一种微波碳化硅陶瓷发热体及其制备方法与流程

文档序号:11685197阅读:502来源:国知局

本发明涉及陶瓷材料技术领域,特别是一种在微波作用下能够快速发热的陶瓷体。



背景技术:

微波吸收材料是指能够吸收并衰减入射的电磁波,将电磁波转换成热量或其它能量而消耗掉的一种功能性材料。碳化硅不仅具有良好的微波吸收的特性,同时还它是一种重要的高温结构陶瓷材料,具有高硬度、高热导率、耐腐蚀、抗热震性好等许多优异性能,因此碳化硅纤维成为应用于高温环境下的一种非常具有前景的吸波发热材料。

现有技术中,微波发热吸收材料大多采用钛、铍等贵重金属的氧化物,由于其制备成本高,很难在民用产品领域获得广泛应用;虽然现有技术中也存在以碳化硅为基体的吸波发热结构体,但由于各组分配方不同,所达到的制热效果还不够理想,在制热的速度以及能量的转换效率方面都存在不足,不利于推广。



技术实现要素:

本发明所要解决的技术问题是克服已有技术之缺陷,提供一种微波碳化硅陶瓷发热体,它能够在微波作用下快速、稳定地释放出大量热量,并具有热稳定性能好、成本低的特点。

本发明所述技术问题是以下述技术方案实现的:

一种微波碳化硅陶瓷发热体,所述陶瓷发热体是由吸波陶瓷粉料和粘结剂混合后加压成型并烧结而成;所述吸波陶瓷粉料包括以重量百分计的碳化硅68%~73%、三氧化二铝1%~5%、氧化锆1%~6%、四氧化三铁18%~23%、二氧化铪1%~6%、二氧化硅1%~6%、三氧化二钇1%~5%、三氧化二镧2%~5%。

上述微波碳化硅陶瓷发热体,所述粘结剂为耐高温胶水,耐高温胶水的加入量是吸波陶瓷粉料质量的4%~8%。

上述微波碳化硅陶瓷发热体,所述吸波陶瓷粉料包括以重量百分计的碳化硅73%、三氧化二铝1%、氧化锆1%、四氧化三铁20%、二氧化铪1%、二氧化硅1%、三氧化二钇1%、三氧化二镧2%。

上述微波碳化硅陶瓷发热体,所述陶瓷发热体为圆柱体或长方体,陶瓷发热体内部分布若干通孔,所述通孔的总面积占陶瓷发热体横截面面积的70%~85%。

上述微波碳化硅陶瓷发热体,所述通孔的横截面为方形或圆形,各相邻通孔之间的壁厚为0.2~3.0mm;。

一种如上述微波碳化硅陶瓷发热体的制备方法,包括如下步骤:

a、原料制备:按比例称取吸波陶瓷粉料中的各组分,并将各组分加入到雷蒙磨中研磨粉碎至1000目粉料,然后将得到的粉料加入粘结剂,放入离心搅拌机中,搅拌混合0.5~1h,得到混合均匀的吸波陶瓷原料;

b、压制成型:将步骤a所得的吸波陶瓷原料在模具中压制成型,成型压力为25~50mpa,稳压时间持续1.5~2.5min,得到陶瓷坯体;

c、定型烘干:将步骤b所得的陶瓷坯体静置不小于24小时凝固成型,静置后采用微波烘干,烘干环境温度为90℃-100℃;

d、烧结:将步骤c所得的烘干后的陶瓷坯体装入窑炉中,炉内温度升温至1300℃~1500℃后停止加热,随炉降温36h后得到陶瓷发热体。

上述微波碳化硅陶瓷发热体的制备方法,所述步骤b中成型的压力为25~50mpa,稳压时间持续1.5~2.5min。

上述微波碳化硅陶瓷发热体的制备方法,所述步骤d中陶瓷坯体由还原性气氛保护在窑炉中烧结。

本发明的陶瓷发热体极大提高了陶瓷材料的吸波性能,具有耐高温性能优越、热传导率高的特点,陶瓷发热体的热导率达92~95w/m.k,超过目前碳化硅陶瓷产品的热导率为70w/m.k的指标。本发明采用干法直接压制成型,制备工艺简单、成本低,不需要经过制备浆料、喷雾造粒、低温/高温两阶段煅烧等注浆工艺所需的步骤,可以广泛地应用于微波制热风的设备中,具有较好的实用价值。

吸波陶瓷粉料中的碳化硅具有良好的微波吸收性能和优越的耐高温性能;磁性fe3o4频率特性和导电性较其它铁氧体类材料好,其相对磁导率、电阻率较大,电磁波易于进入并快速衰减,是一种兼具磁损耗和介电损耗双损介质的铁氧体类吸波材料;氧化锆和氧化钇自身能够吸收微波能并转化为热能,因此有效降低热压烧结过程中的烧结温度,并增加致密性,烧结温度可低于1500℃,远低于纯碳化硅粉体2000℃左右的烧结温度,既能有效保证陶瓷材料的热导率,又能最大程度降低烧结温度和制造成本。将碳化硅、四氧化三铁与其他吸波材料由适合的比例混合形成复合型吸波陶瓷材料,通过改变吸波陶瓷材料中各组分的比例,调整电磁参量使其达到阻抗匹配并提高发热体吸波性能的目的,同时还增加了电导率,导致介电损耗的增加,达到增加吸波带宽的目的。

通过上述方法制备的陶瓷发热体具有贯通的多孔结构,当微波进入陶瓷发热体内部时,由于空气的粘滞性以及材料良好的阻尼特性,它不仅能通过陶瓷发热体本身的材料使电磁能不断损耗,从而吸收微波;还能通过贯通的多孔状结构对微波产生反射、散射以及干涉作用引起能量衰减来提高陶瓷发热体的吸波性能,相比于碳化硅陶瓷实心致密的烧结体,多孔状的结构吸波性能提高15%以上。

附图说明

图1是本发明陶瓷发热体的结构示意图。

图中各标号清单为:1、多孔微波陶瓷砖,2、通孔。

具体实施方式

下面结合附图对本发明作进一步详细说明。

本发明的陶瓷发热体是由吸波陶瓷原料混合后直接压制、烧结而成的,所述陶瓷发热体可以为圆柱体或长方体,在陶瓷发热体上均匀设置若干贯穿的通孔,所有通孔的面积之和占陶瓷发热体横截面积的70%~85%,该通孔为圆形或方形,各相邻通孔之间的壁厚为0.2~3.0mm。各相邻通孔之间的壁厚尺寸越小,在微波作用下升温速度越迅速,因而节能效果也就越明显,通孔的孔径和通孔密度能够影响微波在陶瓷发热体内部的传播,从而对吸收微波产生明显影响。如图1所示,陶瓷发热体可以制成长方体的多孔微波陶瓷砖1,砖体上分布若干贯穿的通孔2,通孔2的横截面呈方形。

所述吸波陶瓷原料包括吸波陶瓷粉料和粘结剂,所述吸波陶瓷粉料包括以重量百分计的碳化硅(sic)68~73wt%、三氧化二铝(al2o3)1~5wt%、氧化锆(zro2)1~6wt%、四氧化三铁(fe3o4)18~23wt%、二氧化铪(hfo2)1~6wt%、二氧化硅(sio)1~6wt%、三氧化二钇(y2o3)1~5wt%、三氧化二镧(la2o3)2~5wt%。所述粘结剂为耐高温胶水,耐高温胶水为市售的无机高温胶,可耐温1000℃以上。其中,粘结剂的加入量是吸波陶瓷粉料质量的4%~8wt%。

所述吸波陶瓷粉料优选为碳化硅(sic)73wt%、三氧化二铝(al2o3)1wt%、氧化锆(zro2)1wt%、四氧化三铁(fe3o4)20wt%、二氧化铪(hfo2)1wt%、二氧化硅(sio)1wt%、三氧化二钇(y2o3)1wt%、三氧化二镧(la2o3)2wt%。

陶瓷发热体的制备工艺,包括以下步骤:

a、制备吸波陶瓷原料:按比例称取吸波陶瓷粉料中的各组分,并将各组分加入到雷蒙磨中研磨粉碎至1000目粉料,然后将得到的粉料加入粘结剂,放入离心搅拌机中,搅拌混合0.5~1h,得到混合均匀的吸波陶瓷原料;

b、加压成型:将步骤a所得的吸波陶瓷原料放入模具中通过油压机直接压制成型,成型压力为25~50mpa,稳压时间持续1.5~2.5min,得到陶瓷坯体,;

c、定型烘干:将步骤b所得的陶瓷坯体静置不小于24小时凝固成型,静置后采用微波烘干,烘干环境温度为90℃-100℃;

d、烧结:将步骤c所得烘干后的陶瓷坯体装入有还原性气氛保护的窑炉中,炉内温度升温至1300℃~1500℃后停止加热,随炉降温36h后得到陶瓷发热体,即可得到陶瓷发热体。

实施例1

按比例称取吸波陶瓷粉料中的各组分:碳化硅73wt%,氧化铝1wt%,氧化锆1wt%,四氧化三铁20wt%,二氧化铪1wt%,二氧化硅1wt%,三氧化二钇1wt%,三氧化二镧2wt%,将上述组分加入到雷蒙磨中研磨粉碎至1000目粉料,然后将得到的粉料加入粘结剂即耐高温胶水,耐高温胶水的加入量为吸波陶瓷粉料的6wt%,放入离心搅拌机中,搅拌混合1h,制得吸波陶瓷原料。将所得吸波陶瓷原料压入模具中并通过油压机加压得到陶瓷坯体,成型压力为25mpa,稳压时间持续2min。然后将所得的陶瓷坯体静置凝固不小于24小时,90℃微波烘干,烘干后自然降温。将烘干后的陶瓷坯体装入窑炉中,炉内温度升温至1500℃后停止加热,随炉降温36h后即可得到如图1所示的方形的多孔微波陶瓷砖(即为样品一)。该多孔微波陶瓷砖正方形相邻通孔之间壁厚为0.3mm,通孔的总面积占多孔微波陶瓷砖横截面面积为85%。

实施例2:

按比例称取吸波陶瓷粉料中的各组分:碳化硅70wt%,氧化铝2wt%,氧化锆2wt%,四氧化三铁21wt%,二氧化铪1wt%,二氧化硅1wt%,三氧化二钇1wt%,三氧化二镧2wt%,将上述组分进行到雷蒙磨中研磨粉碎至1000目粉料,然后将得到的粉料加入粘结剂即耐高温胶水,耐高温胶水的加入量为吸波陶瓷粉料的7wt%,放入离心搅拌机中,搅拌混合0.5h,制得吸波陶瓷原料。将所得吸波陶瓷原料压入模具中并通过油压机加压得到陶瓷坯体,成型压力为25mpa,稳压时间持续1.5min。然后将所得的陶瓷坯体静置凝固不小于24小时,100℃微波烘干,烘干后自然降温。将烘干后的陶瓷坯体装入窑炉中,炉内温度升温至1400℃后停止加热,随炉降温36h后即可得到如图1所示的方形的多孔微波陶瓷砖(即为样品二)。该多孔微波陶瓷砖正方形相邻通孔之间壁厚为0.3mm,通孔的总面积占多孔微波陶瓷砖横截面面积为85%。

实施例3:

按比例称取吸波陶瓷粉料中的各组分:碳化硅70wt%,氧化铝1wt%,氧化锆1wt%,四氧化三铁22wt%,二氧化铪1wt%,二氧化硅2wt%,三氧化二钇1wt%,三氧化二镧2wt%,将上述组分进行到雷蒙磨中研磨粉碎至1000目粉料,然后将得到的粉料加入粘结剂即耐高温胶水,耐高温胶水的加入量为吸波陶瓷粉料的8wt%,放入离心搅拌机中,搅拌混合0.5h,制得吸波陶瓷原料。将所得吸波陶瓷原料压入模具中并通过油压机加压得到陶瓷坯体,成型压力为25mpa,稳压时间持续1.5min。然后将所得的陶瓷坯体静置凝固不小于24小时,100℃微波烘干,烘干后自然降温。将烘干后的陶瓷坯体装入窑炉中,炉内温度升温至1500℃后停止加热,随炉降温36h后即可得到如图1所示的方形的多孔微波陶瓷砖(即为样品三)。该多孔微波陶瓷砖正方形相邻通孔之间壁厚为0.5mm,通孔的总面积占多孔微波陶瓷砖横截面面积为83%。

效果例

将三个实施例中所得的陶瓷发热体试样分别在相同强度的微波下进行测试10分钟、15分钟和20分钟,照射后分别测量样品的温度。对比例为采用与实施例1的多孔微波陶瓷砖相同材质、相同大小的实心砖体。将各样品制作成热导率测试试样件,测量样品的热导率。具体数值如下表所示。

表一实施例中各样品的性能比较

由表1可以看出,采用实施例1的方法制备出的陶瓷发热体相比较实施例2、3制备的陶瓷发热体产热性能更好,并且多孔结构的陶瓷发热体的产热性能明显优于实心结构的陶瓷发热体。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1