基于热处理法调控激光增材制造熔体自生陶瓷构件的组织及性能的方法

文档序号:26103996发布日期:2021-07-30 18:15阅读:187来源:国知局
基于热处理法调控激光增材制造熔体自生陶瓷构件的组织及性能的方法

本发明涉及激光增材制造技术领域的陶瓷性能调控领域,具体涉及一种热处理调控激光增材制造熔体自生陶瓷构件组织及性能的方法。



背景技术:

相比于传统烧结陶瓷工艺,激光增材制造熔体自生陶瓷制备过程具有成形速度快、加工柔性高、工艺步骤少、样件制备尺寸大等优点,且熔体自生陶瓷构件的致密度高、气孔率低,在未来加工制造领域具有巨大的潜力。但由于激光增材制造熔体自生陶瓷制备过程属于快速熔化-凝固过程,其凝固速度极快,固液界面附近温度梯度极高,导致所制备构件存在元素成分和微观组织不均匀、晶间结合强度低以及残余应力高等问题,严重影响陶瓷构件的性能。

目前,激光增材制造熔体自生陶瓷组织和性能调控方法有预热法、超声辅助法、磁场辅助法和添加增强相等方法,这些方法主要针对成形过程进行干预,达到激光增材制造熔体自生陶瓷组织和性能调控的目的。但是,这些方法也存在着其各自的局限性。预热法中所使用的加热装置会限制陶瓷构件的制备尺寸,同时存在预热不均匀的问题影响其组织和性能的调控效果。超声辅助法中,超声波通过一定路径传导到达熔池内影响陶瓷凝固过程从而达到陶瓷构件组织及性能调控的目的,但是随着构件的制备,传导路径不断增长,超声波能量损失增大,超声调控效果削弱,构件内不同位置的超声调控效果不同,导致构件内组织不均,影响其性能。磁场辅助法中,陶瓷构件的整个制备过程需要时刻处于磁场范围内,因此其陶瓷构件的制备尺寸受磁场设备的限制。添加增强相方法,增强相的流动性和增强相与基体的相容性是限制增强相发挥相应效果的主要问题——增强相流动较差会导致粉路堵塞无法成形;增强相与基体的相容性较差会导致基体中的增强相附近出现结合不良的微裂纹,影响陶瓷构件的性能。

本发明提出后续热处理的组织及性能调控方法,通过热处理方法对激光增材制造熔体自生陶瓷构件的组织及性能进行调控。在热处理过程中,温度变化速率相对较为缓慢的升温和冷却过程以及一定时间的保温过程都能够使熔体自生陶瓷构件内的残余应力得以释放。同时,高温热处理能够愈合熔体自生陶瓷构件内部的微裂纹和微气孔,缓解元素偏析现象,消除晶粒间的明显晶界,使晶粒之间的结合更紧密,提高晶间结合强度,从而提高熔体自生陶瓷构件的力学性能。相关报道如下:

哈尔滨工业大学专利号为cn200910072023.2介绍了al4sic4陶瓷的热处理方法,通过将研磨抛光后的al4sic4陶瓷在600~1600℃条件下保温10min~20小时,表面生成氧化铝、硅线石或莫来石,对陶瓷弯曲强度的提高具有积极作用。但是这种方法机理仅适用于能够在高温条件发生氧化反应的陶瓷,不适用于激光增材制造中所常用的氧化物陶瓷材料。

昆明理工大学专利号为cn201810269477.8介绍了一种陶瓷增强钢基复合材料的热处理工艺,将陶瓷增强钢基复合材料涂刷抗氧化涂料后放入箱式炉进行热处理,提高其耐磨性和强韧性并且能有效避免复合材料开裂。但是涂料刷涂和清洗步骤以及步骤复杂的热处理过程会降低生产效率,增加生产成本。刷涂涂料存在影响样件精度的风险。



技术实现要素:

本发明的目的在于提供一种热处理调控激光增材制造熔体自生陶瓷构件组织及性能的方法,改善熔体自生陶瓷组织,提高熔体自生陶瓷性能,扩大熔体自生陶瓷的应用领域和范围。为了达到上述目的,本发明一种热处理调控熔体自生陶瓷构件性能的方法如下:

基于热处理法调控激光增材制造熔体自生陶瓷构件的组织及性能的方法,利用激光增材制造技术制备熔体自生陶瓷构件后,利用加热装置对成形构件进行升温、保温和冷却的热处理,获得组织和性能改善的激光增材制造熔体自生陶瓷构件。

所述的热处理过程中:

(a)升温阶段:加热装置内的初始温度为室温,升温速率为1~15℃/min;

(b)保温阶段:温度为500~1800℃,保温时间为5~50h;

(c)冷却阶段:随炉冷却。

所述熔体自生陶瓷构件的材料为al2o3陶瓷、zro2陶瓷、sio2陶瓷、al2o3/zro2复合陶瓷、al2o3/yag复合陶瓷、al2o3/sio2复合陶瓷、al2o3/al2tio5复合陶瓷、al2o3/zro2/yag复合陶瓷或al2o3/zro2/eag复合陶瓷。

所述的激光增材制造技术为基于激光的直接能量沉积技术或粉末床熔融技术。

本发明具有以下有益效果:

(1)本发明不会影响激光增材制造熔体自生陶瓷制备过程的正常进行,不会向构件内引入新的杂质或缺陷。

(2)本发明不会使激光增材制造所常用的氧化物陶瓷材料发生氧化反应生成其他物质影响性能。

(3)本发明无需对陶瓷材料进行抗氧化材料涂刷步骤,且热处理过程中保温阶段的温度和保温时间无需不断变换,操作简单,工艺步骤少。

(4)本发明的热处理工艺不仅能够有效提高了熔体自生陶瓷的弯曲性能,其硬度也没有发生波动,维持极高硬度水平。

附图说明

图1是本发明一种热处理调控激光增材制造熔体自生陶瓷构件组织及性能的方法实施例1的温度-时间曲线图;

图2是实施例1中熔体自生陶瓷热处理前的组织图;

图3是实施例1中熔体自生陶瓷热处理后的组织图;

图4是实施例1中熔体自生陶瓷热处理前的弯曲强度应力-位移图;

图5是实施例1中熔体自生陶瓷热处理后的弯曲强度应力-位移图;

图6是实施例2中熔体自生陶瓷热处理后的组织图;

图7是实施例2中熔体自生陶瓷热处理后的弯曲强度应力-位移图。

具体实施方式

下面结合实施例对本发明做进一步详细说明。

实施例1:

通过直接激光能量沉积技术将纯al2o3粉末成形为圆柱状样件,将成形的圆柱状样件根据相关检测标准制备成为标准样件,以方便样件热处理后无需再进行磨削处理即可进行性能检测,避免热处理后的磨削处理影响性能检测结果。

使用蘸有高浓度酒精(乙醇浓度99%)的医用棉擦拭氧化铝坩埚和氧化铝承烧板,去除坩埚内和承烧板上的杂质,用高压气枪吹干多余的酒精。将承烧板置于刚玉脚垫上,再将装有al2o3陶瓷样件的坩埚用坩埚钳夹放在承烧板上。关闭高温热处理炉门,热处理炉内由室温以10℃/min升至1600℃,保持15小时。保温阶段结束后,随炉冷却至室温。当炉内温度降至室温后,用坩埚钳夹取出坩埚,取出样件后进行微观组织结构和力学性能检测。

图1是本实施例的热处理过程图;

图2为本实施例中熔体自生陶瓷热处理前的组织图,晶粒间界线分明且存在狭长的沟壑状空隙;

图3是本实施例中熔体自生陶瓷热处理后的组织图,晶粒间沟壑状空隙从深度方式愈合,变为较浅的线条状气孔。深处晶粒间的界线消失,互相连结。

图4是本实施例中熔体自生陶瓷热处理前的弯曲强度应力-位移图;

图5是本实施例中熔体自生陶瓷热处理后的弯曲强度应力-位移图。

经检测,本实施例热处理前al2o3硬度为1878hv,弯曲强度为270mpa。热处理后al2o3硬度为1958hv,增幅4.26%;其弯曲强度为548mpa,增幅103%。

本实施例热处理后al2o3陶瓷的组织出现明显的改善,性能出现显著的提升。

实施例2:

本实施例与实施例1不同的是保温阶段的温度为500℃,保温时间为10h,其他与实施例1相同。

图6为本实施例中熔体自生陶瓷热处理后的组织图,晶粒间沟壑状空隙已经消失,仅留有宽度较窄的晶界。晶粒间的晶界两侧出现互相连结的现象,使得少部分晶界消失。

图7是本实施例中熔体自生陶瓷热处理后的弯曲强度应力-位移图。

经检测,本实施例热处理后al2o3硬度为1907hv,增幅1.54%;其弯曲强度为379mpa,增幅40.37%。

本实施例热处理后al2o3陶瓷的组织出现明显的改善,性能出现显著的提升。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1