ZrB2‑SiC层状复合陶瓷及其制备方法与流程

文档序号:11258757阅读:714来源:国知局
ZrB2‑SiC层状复合陶瓷及其制备方法与流程

本发明属于陶瓷材料技术领域,涉及一种仿生层状陶瓷材料及其制备方法。



背景技术:

陶瓷材料因为具有耐高温、耐腐蚀、高硬度、耐磨损、抗冲刷等优良性能而被广泛的应用在各个领域,但其脆性大的缺点限制了陶瓷材料的发展。因此改善陶瓷材料的脆性,即增加陶瓷材料的断裂韧性是陶瓷学家长期关注的问题。近些年,科学家们发现了许多陶瓷增韧的方法,例如相变增韧、微裂纹增韧等,其中仿生层状结构设计可以很好地克服陶瓷材料突发性断裂的弱点,因此非常受研究者的青睐。仿生层状复合结构设计是陶瓷增韧的方法之一,它是一种以贝壳等生物材料为原型的仿生结构设计。



技术实现要素:

本发明的目的是提供一种zrb2-sic层状复合陶瓷及其制备方法,仿生层状zrb2-sic超高温陶瓷具有独特的层状结构,很大程度上提高了陶瓷的断裂韧性。

本发明的目的是通过以下技术方案实现的:

一种zrb2-sic层状复合陶瓷,由sic层和zrb2层组成。

一种上述zrb2-sic层状复合陶瓷的制备方法,包括如下步骤:

一、以sic粉体、zrb2粉体为原料,聚乙烯醇(pva)为粘结剂,采用模压成型的方法将sic粉体和zrb2粉体压制成近似等厚层状陶瓷素坯,然后进行干燥,得到zrb2-sic层状坯体,其中:sic粉体、zrb2粉体的体积比为1:1,聚乙烯醇(pva)的加入量为原料总重量的2~5%,模压成型的压强为4~6mpa,保压时间为1~3min,层状陶瓷素坯的厚度为3~5mm;

二、采用真空热压烧结的方法进行zrb2-sic层状坯体的烧结,即得zrb2-sic层状复合陶瓷,其中:烧结温度为1400~1800℃,保温时间为1~3h。

本发明的zrb2-sic层状复合陶瓷能够有效的改善普通单一zrb或sic陶瓷中的脆性大、韧性低的缺点,使抗烧蚀性能有改善,而且制备简单、易于推广。

附图说明

图1为zrb2-sic层状复合陶瓷的制备工艺流程图;

图2为成型后的陶瓷坯体分别在1400℃、1600℃、1800℃三个温度下烧结的界面层的xrd图谱;

图3为zrb2-sic体系的相图;

图4为成型后的坯体在1800℃下烧结后制品的sem图;

图5为烧结后sic-zrb2层状陶瓷陶瓷坯体发生弯曲变形示意图。

具体实施方式

下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。

本发明提供的zrb2-sic层状复合陶瓷由sic和zrb2两种基体陶瓷片组成,如图1所示,具体制备步骤如下:

一、称量定量的sic粉体,向sic粉体中加入少量的粘结剂并搅拌均匀,以得到上层粉料,其中:粘结剂的加入量为sic粉体的3%;

二、称量与sic粉体体积相近的zrb2粉体,向zrb2粉体中加入少量的粘结剂并搅拌均匀,以得到下层粉料,其中:粘结剂的加入量为zrb2粉体的3%;

三、按照顺序将上下层粉料填入压片机的模腔内,通过振动模具使每一层料均匀、平整的填入模腔,最后将sic粉体和zrb2粉体压制成厚度约为4mm的层状陶瓷素坯,压片时所加压强为6mpa,保压时间为2min,然后进行干燥。

四、采用真空热压烧结的方法进行陶瓷坯体的烧结,烧结温度分别为1400℃、1600℃、1800℃,保温时间为2h,通过x射线衍射分析、扫描电镜等分析手段研究不同烧结温度对陶瓷致密性的影响,以及烧结前后陶瓷材料的晶型结构的转变情况。

1、x射线衍射(xrd)分析:

采用日德国dx-2700b型x射线衍射仪对原材料和合成坯体材料进行物相鉴定及定性分析。仪器选用cu-kα辐射,其衍射波长为0.15406nm,管电压为40kv,管电流为30ma。在进行物相定性分析时,采用步进式测量方法,步进角度为0.02°,角度区间选取5°~90°,采样时间为0.1s。在分析测试结果时,选用jade软件加以分析物相组成及物相相对含量。

2、显微形貌观察与分析

采用英国camscan公司生产的mx2600fe型扫描电子显微镜对sic、zrb2粉体以及经过压片机成型真空烧结后的层状复合陶瓷材料的微观形貌、颗粒尺寸及分布情况等进行扫描电子显微镜观察分析,工作电压为0v~25kv,分辨率为1.5nm,放大倍数可达到3~600000倍。

3、试验结果分析

(1)烧结温度对层状体系的影响

a、物相分析

从图2中可以看出:温度的改变并没有使结晶相发生改变,说明在此三个温度下,界面处sic与zrb2并未发生反应,只是在烧结过程中有部分15r-sic发生了晶型转变,转变为晶型更为稳定的6h-sic。

从图3中可知:zrb2与sic的熔融温度都达到了2000℃以上,而在实验中的实际烧结温度分别为1400℃、1600℃和1800℃,所以温度太低没有使zrb2与sic的熔融而导致界面层没有结晶相和共晶相的析出。

b、形貌组织

从图4中可以观察到:sic颗粒尺寸较均匀,形貌呈规则状;zrb2颗粒尺寸较大,呈不规则形貌。

(2)烧结后的陶瓷体成弯曲状分析

烧结温度的高低直接影响着陶瓷烧结体的气孔率和体积密度。烧结温度过低,则陶瓷烧结体不能充分致密化,气孔率含量较高,体积密度未能达到预期的结果;烧结温度过高,则晶粒将异常长大,气孔率急速增加,出现过烧膨胀,甚至坯体因液相量过多而软化变形,体积密度降低。

a、弹性模量与热膨胀系数对陶瓷体弯曲度的影响

理论上sic材料的弹性模量(475gpa)与基体zrb2的弹性模量(248gpa)相当,而sic的热膨胀系数(4.7×l0-6/℃)小于zrb2的热膨胀系数(5.9×l0-6/℃),因此sic与zrb2具备良好的物理匹配性,并能增加材料的韧性。

在高温烧结过程中由于上下层的膨胀量不同而导致烧结制品发生弯曲变形,对于直径为15mm的陶瓷坯体在不同温度下的膨胀量如表1和2所示:

表1sic烧结后的膨胀量

表2zrb2烧结后的膨胀量

根据表1和2可以看出:在sic-zrb2层状陶瓷坯体中,上下两种成分的陶瓷层在不同的温度下横向膨胀量变化较大,纵向膨胀量的在不同的温度下变化不是很明显。随着温度的升高sic层和zrb2层的膨胀量都在增加,并且zrb2层的膨胀量大于sic层的膨胀量,再加之式样在模压成型时采用单向加压的方法成型致使陶瓷坯体产生密度差,因而烧结后产生弯曲变形,其烧结后发生弯曲变形的陶瓷坯体如图5所示。

b、致密度的测定

分别测定烧结后坯体的质量和体积,采用阿基米德排水法可以测得试样的实际密度,公式如式(1)所示:

式中:m—式样在空气中的质量(g);

m水—式样浸入水中的质量(g);

ρ水—蒸馏水的密度(g/cm3)。

坯体致密度rd可由式(2)计算得到:

通过查表可以知道纯sic分体的理论密度为3.22g/cm3,纯zrb2粉体的理论密度为5.80g/cm3,由公式(1)和(2)可以得出不同烧结温度所得到坯体的致密度如表3所示。

表3不同烧结温度样品的致密度

从表3中可以看出,烧结温度为1400℃时材料的相对密度很低,其原因可能是由于材料还未实现烧结或者尚未完全烧结致密所导致,此时气孔率和气孔尺寸都较大因而相对密度很低。随着烧结温度的提高,相对密度随之增加,当温度达到1800℃时,烧结体内的气孔率明显下降,气孔尺寸减小,因而材料的致密程度升高。

由此可见,烧成温度对烧结体的致密度有非常大的影响,在较低的温度下,碳化硅的扩散系数较小,晶界移动速率小,气孔保持在晶界处并利用晶界作为空位传递的快速通道而迅速汇集,但很难随晶界移动被排除,致使样品的晶界处存在大量的气孔,样品很难达到高的致密度。随着烧成温度的提高,烧结的驱动力增大,颗粒表面的活化能得到提高,发生物质迁移,晶粒生长,晶界随着晶粒的长大而移动,晶界处气孔汇集并随晶界的移动而被排除,烧结体的致密度也相应得到提高。

c、收缩率的测定

采用模压成型法制得的陶瓷坯体为圆柱状,所以收缩率s可以用直径的变化来表征,如式(3)所示,可以准确得到收缩率。

式中:s—收缩率(%);

d—坯体干燥前的直径;

d干—坯体干燥后的直径。

分别测量烧结后陶瓷坯体的直径,利用公式(3)可以计算出不同温度下陶瓷坯体的收缩率如表4所示:

表4不同温度下sic-zrb2层状陶瓷坯体的收缩率

根据表4可以看出:随着温度的升高,坯体的收缩率也不断增大,与此同时坯体的致密度提高,气孔率下降,气孔尺寸减小。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1