一种二维MoS2‑PbS纳米颗粒复合材料的制备方法与流程

文档序号:12703666阅读:250来源:国知局
一种二维MoS2‑PbS纳米颗粒复合材料的制备方法与流程

本发明属于光电半导体技术领域,具体涉及一种二维MoS2-PbS纳米颗粒复合材料的制备方法。



背景技术:

半导体纳米材料具有高度的光敏性,且其带隙值可调,可探测从紫外-可见到红外部分的光,是光电器件的重要材料。但纳米颗粒材料的载流子迁移率很低,在10 −3 –10 −1cm 2 V −1 s −1之间,使得其光电导增益局限在10-103。而单原子层厚度的二维材料,比如石墨烯和过渡金属硫族化合物(TMDCs),在平面内具有很高的载流子迁移率,而且单原子层的结构能使暗电流降低。因此将纳米颗粒和二维材料结合是得到高光敏性和高载流子迁移率光电材料的一个有效途径。

PbS为p型半导体,由于它的带隙较窄(0.41eV),红外吸收能力较优,而且玻尔半径较大(18nm),可以较容易的制备出具有量子效应的PbS纳米颗粒,是目前应用最广的红外光电材料。MoS2为n型半导体,属于六方晶系且具有二维层状结构。随着层数减小,其带隙值增大,当层数为单层时,带隙值大约为1.8eV,从间接带隙变为直接带隙,能吸收紫外和可见光,其载流子迁移率达到200 cm2V-1S-1左右。根据文献报道,单层MoS2的价带和导带位置分别在-6.0 eV和-4.25eV附近,与纳米PbS的价带和导带位置相配,因而两者可以形成pn结。PbS上产生的光生电子能在pn结上有效分离,并传输到迁移率高的单层MoS2上。其复合结构具有优良的光电性能,在光电探测器、光电化学催化等领域具有巨大的应用潜力。

本发明以液相剥离制备的MoS2纳米片为载体,采用水热法在MoS2纳米片上生长PbS纳米颗粒,从而得到二维MoS2-PbS纳米颗粒的复合材料。这一方法可以方便的通过改变反应液的浓度来控制纳米片上PbS颗粒的附着含量,从而得到光电性能不同的异质结构材料,扩宽该材料的应用范围。

本发明针对PbS纳米材料在近红外区光敏性好,但载流子迁移率低的问题,提出制备二维MoS2-PbS纳米颗粒的复合材料。二维MoS2除了能够拓宽材料的吸光范围,与PbS形成能有效分离电子和空穴的pn结外,还为电子提供了快速传输的通道。发明采用MoS2纳米片作为载体,通过水热法在其上制备PbS纳米颗粒,这一制备MoS2-PbS纳米复合材料的方法还未见报道。



技术实现要素:

本发明的目的是提供一种二维MoS2-PbS纳米颗粒复合材料的制备方法。

本发明的思路:以分散在PbS前驱反应液中的MoS2纳米片为载体,在水热条件下,PbS在MoS2纳米片上析出并生长,从而得到二维MoS2-PbS纳米颗粒复合材料。

具体步骤为:

(1)将块体MoS2粉末分散到N-N二甲基甲酰胺(DMF)中,经过超声剥离,将所得分散液静置后,取出占分散液总体积1/3的上部液体,对取出的液体进行水浴强力搅拌,然后再离心,将所得的沉积物分散到DMF中,制得MoS2纳米片溶胶。

(2)将摩尔比为1:1的Pb(NO3)2和CH4N2S同时溶于DMF中,制得的溶液浓度为0.01~0.0375mol/L,超声分散15分钟后,制得PbS前驱液。

(3)将步骤(1)制得的MoS2纳米片溶胶和步骤(2)制得的PbS前驱液混合,放入水热釜,在120℃的温度条件下反应20~40分钟,反应结束后,再冷却,离心,所得沉淀物经洗涤和干燥后,即制得二维MoS2-PbS纳米颗粒复合材料。

本发明方法操作简单,能够通过改变前驱液的浓度控制PbS颗粒在MoS2纳米片上的附着含量,从而调节复合材料的光电性能,所制备的二维MoS2-PbS纳米颗粒复合材料能够用于光电领域。

附图说明

图1是本发明实施例1所制备的MoS2纳米片和二维MoS2-PbS纳米颗粒复合材料的XRD图。与MoS2纳米片样品比较,复合材料的XRD图谱出现了新的衍射峰,这些新的衍射峰与PbS的衍射峰数据相符。

图2是本发明实施例1制得的二维MoS2-PbS纳米颗粒复合材料的TEM图,(a)低倍图,(b)高倍图。从图中可看到很薄的半透明片状MoS2上生长有类球形的PbS纳米颗粒。

图3是本发明实施例1、2和3制得的MoS2纳米片和PbS附着量不同的二维MoS2-PbS纳米颗粒复合材料的光响应曲线图。MoS2纳米片样品和二维MoS2-PbS纳米颗粒复合材料样品都显示了光响应性,负载有PbS纳米颗粒的样品其响应电流高于MoS2样品,且响应电流随PbS负载量的增大先增大后减小。

具体实施方式

实施例1:

(1)将0.1g块体MoS2粉末放入200mlDMF中,以200W的超声功率超声剥离8h,将所得分散液静止放置0.5h后抽取占分散液总体积1/3的上部液体于另一锥形瓶中,70℃水浴强力磁力搅拌6h,然后再离心,将所得的沉积物再次分散到8ml DMF中,制得MoS2纳米片溶胶。

(2)将0.01mmol Pb(NO32和0.01mmolCH4N2S溶于2ml DMF中,超声分散15分钟后,制得PbS前驱液。

(3)将步骤(1)制得的MoS2纳米片溶胶和步骤(2)制得的PbS前驱液混合,放入水热釜,在120℃下保温反应0.5小时,反应液中S2-缓慢释放,PbS颗粒在MoS2纳米片上生成,反应结束后,再冷却,离心,所得沉积物洗涤后离心干燥,即制得二维MoS2-PbS纳米颗粒复合材料,记为MP1。

附图1为本实施例制得的MoS2纳米片和经过水热反应后制得的MP1样品的XRD图谱。测试结果表明,MoS2纳米片样品在14.38,29.03,32.66,39.54,44.13,49.80,60.12,62.96和68.42角度出现衍射峰,分别对应于六方晶型MoS2的(0 0 2),(0 0 4),(1 0 0),(1 0 3),(0 0 6),(1 0 5),(0 0 8),(1 0 7)和(2 0 0)晶面。经过水热反应后,在25.57,29.69,43.74,51.01,53.82.,62.70和 68.92角度出现了新的衍射峰,对应于立方PbS的(1 1 1),(2 0 0),(2 2 0),(3 1 1),(2 2 2),(4 0 0)和(3 1 1)晶面,说明PbS成功负载在MoS2上。附图2为本实施例制得的二维MoS2-PbS纳米颗粒复合材料的TEM图,从图中能够看到,纳米片很薄,在电镜图片中呈半透明状,颗粒的粒径在16nm左右。根据高倍TEM图,纳米片上晶面间距为0.261nm,与六方晶MoS2的(101)晶面相符,生长在纳米片上的纳米颗粒的晶面间距为0.340nm,与立方晶PbS的晶面(111)的晶面间距数据相符。附图3的光电测试结果表明,MoS2纳米片样品和MP1样品都显示了光响应性,在100mWcm-2光强下,电压0.5V时,MP1样品的响应电流为32.7µA cm-2,高于MoS2样品在同样条件下15.3µA cm-2的响应电流值。

实施例2:将实施例1步骤(2)中Pb(NO32和CH4N2S的量都改为0.02mmol,其余均同实施例1,制得的二维MoS2-PbS纳米颗粒复合材料记为MP2。

实施例2得到的样品MP2的晶型结构和形貌结构与MP1类似。在100mW cm-2光强下,电压0.5V时,MP2样品的响应电流为37.4µA cm-2,高于MP1样品在同样条件下的响应电流值,见附图3。

实施例3:将实施例1中步骤(2)中Pb(NO32和CH4N2S的量都改为0.0375mmol,其余均同实施例1,制得的二维MoS2-PbS纳米颗粒复合材料记为MP3。

实施例3得到的样品MP3的晶型结构和形貌结构与MP1类似。在100mW cm-2光强下,电压0.5V时,MP3样品的响应电流为17.2µA cm-2,低于MP2样品在同样条件下的响应电流值,见附图3。响应电流减小的原因可能是PbS的负载量过大,大量的PbS颗粒不能与MoS2片直接接触,使得产生的光生电子不能及时传递到MoS2片上,造成复合损失。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1