径为9μm的完全稳定化氧化锆(YSZ)颗粒(对应于陶瓷颗粒1)20vol%、作为烧结助剂的氧化铝1.5质量%(相对于稳定化氧化锆)、碳酸钙3.5质量%(相对于完全稳定化氧化锆,用氧化钙换算为2.0质量%)、以及水80.0vol%混合。向其中添加作为增稠剂的微量的羟丙基甲基纤维素、明胶(对应于水溶性高分子2)3.0质量%(相对于水3)来制备悬浊体4。将制备的悬浊体4注入模具中,在5℃的冷藏柜内静置,进行悬浊体4的凝胶化。

接着,将装有凝胶化的悬浊体4的模具放入-15℃的冷冻柜内进行冷却,生成冻结体6。然后,从模具中取出冻结体6,用冻结干燥装置进行24小时干燥。进而,在大气环境中用电炉以600℃进行2小时脱脂后,以1600℃进行2小时烧结,由此得到铅垂方向的厚度为c=9mm的多孔质陶瓷11,进而实施使水平方向的宽度均等一致的加工,从而使得a×b×c=100mm×100mm×9mm(参照图5)。另外,实施加工之前的多孔质陶瓷11在水平方向上的宽度a×b为(104~106)mm×(104~106)mm左右。在表1中示出凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度,在表2中示出多孔质陶瓷11的孔径偏差。此外,图3为在本实施例中制作的多孔质陶瓷11的局部纵截面图。

这里,“悬浊体4的粘度η”是用B型粘度计(Brookfield公司制作的数字粘度计、型号(DV1、PRIME))在转子(Spindle)为No.SC4-34、转速为20rpm时测量悬浊体4的粘度而得到的值。此外,“平均弯曲强度”是基于JISR1601:2008中规定的三点弯曲试验测量而得到的值。

此外,“气孔10的纵横比”能够基于图3所示的局部纵截面图的图像分析计算。即,使气孔10的截面部近似为椭圆体,将测量面积、长径和短径时得到的长径除以短径所得的值称为“气孔10的纵横比”。而且,将任意选择的50个气孔10的纵横比的平均值规定为“气孔10的平均纵横比”。

此外,“耐热冲击性”以如下方式测量。首先,制作100mm见方、厚度3mm的试料。接着,通过配置在相同尺寸的砖质承烧板的四个角部的支柱从上下方向夹着该试料,用电炉高温加热并保持在所期望的温度一个小时以上,之后从电炉中取出将其暴露在室温下,用肉眼评价样品有无裂纹。使设定温度为350℃至700℃,每次升温50℃进行变温,将不产生裂纹的温度的上限设为“耐热冲击性”。

此外,多孔质陶瓷11的“平均孔径”和“孔径偏差”以如下方式计算。首先,如图5所示那样,分别从制作的多孔质陶瓷11的中央(α)和端部(β、γ、δ、ε)共计五个部位切出宽度为a1×b1=15mm×15mm、厚度为c=9mm的部分,作为试料片。接着,对该五个试料片分别计算平均孔径。这里,各试料片的“平均孔径”是指以140度接触角使用水银压入法分别对各试料片进行测量,基于使气孔10近似为圆柱时的气孔分布所得到的中值粒径(d50)。

然后,求取各平均孔径中的最大值与最小值之差,设该值((最大值)-(最小值))除以各平均孔径的平均值而得到的值的百分率为“孔径偏差”(%)。此外,将按每个试料片得到的平均孔径的平均值规定为多孔质陶瓷11的“平均孔径”。

实施例2

将平均粒径为0.5μm的氧化铝颗粒(对应于陶瓷颗粒1)10vol%、水90vol%、以及微量的聚羧酸类分散剂混合。其中作为增稠剂添加微量的羟乙基甲基纤维素、以及明胶(对应于水溶性高分子2)3质量%(相对于水3)来制备悬浊体4。将制备的悬浊体4注入模具中静置,进行悬浊体4的凝胶化。

接着,将装有凝胶化的悬浊体4的模具浸在-15℃的冻结槽中进行冷却,生成冻结体6。然后,从模具中取出冻结体6,使用甲醇进行干燥。接下来,在大气环境中用电炉以1600℃进行2小时烧结,由此得到多孔质陶瓷11。表1中示出了与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。

实施例3

将完全稳定化氧化锆(YSZ)颗粒(对应于陶瓷颗粒1)的平均粒径变更为1.5μm,使由vol%单位表示的陶瓷颗粒1与水3的混合比为15:85,并且将装有凝胶化的悬浊体4的模具直接载置在冷却至-15℃的铜板之上2个小时来生成冻结体6,除此以外用与实施例1相同的方法制作多孔质陶瓷11。表1中示出了与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。此外,表2中示出多孔质陶瓷11的孔径偏差。

实施例4

除了使用平均粒径为5.8μm的完全稳定化氧化锆(YSZ)颗粒,并且使用后述的冷却装置12替代冷却的铜板以外,用与实施例3相同的方法制作多孔质陶瓷11。在冷却工序中,使用乙醇冷却装置作为冷却装置12,该乙醇冷却装置通过从相向的一侧向另一侧以不会在乙醇的液面附近产生沉淀或起伏地流动的方式循环而将液面附近的温度保持在-15℃,使装有凝胶化的悬浊体4的模具的底面与液面接触保持20分钟进行冷却。表1中示出了与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。

实施例5

将平均粒径为0.7μm的碳化硅(对应于陶瓷颗粒1)10vol%、作为烧结助剂的微量的碳和碳化硼、以及水90vol%混合,进一步添加琼脂(对应于水溶性高分子2)1.0质量%(相对于水3)来制备悬浊体4。

接着,将制备的悬浊体4注入模具中放置在冷藏柜内,使注入在模具中的悬浊体4凝胶化。将装有凝胶化的悬浊体4的模具浸在-15℃的冻结槽中进行冷却,生成冻结体6。然后,从模具中取出冻结体6,使用甲醇进行干燥。接下来,在氩气环境中用电炉以2100℃进行2小时烧结。表1中示出与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。

实施例6

将平均粒径为2.1μm的氮化硅(对应于陶瓷颗粒1)10vol%、作为烧结助剂的微量的氧化铝和氧化钇、以及水90vol%混合。其中作为增稠剂添加微量的羟丙基甲基纤维素、聚乙烯亚胺(对应于水溶性高分子2)5质量%(相对于水3)、以及交联剂(双甘油缩水甘油醚(ジグリセロールグリシジルエーテル))2.5质量%(相对于水3)进一步混合,制备悬浊体4。

接着,将制备的悬浊体4注入模具中以20℃静置6小时,使悬浊体4凝胶化。将装有凝胶化的悬浊体4的模具浸在-15℃的冻结槽中进行冷却,生成冻结体6。然后从模具中取出冻结体6,用冻结干燥装置干燥24小时。接下来,在氮气环境中用电炉以1700℃烧结2小时。表1中示出与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。

实施例7

除了不使用烧结助剂以外,用与实施例3相同的方法制作多孔质陶瓷11。表1中示出与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。

实施例8

除了调整增稠剂的添加量使粘性降低以外,用与实施例3相同的方法制作多孔质陶瓷11。表1中示出与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。此外,图4A、图4B为本实施例中制作的多孔质陶瓷11的局部纵截面图。

实施例9

除了调整增稠剂的添加量使粘性降低以外,用与实施例4相同的方法制作多孔质陶瓷11。表1中示出与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。

比较例1

除了使用平均粒径为1.5μm的完全稳定化氧化锆(YSZ)颗粒,并且不添加增稠剂以外,用与实施例4相同的方法制作多孔质陶瓷11。表1中示出与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度,表2中示出多孔质陶瓷11的孔径偏差。此外,图8为由本比较例制作的多孔质陶瓷11的局部纵截面图。

比较例2

除了不添加增稠剂以外,用与实施例4相同的方法制作多孔质陶瓷11。表1中示出与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。

比较例3

除了使用平均粒径为0.5μm的完全稳定化氧化锆(YSZ)颗粒并且不添加增稠剂以外,用与实施例7相同的方法制作多孔质陶瓷11。表1中示出与实施例1同样得到的凝胶化之前的悬浊体4在20℃下的粘度η、所得到的多孔质陶瓷11的气孔率、平均孔径、气孔10的平均纵横比、耐热冲击性和平均弯曲强度。

表1中汇总示出实施例1~比较例3中所用的陶瓷颗粒1和制作的多孔质陶瓷11。

(表1)

如表1所示,调整悬浊体4的粘性以使凝胶化之前的悬浊体4在20℃下的粘度η与陶瓷颗粒1的平均粒径d具有特定关系、即关系式η≥1630×d-0.77而得到的多孔质陶瓷11(实施例1~7)中,气孔10的平均纵横比均为1.4以下。而且,根据实施例1~7,基于图像分析在视觉上确认制作了形成有不定向连通的气孔10的多孔质陶瓷11(参照图3)。

此外,调整悬浊体4的粘性以使上述粘度η和平均粒径d具有950×d-0.77≤η<1630×d-0.77的关系而得到的多孔质陶瓷11(实施例8、9)中,气孔10的平均纵横比均超过1.4且在2.0以下。而且,根据实施例8、9,基于图像分析在视觉上确认制作了包括所形成的气孔10不定向地连通的部分(参照图4A)、以及以具有各向异性的方式取向而连通的部分(参照图4B)的多孔质陶瓷11。

另外,调整悬浊体4的粘性以便像上述那样满足关系式950×d-0.77≤η<1630×d-0.77而得到的多孔质陶瓷11(实施例8、9)中,考虑到每个测量部位的气孔10的取向性偏差,气孔10的平均纵横比以如下方式计算。即,将所得到的多孔质陶瓷11分割成五个部分,在每个部分与图3所示的局部纵截面图一样地拍摄SEM照片。接着,对所得到的各SEM照片进行图像分析,计算从各图像中任意选出的10个共计50个气孔10的纵横比,将其平均值作为“气孔10的平均纵横比”。

另一方面,如比较例1~3一样制作的多孔质陶瓷11中,气孔10的平均纵横比超过2.0,与由实施例1~9制作的多孔质陶瓷11相比可知气孔10以具有各向异性的方式形成。此外,该情况也可以基于图像分析来确认(参照图8)。

而且,如表1所示,在具有气孔10不定向地形成的部分的多孔质陶瓷11中,耐热冲击性和平均弯曲强度均高于整体上气孔10以具有各向异性的方式形成的多孔质陶瓷11。即,根据本实施方式涉及的多孔质陶瓷11的制造方法,能够制作耐热冲击性和弯曲强度优异的多孔质陶瓷11。

接着,作为代表示例,在表2中汇总示出实施例1~比较例3中的实施例1、实施例3和比较例1的关于制备悬浊体4时有无使用增稠剂、以及制作出的多孔质陶瓷11的孔径偏差等内容。

(表2)

如表2所示,在使用添加了增稠剂的悬浊体4制作的多孔质陶瓷11中,均形成孔径偏差为10%以下的、孔径偏差较小的气孔10。其理由被认为是由于添加增稠剂而使冰5的生长受到抑制,从而使冰5的生长速度均匀化。

本发明的进一步效果和变形示例能够由本领域技术人员容易地推导。因此,本发明更广泛的实施方式不局限于如上表示及描述的特定详情和代表性的实施方式。因此,能够不脱离由权利要求书及其等同物定义的总括的发明概念的精神或范围地进行各种变更。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1