一种超致密高导热硅砖及其制备方法与流程

文档序号:14075664阅读:893来源:国知局

一种超致密高导热硅砖及其制备方法,属于耐火材料技术领域。



背景技术:

随着现代焦炉大型化、节能化技术的发展对焦炉用耐火材料的品质要求越来越严格。焦炉硅砖是焦炉耐材的主要砌筑材料,在焦炉用耐火材料的比例达到60%以上,其性能的好坏直接关系到焦炉的使用寿命,尤其炭化室底砖及燃烧室炉墙砖在长期使用过程中因周期性温度波动及长期推焦的频繁性从而经常导致硅砖产生裂纹、结构疏松、表面剥落,进而直接影响到焦炉的使用寿命。针对焦炉硅砖损坏情况及焦炉大型化的发展要求,开发高致密、高导热性、超强耐磨性硅质材料成为丞待解决的问题。



技术实现要素:

本发明要解决的技术问题是:克服现有技术的不足,提供一种高致密、高导热性、超强耐磨的超致密高导热硅砖及其制备方法。

本发明解决其技术问题所采用的技术方案是:该超致密高导热硅砖,其特征在于:质量百分比组成包括:sio295%~96%、al2o30.7%~1.0%、fe2o30.6%~0.8%、cao2.1%~2.5%、残余石英0.4%~0.5%。

焦炉炭化室炉墙采用本发明的高导热硅砖能有效提高炼焦所需热量从燃烧室往炭化室传导的效率,而不会对焦炉生产和炉体寿命有任何负面影响。本高导热硅砖的组成实现了显气孔率、常温耐压强度和导热系数指标均明显优于普通硅砖,其它各项理化性能指标也均等同或略优于普通硅砖。

优选的,原料重量份组成包括粒径1mm~4mm高纯熔融硅砂30~34份、粒径0.3~1mm高纯熔融硅砂17~20份、粒径200目高纯熔融硅砂33~40份、硅胶粘结剂2.5~4.5份、石英粉2.0~3.5份、磷酸1.7~2.3份、高温粘结剂6~8份。本发明提供一种实现上述组成的物料配比,在普通硅砖的原料和工艺基础上,采用优化原料粒度级配和添加结合剂等技术措施制造致密硅砖,降低气孔率、提高强度和导热系数。

更优选的,原料重量份组成包括粒径1mm~4mm高纯熔融硅砂32~33份、粒径0.3~1mm高纯熔融硅砂18~19份、粒径200目高纯熔融硅砂35~37份、硅胶粘结剂3~3.5份、石英粉2.8~3.2份、磷酸1.9~2.1份、高温粘结剂6.5~7.8份。更优选的重量份组成和粒度级配,能够更好的适应本发明的低温烧制工艺,能够在更低的制备温度下得到更低的气孔率和更高的强度及导热系数。

优选的,硅砖的显气孔率为16%~19%,体积密度为1.9g/cm3~2.1g/cm3,室温~1000℃的热膨胀率为1.2%~1.25%,1100℃时的导热系数为2.3w/m.k~2.6w/m.k。本发明物理性能的硅砖使用后,由于焦炉炭化室炉墙导热系数提高,意味着从燃烧室向炭化室传导相同的热量需要的温度梯度减小,也即在保持结焦时间(即焦炉产能)不变的条件下,燃烧室的墙面温度(或火道温度)可降低,加热煤气量也可相应降低。使用本发明的高导热硅转后火道温度可降低约40℃,加热煤气消耗量可节省3%以上。燃烧室火道温度降低能有效降低燃烧废气中nox含量。根据燃烧废气中nox产生的机理分析以及德国焦炉的试验数据,如火道温度降低40℃,则燃烧废气中nox含量可降低约80ppm。

一种上述超致密高导热硅砖的制备方法,其特征在于:制备步骤包括配料、混炼、液压成型、干燥、烧制;

所述的干燥步骤中干燥制度为出车端温度80℃~100℃,进车端温度:35℃~50℃;推车速度为1.5~2.0h/车,干燥后残余水分小于1.5%;

所述的烧制步骤中的烧成制度为:室温升温至195℃~205℃,升温速率为27℃/h~33℃/h,在195℃~205℃首次保温7.5h~8.5h,然后继续升温至995℃~1008℃,升温速率为25℃/h~35℃/h,在995℃~1008℃二次保温4h~5h。

目前焦炉用硅砖(尤其是炭化室底砖,及燃烧室炉墙砖)提高其耐磨性及导热性是降低焦炉使用成本提高其寿命的关键所在。本发明方法实现超致密、高导热性、低耐磨优质硅砖,添加结合剂,天燃气隧道窑烧制成品。采用特定的物料配比后,改进烧成制度,本发明中的物料配比使得成型的坯体能够在1000℃左右的低温下完成熔融烧制,烧制过程中因为没有达到过过高的温度,使得本发明不但具有更低的气孔率,还使强度和导热系数大大的提高。而且优化干燥工艺,与物料配比相适应,能够防止干躁过程中出现坯体裂痕,保证干燥后的成品率。得到更低的气孔率和更高的强度及导热系数的硅砖。

优选的,所述的液压成型采用1250吨液压成型机压制。与普通的工业烧成带耐火砖相比本发明生产的无铬砖采用1250吨液压成型机压实成型,既维持了焦炉设计部门对砖型的原设计又提高了砖的使用寿命,能够更好的保证烧制的成品率。配合原料粒度级配和添加的结合剂,能够能耗的保证气孔率低、强度高、导热系数高等特点。

优选的,所述的烧制步骤中的烧成制度中首次保温的温度为200℃,保温时间为8h。

优选的,所述的烧制步骤中的烧成制度中二次保温的温度为998℃,保温时间为4h。

优选的保温温度和时间能够更好的保证本产品具有低的气孔率、更高的强度和导热系数。且配合其它优选的工艺条可以在更低的温度下,更短的时间内二次保温完成。

与现有技术相比,本发明的一种超致密高导热硅砖及其制备方法所具有的有益效果是:

1、本发明产品的密度高,超致密硅砖体积密度在1.90g/m3以上。

2、本发明产品的导热性好,在800~1200℃超致密硅砖热导率较传统产品提高20%。

3、本发明产品的强度高、耐磨性好,超致密硅砖与致密硅砖强度要远远高于一般硅砖,耐磨性能提高。超致密硅砖的耐磨性比一般致密硅砖高出40%以上。

4、本发明产品的热容量大、蓄热量大、超致密硅砖和致密硅砖热容量提高2.5%以上。

5、本发明产品的环保效益好,由于导热性好,在焦炭产量相同的情况下,焦炉立火道温度可以降低70~110℃,烟气中的nox的排放量明显减少,减少环境污染,实现环保、清洁生产。

6、本发明的制备方法节约能源,由于本发明的烧制是低温炼焦,可以减少烟气的温度,降低焦炉的耗热量在3%以上,减少烟气的排放。

7、节约占地在焦炉火道温度不变的情况下,生产相同焦炭,超致密硅砖和致密硅砖可以减少15~20%的焦炉孔数,节约土地的使用。

8、延长寿命超致密硅砖和致密硅砖强度提高40%以上,炭化室墙面和铺底砖的磨损将减缓。由于超致密硅砖和致密硅砖气孔率降低,也减缓了炼焦煤中碱金属对炉墙的腐蚀。

因此,焦炉炭化室炉墙采用高导热硅砖是一项具有节能、减排效益的新技术。

具体实施方式

下面结合具体实施例对本发明做进一步说明,其中实施例1为最佳实施。

实施例1

配料,按原料的重量份组成:粒径1mm~4mm高纯熔融硅砂32.5份、粒径0.3~1mm高纯熔融硅砂18.5份、粒径200目高纯熔融硅砂36份、硅胶粘结剂3.2份、石英粉3份、磷酸2份、高温粘结剂7.2份;

混炼,将称量好的物料在混炼机中进行混炼;

干燥步骤,干燥制度为出车端温度90℃,进车端温度:42℃;推车速度为1.8h/车,干燥后残余水分为1.2%;

烧制,烧成制度为:室温升温至200℃,升温速率为30℃/h,在200℃首次保温8h,然后继续升温至998℃,升温速率为30℃/h,在998℃二次保温4h。

实施例2

配料,按原料的重量份组成:粒径1mm~4mm高纯熔融硅砂32份、粒径0.3~1mm高纯熔融硅砂19份、粒径200目高纯熔融硅砂35份、硅胶粘结剂3.5份、石英粉2.8份、磷酸2.1份、高温粘结剂6.5份;

混炼,将称量好的物料在混炼机中进行混炼;

干燥步骤,干燥制度为出车端温度85℃,进车端温度:38℃;推车速度为1.7h/车,干燥后残余水分为1.4%;

烧制,烧成制度为:室温升温至202℃,升温速率为32℃/h,在202℃首次保温7.8h,然后继续升温至996℃,升温速率为28℃/h,在996℃二次保温4.2h。

实施例3

配料,按原料的重量份组成:粒径1mm~4mm高纯熔融硅砂32~33份、粒径0.3~1mm高纯熔融硅砂18~19份、粒径200目高纯熔融硅砂35~37份、硅胶粘结剂3~3.5份、石英粉2.8~3.2份、磷酸1.9~2.1份、高温粘结剂6.5~78份;

混炼,将称量好的物料在混炼机中进行混炼;

干燥步骤,干燥制度为出车端温度95℃,进车端温度:46℃;推车速度为1.9h/车,干燥后残余水分为1.2%;

烧制,烧成制度为:室温升温至198℃,升温速率为28℃/h,在198℃首次保温8.2h,然后继续升温至1004℃,升温速率为32℃/h,在1004℃二次保温4.1h。

实施例4

配料,按原料的重量份组成:粒径1mm~4mm高纯熔融硅砂30份、粒径0.3~1mm高纯熔融硅砂20份、粒径200目高纯熔融硅砂33份、硅胶粘结剂4.5份、石英粉2.0份、磷酸2.3份、高温粘结剂6份;

混炼,将称量好的物料在混炼机中进行混炼;

干燥步骤,干燥制度为出车端温度80℃,进车端温度:35℃;推车速度为1.5h/车,干燥后残余水分为1.5%;

烧制,烧成制度为:室温升温至195℃,升温速率为27℃/h,在205℃首次保温8.5h,然后继续升温至995℃,升温速率为25℃/h,在995℃二次保温5h。

实施例5

配料,按原料的重量份组成:粒径1mm~4mm高纯熔融硅砂34份、粒径0.3~1mm高纯熔融硅砂17份、粒径200目高纯熔融硅砂40份、硅胶粘结剂2.5份、石英粉3.5份、磷酸1.7份、高温粘结剂8份;

混炼,将称量好的物料在混炼机中进行混炼;

干燥步骤,干燥制度为出车端温度100℃,进车端温度:50℃;推车速度为2.0h/车,干燥后残余水分为1.4%;

烧制,烧成制度为:室温升温至205℃,升温速率为33℃/h,在205℃首次保温7.5h,然后继续升温至1008℃,升温速率为35℃/h,在995℃~1008℃二次保温4.6h。

对比例1

制备步骤同实施例1,不同的是原料的重量份组成:粒径1mm~4mm高纯熔融硅砂18.5份、粒径0.3~1mm高纯熔融硅砂36份、粒径200目高纯熔融硅砂32.5份、硅胶粘结剂3.2份、石英粉3份、磷酸2份、高温粘结剂7.2份;

对比例2

制备步骤原料配比同实施例1,不同的是烧成制度为:室温升温至500℃,升温速率为33℃/h,在500℃首次保温7.5h,然后继续升温至1008℃,升温速率为35℃/h,在995℃~1008℃二次保温4.6h。

上述实施例的超致密高导热硅砖的质量百分比组成均满足:sio295%~96%、al2o30.7%~1.0%、fe2o30.6%~0.8%、cao2.1%~2.5%、残余石英0.4%~0.5%,及余量的杂质。硅砖物化性能均满足:显气孔率为16%~19%,体积密度为1.9g/cm3~2.1g/cm3,室温~1000℃的热膨胀率为1.2%~1.25%,1100℃时的导热系数为2.3w/m.k~2.6w/m.k。各实施例及对比例的具体检测结果见表1。

表1实施例及对比例的物化参数检测结果

从表1可以看出本发明产品的密度高,导热性好,强度高、耐磨性好,超致密硅砖与致密硅砖强度要远远高于一般硅砖,耐磨性能提高,且热容量大、蓄热量大。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1