作为抗肿瘤剂的铂复合物与生物化学调节剂的组合的制作方法

文档序号:3553427阅读:370来源:国知局
专利名称:作为抗肿瘤剂的铂复合物与生物化学调节剂的组合的制作方法
技术领域
本发明的背景本申请要求提交于2002年9月11日的未决的美国临时专利申请序列号60/409,813专利的优先权。前述专利的整个文本特异地纳入本文作为参考,不放弃任何权利。依据来自国家癌症学院的授权号RO1CA50380,政府可拥有本发明中的权利。
1.发明的领域本发明与癌症治疗领域相关。更特别地,本发明涉及用于治疗癌症患者的制剂和方法,应用包括特异的铂复合物和/或谷胱甘肽(GSH)合成或活性抑制剂的组合物,所述谷胱甘肽合成或活性抑制剂如L-丁硫氨酸亚砜胺(BSO)。
2.相关技术的描述顺铂是最有效和最广泛使用的抗肿瘤药物之一。由顺铂诱导的凋亡通常被认为是由共价DNA加合物介导的,其阻滞了复制和转录。顺铂(顺二氯二氨合铂)已经被作为化学治疗剂用了很多年。Rosenberg等,美国专利4,177,263描述了应用顺铂和顺铂类似物治疗癌症的方法。该化合物对于治疗诱生在小鼠中的白血病和肿瘤是有效的。顺铂和其类似物卡铂现在已被列入最被广泛应用的抗癌药物之中。
基于铂的抗肿瘤剂(如顺铂和卡铂)在一些癌症的治疗中起着重要的作用。这些治疗的主要局限之一是在大部分患者中的复发,由于产生了药物抗性肿瘤细胞,使后续的铂剂治疗失败。该局限使得大家努力去寻找可有效对抗抗性肿瘤的铂类似物。实际上,一些铂类似物(如奥沙利铂(oxaliplatin)和JM216)已经进入临床试验。然而,几乎或根本不知这些类似物作用的有效方式。尽管降低的药物积聚、提高的细胞内谷胱甘肽、以及提高的DNA加合物修补通常作为顺铂抗性的关键机制被鉴定,目前还没获得对于由类似物引起的抗性逆转的满意解释。
通过与亚砜胺结合给药,如D,L-丁硫氨酸-S,R-亚砜胺(BSO)或其它试剂,人们努力提高顺铂或其类似物的有效性或使抗性肿瘤细胞对其敏感化。在人黑色素瘤细胞系(RPMI 8322)中,已经研究了由双功能DNA-反应性抑制细胞剂诱导的BSO对于细胞毒性和DNA-交联的影响。BSO预处理增强左旋溶肉瘤素(melphalan)的细胞毒性和氮芥。一种小但明显的由BSO产生的顺铂毒性的增强也被发现(剂量修正系数(DMF)1.5)。该发现支持由BSO产生的双功能烷化剂的细胞毒性的增强是由于提高的DNA交联的假设,所述DNA交联是由降低的药物与谷胱甘肽的细胞内结合导致的。
没有一种用于治疗癌症的方法是完全满意的,因而新的和改进的癌症治疗方法以及组合物是必需的。
发明概述这里描述的铂复合物,单独或与其它GSH合成或活性(如BSO)抑制剂结合,可显示出对顺铂-抗性细胞的敏感性以及抗肿瘤活性的增强。在某些实施方式中,本发明的铂化合物对抗性细胞的活性大于对抗敏感细胞的活性。
在本发明的某些实施方式中,化合物氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、和/或氨络物/六亚甲基亚胺-四氯-铂(IV)可被单独或与GSH合成和/或活性抑制剂结合使用,治疗患有癌症或高增殖疾病的患者。
在不同的实施方式中,抗肿瘤制剂或组合物可包括一种具有以下结构式的化合物 结构式I或其盐。所述制剂或组合物也可包括一种谷胱甘肽的负调节剂(negative modulator)。所述谷胱甘肽的负调节剂可以是谷胱甘肽合成的抑制剂。谷胱甘肽合成的抑制剂可以是L-丁硫氨酸亚砜胺(BSO,L-buthionine-sulfoximine)。BSO可包括一种或多种BSO异构体。
在其它的实施方式中,抗肿瘤制剂或组合物可包括一种具有以下结构式的化合物 结构式II或其盐。所述制剂或组合物也可包括一种谷胱甘肽的负调节剂。所述谷胱甘肽的负调节剂可以是谷胱甘肽合成的抑制剂。谷胱甘肽合成的抑制剂可以是L-丁硫氨酸亚砜胺(BSO)。BSO可包括一种或多种BSO异构体。
在其它的实施方式中,抗肿瘤制剂或组合物可包括一种具有以下结构式的化合物
结构式III或其盐。所述制剂或组合物也可包括一种谷胱甘肽的负调节剂。所述谷胱甘肽的负调节剂可以是谷胱甘肽合成的抑制剂。谷胱甘肽合成的抑制剂可以是L-丁硫氨酸亚砜胺(BSO)。BSO可包括一种或多种BSO异构体。
在其它的实施方式中,抗肿瘤制剂或组合物可包括一种具有以下结构式IV的化合物 结构式IV或其盐。所述制剂或组合物也可包括一种谷胱甘肽的负调节剂。所述谷胱甘肽的负调节剂可以是谷胱甘肽合成的抑制剂。谷胱甘肽合成的抑制剂可以是L-丁硫氨酸亚砜胺(BSO)。BSO可包括一种或多种BSO异构体。
在某些实施方式中,药物组合物可包括一种或多种铂复合物氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、或氨络物/六亚甲基亚胺-四氯-铂(IV)。
本发明的药物制剂或组合物可包括一种铂复合物,其大约的范围为0.1、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15mM至5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50mM。本发明的药物制剂或组合物可包含谷胱甘肽的生物学调节剂。所述谷胱甘肽的生物学调节剂可以是谷胱甘肽合成的抑制剂,如L-丁硫氨酸亚砜胺。药物组合物可包括的L-丁硫氨酸亚砜胺的大约范围为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95μM至100、150、200、250、300、400、500μM或更多。本发明的药物组合物可通过血管内、口服、腹腔注射给药,或通过其它已知可用于铂复合物及类似物给药的途径给药。
在本发明的另一个实施方式中,考虑了一种抑制顺铂-抗性细胞增殖的方法,该方法包括向细胞提供、使其接触或给予氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、或氨络物/六亚甲基亚胺-四氯-铂(IV)。该方法也可包括提供谷胱甘肽的的生物学调节剂。该谷胱甘肽生物学调节剂可以是谷胱甘肽合成的抑制剂,如一种或多种L-丁硫氨酸亚砜胺的异构体。在本发明的特定实施方式中,所述细胞位于受试者如哺乳动物中。所述哺乳动物可以是人或小鼠。
不同的实施方式包括一种治疗癌症细胞的方法,该方法包括向癌症细胞提供、使其接触或给予氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、或氨络物/六亚甲基亚胺-四氯-铂(IV)。该方法也可包括提供谷胱甘肽的生物学调节剂。该谷胱甘肽的生物学调节剂可以是一种谷胱甘肽合成的抑制剂,如一种或多种L-丁硫氨酸亚砜胺的异构体。
本发明的其它实施方式包括一种增强抗肿瘤活性的方法,包含提供、接触或给予一种组合物,该组合物包含选自以下组的铂复合物氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、和氨络物/六亚甲基亚胺-四氯-铂(IV);其与谷胱甘肽合成的抑制剂结合使用。谷胱甘肽合成的抑制剂可进一步限定为一种或多种L-丁硫氨酸亚砜胺的异构体。L-丁硫氨酸亚砜胺浓度的大约范围为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95μM至100、150、200、250、300、400、500μM或更多。
本发明的另外的实施方式包括一种制备氨络物/环庚胺-二氯-铂(II)的方法,该方法包括a)用200mmol的KI处理20mmol的K2PtCl4水溶液,室温下搅拌10分钟;b)逐滴加入二倍当量的环庚胺,搅拌30分钟,形成cis-PtII(c-C7H11NH2)2I2沉淀;c)过滤和用水洗涤cis-PtII(c-C7H11NH2)2I2沉淀;d)从DMF/H2O混合物再结晶cis-PtII(c-C7H11NH2)2I2沉淀,用水、甲醇和乙醚洗涤;e)真空干燥cis-PtII(c-C7H11NH2)2I2沉淀;f)将干燥的cis-PtII(c-C7H11NH2)2I2沉淀悬浮在50ml 60-70%HClO4中,在悬浮液中加入150mL乙醇,室温下搅拌,形成褐色的[PtII(c-C7H11NH2)I2]2沉淀;g)过滤该褐色的[PtII(c-C7H11NH2)I2]2沉淀,并用水洗涤;h)真空干燥经洗涤的褐色[PtII(c-C7H11NH2)I2]2沉淀;i)将5mmol的褐色[PtII(c-C7H11NH2)I2]2沉淀与5ml的1.5M NH4OH在25ml水中混合,室温下搅拌过夜,形成黄色的cis-PtII(NH3)(c-C7H11NH2)I2沉淀;j)过滤该黄色的cis-PtII(NH3)(c-C7H11NH2)I2沉淀,用水洗涤;k)真空干燥经洗涤的cis-PtII(NH3)(c-C7H11NH2)I2沉淀;l)将4mmol的cis-PtII(NH3)(c-C7H11NH2)I2沉淀与7.4mmol的AgNO3在200ml水中混合,在黑暗中搅拌过夜,形成AgI沉淀;m)通过硅藻土过滤移走AgI沉淀,形成cis-PtII(NH3)(c-C7H11NH2)NO3滤出液;n)在cis-PtII(NH3)(c-C7H11NH2)NO3滤出液中加入10mL浓缩的HCl,搅拌该混合物3小时,形成黄色的PtII(NH3)(C7H11N)Cl2沉淀;o)减压蒸发该混合物至约2mL,过滤黄色的PtII(NH3)(C7H11N)Cl2沉淀;p)用水和丙酮洗涤黄色的PtII(NH3)(C7H11N)Cl2沉淀,真空干燥经洗涤的黄色的PtII(NH3)(C7H11N)Cl2沉淀。
其它的实施方式包括一种制备氨络物/哌啶-二氯-铂(II)的方法,包括a)将5.5mmol的K[Pt(NH3)Cl3]溶解在50mL水中;b)在100ml水中加入55mmol的KI,形成棕色溶液,搅拌20分钟;c)在棕色溶液逐滴加入10ml水中的55mmol哌啶,直至形成金黄色Pt(NH3)(C5H11N)I2沉淀,再搅拌1小时;d)过滤金黄色的Pt(NH3)(C5H11N)I2沉淀,用丙酮洗涤;e)真空干燥经洗涤的金黄色Pt(NH3)(C5H11N)I2沉淀;f)在100ml水中悬浮4.24mmol的Pt(NH3)(C5H11N)I2沉淀;g)加入在100ml水中的8.48mmolAgNO3,黑暗中室温下搅拌24小时;h)过滤AgI沉淀;i)蒸发AgI滤液至50mL;j)在搅拌时逐滴加入1∶1 HCl溶液,形成亮黄色Pt(NH3)(C5H11N)Cl2化合物;以及k)过滤该亮黄色Pt(NH3)(C5H11N)Cl2化合物,在热水中再结晶该亮黄色Pt(NH3)(C5H11N)Cl2化合物,并且真空干燥该亮黄色Pt(NH3)(C5H11N)Cl2晶体。
本发明的其它实施方式包括一种制备氨络物/六亚甲基亚胺-二氯-铂(II)的方法,包含a)在50mL水中溶解5.5mmol的K[Pt(NH3)Cl3];b)加入在100mL水中的55mmolKI,形成棕色溶液,并搅拌20分钟;c)向棕色溶液中逐滴加入在10mL水中的55mmol的六亚甲基亚胺,直至形成金黄色的Pt(NH3)(C6H13N)I2沉淀,搅拌1小时;d)过滤金黄色的Pt(NH3)(C6H13N)I2沉淀,用丙酮洗涤;e)真空干燥金黄色的Pt(NH3)(C6H13N)I2沉淀;f)在100ml水中悬浮4.24mmol的Pt(NH3)(C6H13N)I2沉淀;g)加入在100mL水中的8.48mmol AgNO3,室温下在黑暗中搅拌24小时;h)过滤AgI沉淀;i)蒸发AgI滤液至50mL;j)边搅拌边逐滴加入1∶1 HCl溶液,形成亮黄色Pt(NH3)(C6H13N)Cl2化合物;以及k)过滤亮黄色Pt(NH3)(C6H13N)Cl2化合物,并在热水中再结晶该亮黄色Pt(NH3)(C6H13N)Cl2化合物,在真空下干燥该亮黄色Pt(NH3)(C6H13N)Cl2化合物。
另外的实施方式包括一种制备氨络物/六亚甲基亚胺-四氯-铂(IV)的方法,包括a)在含有2.61mmol PtII(NH3)(C6H13N)Cl2的200mL水中加入10ml的H2O2,搅拌15分钟,过滤该溶液,浓缩至最小体积;b)用丙酮沉淀,形成黄色(PtIV(NH3)(C6H13N)trans-(OH)2Cl2)产物;c)真空干燥该黄色(PtIV(NH3)(C6H13N)trans-(OH)2Cl2);d)在100mL水中溶解该黄色的1.64mmol的PtIV(NH3)(C6H13N)trans-(OH)2Cl2(0.65g;1.64mmol);e)加入20mL浓HCl,在室温下搅拌24小时,形成清楚的黄色溶液;f)过滤该澄清的黄色溶液,浓缩该澄清的黄色溶液至最小体积,形成黄色晶体PtIV(NH3)(C6H13N)Cl4;以及g)过滤、在水中洗涤该黄色晶体PtIV(NH3)(C6H13N)Cl4,真空干燥。
这里揭示的所有的量都是近似的,可以有约5%-约10%,约15%-约20%或更高百分比的差异。在本发明的其它实施方式中,量可以相差约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或更多毫摩尔。这里揭示的量也可以有约5-约10,约15-约20,约25-约30或更多毫升(millitters)的差异。
在权利要求和/或说明书中,词“一种”当与术语“包含”连接使用时,可解释为“一种”,但其也可解释为“一种或多种”、“至少一种”和“一种或多于一种”。
通过接下来的详细描述,本发明的其它目标、特性和优点将变得明显。然而应理解,详细的描述以及显示本发明的特异实施方式的特异实施例,仅以例证的方式提供,因为在参考了详细描述后,包含在本发明的意愿和范围内的不同的变化和修改对于本领域的技术人员来说是显而易见的。
附图的简要说明以下的附图形成了本说明书的一部分,并用于进一步证明本发明的某些方面。通过参考这些附图的一种或多种,结合特异实施方式的详细描述,本发明将得到更好的理解。


图1.是具代表性的铂复合物的化学身份的列举。
图2.在本申请中描述的和在图1中提供的化学物质的结构图解。
作为例证的实施方式的描述通过单独使用特异的铂复合物或与GSH负调节剂结合使用,获得增强的和/或选择的抗肿瘤活性,可克服对铂复合物的抗性。在某些实施方式中,GSH的负调节剂可以是一种GSH合成抑制剂,其包括但不限于L-丁硫氨酸-SR-亚砜胺(BSO),其可包括BSO的一种或多种异构体。本发明的实施方式可引起提高的对顺铂-抗性细胞的活性,其高于对抗顺铂-敏感细胞的活性。特异的铂类似物和GSH合成或活性抑制剂(如BSO)的结合可被用于对抗难控制的癌症,其不受靶细胞的p53状况的制约。
与BSO结合引起的抗肿瘤活性的增强对于顺铂来说通常在2倍以下,尽管个别的出版物已经证实了有高达4倍的提高。此外,顺铂的提高的活性是没有选择性的,因为敏感细胞和抗性细胞的反应是同样的。已经证实,顺铂的其它类似物以相似的方式作用。这里揭示的铂复合物以复合数量、化学名称以及提供在图1和图2中的化学结构来列举。
本发明已经鉴定出,特异的铂复合物当与GSH合成抑制剂(如BSO)结合使用时,显示出(1)抗肿瘤活性大大地增强,以及(2)对顺铂-抗性细胞具有选择性。因而,在等基因对的敏感和抗性肿瘤模型中,与对抗敏感细胞相比,特异的类似物的活性更多地对抗抗性细胞。
本发明包括用于治疗癌症和其它高增殖疾病的制剂和方法,该制剂和方法使用了包括铂复合物和/或生物学反应调节剂的药物组合物,这些制剂提高了抗肿瘤化合物的活性,或增强了肿瘤细胞对于抗肿瘤化合物的敏感性。在某些实施方式中,铂复合物可包括一种或多种的以下物质氨络物/环庚胺-二氯-铂(II)(复合物号7)、氨络物/哌啶-二氯-铂(II)(复合物号11)、氨络物/六亚甲基亚胺-二氯-铂(II)(复合物号12)、或氨络物/六亚甲基亚胺-四氯-铂(IV)(复合物号17),它们以这里描述的化学结构表示。
1.铂复合物顺铂是一种临床上非常重要的基于金属的抗癌/抗肿瘤药物,其配位到DNA上,使DNA的双螺旋构象扭曲(Rosenberg,1999;O’Dwyer等,1999‘Reedijk,1996;Lepre和Lippard,1990;Johnson等,1989)。顺铂的抗癌作用与这些扭曲相关,终止了DNA聚合酶的作用(Comess等,1992),并诱导了凋亡(Eastman,1999)。并且,这些扭曲吸引了各种各样的受损的DNA-结合蛋白,这些蛋白的结合已被假设能够介导顺铂的抗肿瘤特性(Jamieson和Lippard,1999;Zamble和Lippard,1999)。本发明的化合物具有与顺铂相当的或比顺铂更好的抗肿瘤活性,显示几乎没有或没有交叉抗性,即对顺铂产生的抗性并非等于对本发明的化合物产生的抗性。对于抗顺铂的细胞系,所述化合物通常比顺铂更有效。
本发明的某些实施方式可包括氨络物/环庚胺-二氯-铂(II),复合物#7,该化合物的结构为 结构式I及其盐。
本发明的一些实施方式可包括氨络物/哌啶-二氯-铂(II),复合物#11,该化合物的结构式为 结构式II及其盐。
本发明的一些实施方式可包括氨络物/六亚甲基亚胺-二氯-铂(III),复合物#12,该化合物的结构式为
结构式III及其盐。
本发明的其它实施方式可包括氨络物/六亚甲基亚胺-四氯-铂(IV),复合物#17,该化合物的结构式为 结构式IV及其盐。
在本发明的不同的实施方式中,氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)和/或氨络物/六亚甲基亚胺-四氯-铂(IV)的顺铂复合物被给于需要进行癌或高增殖状态治疗的患者。所述复合物可被单独给药或与抑制剂、GSH合成或活性抑制剂结合给药。在某些实施方式中,抑制剂或GSH合成抑制剂在氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、氨络物/六亚甲基亚胺-四氯-铂(IV)或其组合给药之前、之后或同时给药。在不同的实施方式中,患者或受试者带有对顺铂、卡铂或其它治疗剂有抗性的肿瘤、癌症或高增殖细胞。在一些实施方式中,铂复合物对于对顺铂、卡铂或其它治疗和试剂有抗性的细胞具有选择性。
II.GSH合成或活性的抑制剂谷胱甘肽(L-谷氨酰-L-半胱氨酸-甘氨酸;GSH)可在几乎所有细胞中以相对高的浓度(1至10mM)找到(Meister和Anderson,1983;Anderson和Meister,1983)。GSH具有许多的细胞内功能。它是一种有效的细胞内还原剂。其也在催化作用、新陈代谢、转运方面起作用,并且保护细胞对抗外来化合物、自由基和活性氧化合物。在毁坏H2O2和有机过氧化物的反应中,GSH是一种有活性的参与者。
GSH通过γ-谷氨酰半胱氨酸合成酶(反应1)和GSH合成酶(反应2)的连续作用,在细胞内合成(Anderson,1997)L-谷氨酸+L-半胱氨酸+ATP L-γ-谷氨酰-L-半胱氨酸+ADP+Pi(Meister和Anderson,1983)L-γ-谷氨酰-L-半胱氨酸+甘氨酸+ATP 谷胱甘肽+ADP+Pi
(Anderson和Meister;1983)GSH的合成受底物的可用性的限制,限制性底物通常是半胱氨酸。γ-谷氨酰半胱氨酸合成酶是由GSH以非变构方式反馈抑制(Richman和Meister,1973)。谷胱甘肽是自我平衡调节的,不管在细胞内还是在细胞外。酶系统合成它、利用它、并再生它,被称为γ-谷氨酰循环。
在本发明的不同的实施方式中,铂复合物和GSH合成抑制剂的组合可用作抗肿瘤制剂或组合物并应用在抗肿瘤方法和治疗中。
A.γ-谷氨酰半胱氨酸合成酶的抑制剂已发现BSO是一种特异的γ-谷氨酰半胱氨酸合成酶抑制剂(Griffith和Meister,1979,纳入本文作为参考)。γ-谷氨酰半胱氨酸合成酶催化L-谷氨酸与MgATP的反应,形成g-谷氨酰磷酸,作为一种酶结合中间体(Griffith,1982和Campbell等,1991,每一篇纳入本文作为参考)。
B.谷胱甘肽转移酶(GST)抑制剂抑制GSH与其它化合物结合的试剂可被用于和本发明的一种或多种铂复合物联合。这些不同的化合物被归类为GST抑制剂。GST抑制剂包括但不限于肽、肽模拟物、小分子等。已知三环抗忧郁剂如阿米替林(amitriptyline)、多塞平(doxepin)、环庚二烯(cycloheptadiene)及其衍生物能够抑制各种GST酶的活性。典型的抑制剂和方法描述在Tew等,1997;Baranczyk等,2001;Burg等,2002;Tew,1994;以及Kunze,1996)中有所描述。
III.联合治疗目前治疗许多类型的癌症,特别是治疗妇产科癌症,主要是手术、放射或化疗。本发明包括给药一种或多种铂复合物的方法,所述铂复合物选自氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)以及氨络物/六亚甲基亚胺-四氯-铂(IV)。所述铂复合物可与谷胱甘肽合成或活性抑制剂联合给于经诊断为不同癌症的患者,特别是已经证明对于其它基于铂的治疗有抗性的癌症患者。并且,这些制剂或组合物和方法可与其它传统的以及正在发展的治疗手段结合使用。
在许多治疗中,提供多于一种的有功效的治疗剂或试剂是有优势的。这种“结合(联合)”疗法对于状态、疾病或其它异常生理状态的多个方面,如对一种或多种传统治疗产生抗性的治疗是尤其重要的。例如治疗多药物抗性(MDR)癌症。因此,本发明的一个方面是施加一种或多种铂复合物至组织、器官或有机体的适当位置,用于疾病治疗,同时还采用提供治疗剂和/或增强或敏化作用的第二疗法。
敏化或增强治疗可在铂复合物治疗之前或之后进行,间隔的时间范围从秒、分钟到周。在其它试剂和铂复合物分开给药到相关位置或对象的实施方式中,通常应确保在每次给药之间有意义的时间阶段没有到期,从而使试剂和铂复合物仍保持在治疗位置上发挥有利的联合作用。在这些例子中,打算使细胞各自在12-24小时内接触两种疗法,更特别的,各自在6-12小时内,最优选的具有约12小时的延迟时间。然而,在一些状况下,需要延长时间周期以使治疗更有意义,在分别给药之间有几天(2,3,4,5,6或7)至几周(1,2,3,4,5,6,7或8)的延迟。
每种试剂多于一次给药也是可能的。可使用多种组合,当铂复合物(氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)以及氨络物/六亚甲基亚胺-四氯-铂(IV),或其结合)为“A”,其它试剂为“B”时,如下所示A/B/A B/A/B B/B/A A/A/B B/A/A A/B/B B/B/B/A B/B/A/BA/A/B/B A/B/A/B A/B/B/A B/B/A/A B/A/B/A B/A/A/B B/B/B/AA/A/A/B B/A/A/A A/B/A/A A/A/B/A A/B/B/B B/A/B/B B/B/A/B其它的试剂可以是治疗、增强和/或敏化试剂,如GSH合成的抑制剂或其它癌症治疗剂。
也可预期其它的结合。例如,在本发明的上下文中,预期本发明的铂复合物可被用于与它抗癌试剂协同使用,包括化学-或放射治疗调节。为了杀死细胞、抑制细胞生长、抑制转移、抑制血管新生或甚至逆转或降低肿瘤细胞的恶性表型,通过应用本发明的方法和制剂/组合物,通常可将“靶”细胞与如这里所描述的铂复合物以及至少一种其它试剂(如一种GSH合成抑制剂)接触,这些制剂/组合物将以可达到所述目标的有效的量提供。该方法可包括使用于治疗的靶位点与铂复合物以及其它试剂或因子同时接触。这可通过给予或提供一种同时包括两种试剂的单独的组合物或药物制剂来实现,或通过同时或不同时地给予两种不同的组合物或制剂(其中一种组合物包括铂复合物而另一种包括敏化或增强试剂)来实现。在某些实施方式中,本发明的组合物和方法可用在标准的顺铂治疗之后或之前。
在其它实施方式中,适用于与本发明的铂复合物联合治疗的试剂是任何化学化合物或具有治疗活性的治疗方法。例如,“抗癌试剂”是指一种具有抗癌活性的试剂。所述化合物或方法包括其它烷基化试剂、拓扑异构酶I抑制剂、拓扑异构酶II抑制剂、RNA/DNA抗代谢物、DNA抗代谢物、抗有丝分裂剂,以及DNA破坏剂(当用于细胞时其可诱导DNA损坏)。
此外,烷基化剂的例子包括苯丁酸氮芥、顺铂、cyclodisone、flurodopan、甲基CCNU、二氧哌嗪、替罗昔隆(teroxirone)。拓扑异构酶I抑制剂包含化合物如喜树碱(camptothecin)和喜树碱衍生物,以及吗啉代阿霉素(morpholinodoxorubicin)。阿霉素(doxorubicin)、吡唑并吖啶、米托蒽醌(Mitoxantrone)以及苯甲酰腙柔红霉素是拓扑异构酶II的例证。RNA/DNA抗代谢物包括L-阿拉诺新(Alanosine)、5-fluoraouracil、氨基蝶呤(aminopterin)、甲氨蝶呤(Methotrexate)以及吡唑呋喃菌素(pyrazofurin);而DNA抗代谢物包括如ara-C、guanozole、羟基脲(Hydroxyurea)、硫嘌呤(thiopurine)。典型的抗有丝分裂剂是秋水仙碱(colchicine)、利索新(Rhizoxin)、紫杉醇(Taxol)和硫酸长春碱(Vinblastine Sulfate)。其它试剂和因子包括诱导DNA损坏的放射和波,如γ-照射、X-射线、UV-照射、微波、电子发射等。许多抗-癌剂,如描述为“化疗试剂”的试剂,能够诱导DNA损坏,它们都可被用于与这里所揭示的治疗方法相联合。预期可应用的化疗剂包括如阿霉素(adriamycin)、博来霉素(bleomycin)、5-氟尿嘧啶(5FU)、依托泊苷(Etoposide,VP-16)、喜树碱(camptothecin)、放线菌素D(actinomycin D)、丝裂霉素C(Mitomycin C)、顺铂(CDDP)、鬼臼毒素(podophyllotoxin)、维拉帕米以及过氧化氢。本发明也包含应用一种或多种DNA损坏试剂,不管是基于射线的或是真实的化合物,如应用X-射线与顺铂或应用顺铂和依托泊苷。
熟练的技术人员可直接参考“雷明顿药物科学”第15版,第33章,特别是624-652页。根据需要治疗的受试者的状况,剂量必须做一些改变。无论如何,负责给药的人将确定适合于个体受试者的剂量。此外,用于人体给药时,制剂应该进行灭菌、热原试验、常规安全试验和制定纯化标准,如FDA局的生物学标准所要求的。
除了将铂复合物治疗与敏化或化学-及放射治疗相结合,可预期与基因治疗相结合将具有优势。例如,应用p53、p16、p21、Rb、APC、DCC、NF-1、NF-2、BCRA2、p16、FHIT、WT-1、MEN-I、MEN-II、BRCA-1、VHL、FCC或MCC的结合,或致癌基因ras、myc、neu、raf、erb、src、fms、jun、trk、ret、gsp、hst、bcl、abl或任何前面提及的基因的反义版本,都包括在本发明的范围中。
IV.疾病状态本发明涉及治疗的疾病状态包括高增殖(过度增殖)失调,包括良性的和恶性的瘤。这种失调包括恶性血液疾病、再狭窄、癌、多药物抗性癌、原生疾病、牛皮癣、炎症性肠病、类风湿关节炎、骨关节炎和转移肿瘤。
特别地,本发明直接针对人癌症的治疗,包括前列腺、肺、脑、皮肤、肝、乳腺、淋巴系统、胃、睾丸、卵巢、胰腺、骨、骨髓、头颈、子宫颈、食道、眼、胆囊、肾、肾上腺、心脏、结肠、直肠和血癌的癌,特别是已经或可能发展到对常规化学治疗产生抗性的那些癌症。其它可用本发明的制剂/组合物或方法治疗的疾病也可包括肾细胞癌;病毒感染,如丙型肝炎(Garini等,2001)、HIV-1(Hatzakis等,2001);Erdheim-Chester疾病(Esmali等,2001);血小板减少性紫癜(Dikici等,2001)、马尔堡出血热(Kolokol′tsov等,2001)。在某些实施方式中,方法和制剂/组合物被用于治疗患卵巢癌的受试者。
V.铂复合物的合成A.氨络物/环戊胺-二氯-铂(II)cis(顺式)-PtII(NH3)(c-C5H9NH2)Cl2(化合物#5)的制备水性溶液K2PtCl4(8.30g;20mmol)用KI(33.2g;200mmol)处理,在室温搅拌10分钟。在K2PtCl4溶液中逐滴加入二当量的环戊胺。搅拌30分钟,形成黄色的沉淀(cis-PtII(c-C5H9NH2)2I2)。过滤该黄色的沉淀,并用水彻底地洗涤。该沉淀从DMF/H2O混合物中再结晶。用水、甲醇和乙醚洗涤后,结晶的产物(cis-PtII(c-C5H9NH2)2I2)进行真空干燥。
150毫升(mL)的乙醇被加入到cis-PtII(c-C5H9NH2)2I2(6.9g;10mmol)溶于50mL 60-70%HClO4的悬浮液中。在反应过程中,提取样品用195Pt NMR分光法分析。在室温下搅拌4天后,过滤棕色的沉淀([PtII(c-C5H9NH2)I2]2),用水洗涤,真空干燥。2(5.25g;5mmol)与5mL的1.5M NH4OH混合于25mL水中,混合物室温下搅拌过夜。同样,整个反应通过195Pt NMR分光镜监控。过滤形成的黄色沉淀(cis-PtII(NH3)(c-C5H9NH2)I2),用水洗涤,真空干燥。
cis-PtII(NH3)(c-C5H9NH2)I2(2.20g;4mmol)与AgNO3(1.25g;7.4mmol)混合于200mL水中,黑暗中搅拌过夜。通过硅藻土过滤移走AgI后,在滤液中加入10mL浓缩的HCl。将混合物搅拌3小时,然后在降低压力的情况下蒸发至约2mL。将黄色沉淀(cis-PtII(NH3)(c-C5H9NH2)Cl2)过滤,用水和丙酮过滤,真空干燥。
B.氨络物/环庚胺-二氯-铂(II)[PtII(NH3)(c-C7H11N)Cl2](化合物#7)的制备K2PtCl4(8.30g;20mmol)水性溶液用KI(33.2g;200mmol)处理,在室温搅拌10分钟。在所得的K2PtCl4溶液中逐滴加入二当量的环庚胺。搅拌30分钟,形成黄色的沉淀(cis-PtII(c-C7H11NH2)2I2)。过滤该黄色的沉淀,并用水彻底地洗涤。该沉淀从DMF/H2O混合物中再结晶。用水、甲醇和乙醚洗涤后,产物(cis-PtII(c-C7H11NH2)2I2)进行真空干燥。
150毫升(mL)的乙醇被加入到cis-PtII(c-C7H11NH2)2I2(10mmol)溶于50mL 60-70%HClO4的悬浮液中。在反应过程中,提取样品用195Pt NMR分光镜分析。在室温下搅拌4天后,过滤棕色的沉淀([PtII(c-C7H11NH2)I2]2),用水洗涤,真空干燥。2(5mmol)与5mL的1.5M NH4OH混合于25mL的水中,混合物室温下搅拌过夜。同样,整个反应通过195Pt NMR分光镜监控。过滤形成的黄色沉淀(cis-PtII(NH3)(c-C7H11NH2)I2),用水洗涤,真空干燥。
cis-PtII(NH3)(c-C7H11NH2)I2(4mmol)与AgNO3(1.25g;7.4mmol)混合于200mL水中,黑暗中搅拌过夜。通过硅藻土过滤移走AgI后,在滤液中加入10mL浓缩的HCl。将混合物搅拌3小时,然后在降低压力的情况下蒸发至约2mL。将黄色沉淀(cis-PtII(NH3)(c-C7H11N)Cl2)过滤,用水和丙酮过滤,真空干燥。
C.氨络物/哌啶-二氯-铂(II)[PtII(NH3)(C5H11N)Cl2(化合物#11)的制备将Cosa盐K[Pt(NH3)Cl3](1.98g;5.5mmol)溶解在50mL的水中。KI(9.19g;55mmol)溶解在100mL水中,加入到Cosa盐溶液中。随着KI溶液的加入,形成棕色溶液。反应混合物搅拌20分钟。哌啶(55mmol)溶解在10mL水中,逐滴加入到反应混合物中,直至形成金黄色沉淀([Pt(NH3)(C5H11N)I2])。反应混合物保持搅拌1小时。过滤沉淀,用丙酮洗涤,真空干燥。获得金黄色的化合物[Pt(NH3)(C5H11N)I2]。将[Pt(NH3)(C5H11N)I2](2.39g,4.24mmol)悬浮在100mL水中。加入溶于100mL水中的AgNO3(1.44g;8.48mmol)。反应混合物室温下在黑暗中搅拌24小时。过滤AgI沉淀,滤液蒸发至50mL。搅拌的同时逐滴加入HCl(1∶1)。获得亮黄色的化合物[Pt(NH3)(C5H11N)Cl2]。过滤,用热水重结晶,真空干燥。
D.氨络物/六亚甲基亚胺-二氯-铂(II)cis-PtII(NH3)(C6H13N)Cl2(化合物#12)的制备将Cosa盐K[Pt(NH3)Cl3](1.98g;5.5mmol)溶解在50mL水中。将KI(9.19g;55mmol)溶解在100mL水中,加入到Cosa盐溶液中,形成棕色溶液。反应混合物搅拌20分钟。六亚甲基亚胺(55mmol)溶解在10mL水中,逐滴加入到反应混合物中,直至形成金黄色沉淀(Pt(NH3)(C6H13N)I2)。反应混合物保持搅拌1小时。过滤沉淀,用丙酮洗涤,真空干燥。获得金黄色的化合物(Pt(NH3)(C6H13N)I2)。Pt(NH3)(C6H13N)I2(4.24mmol)悬浮在100mL水中。加入溶于100mL水中的AgNO3(1.44g;8.48mmol)。反应混合物室温下在黑暗中搅拌24小时。过滤AgI沉淀,滤液蒸发至50mL。搅拌的同时逐滴加入HCl(1∶1)。获得亮黄色的化合物[Pt(NH3)(C6H13N)Cl2]。过滤,用热水重结晶,真空干燥。
E.氨络物/六亚甲基亚胺-四氯-铂(IV)PtIV(NH3)(C6H13N)Cl4(化合物#17)的制备10ml的H2O2加入到溶于200mL水的PtII(NH3)(C6H13N)Cl2(1.0g;2.61mmol)悬浮液中,搅拌15分钟。过滤溶液,浓缩到最小体积,用丙酮沉淀。获得黄色产物(PtIV(NH3)(C6H13N)trans-(OH)2Cl2)。真空干燥(PtIV(NH3)(C6H13N)trans-(OH)2Cl2)。将PtIV(NH3)(C6H13N)trans-(OH)2Cl2(0.650g;1.64mmol)溶解在100mL水中,并加入20mL浓缩的HCl。反应混合物在室温下保持搅拌24小时。获得澄清的黄色溶液。过滤,浓缩到最小体积,以获得黄色晶体状固体(PtIV(NH3)(C6H13N)Cl4)。过滤,用水洗涤,真空干燥。
VI.药物制剂本发明的药物制剂/组合物包含有效量的铂复合物,如这里所描述的。在各种其它的实施方式中,铂复合物与生物学调节剂的组合溶解或分散在药学可接受的载体中。属于“药学或药理学可接受的”是指当施加给动物(如人)时,分子实体和组合物不产生不利的、过敏的或其它不适当的反应。通过本发明的揭示,包含本发明的铂复合物和/或与谷胱甘肽合成抑制剂或其它活性成分组合的药物组合物的制备是本领域技术人员可知的。本领域技术人员已知的药物组合物及方法的例子和指导可在“雷明顿药物科学”第18版,Mack出版公司,1990中找到,纳入本文作为参考。此外,对于动物(如人)的给药,应理解,所述制剂应该符合如FDA局的生物学标准所要求的无菌、热原性、常规安全性和纯化标准。
如这里所用,“药学可接受的载体”包括任何以及全部的溶剂、分散介质、包衣、表面活性剂、抗氧化剂、防腐剂(如抗细菌剂、抗真菌剂)、等渗剂、吸附延迟剂、盐、防腐剂、药物、药物稳定机、凝胶、粘合剂、赋形剂、分解剂、滑润剂、甜味剂、调味剂、染料,类似这些材料以及它们的组合,这对本领域普通技术人员来说是已知的(参见如“雷明顿药物科学”第18版,Mack出版公司,1990,pp1289-1329,纳入本文作为参考)。除了任何与活性成分不相容的常规载体,预计其能用于治疗或药物组合物中。
包含本发明的铂复合物或本发明的铂复合物与谷胱甘肽合成抑制剂之组合的组合物,根据其是否以固体或液体形式给药以及其是否需要为这种给药途径如注射进行灭菌,可包含不同类型的载体。本发明可静脉内、皮内、动脉内、肌肉内、腹膜内、皮下、口服、通过注射、通过连续灌输、通过脂质组合物(如脂质体)、或通过其它方法或任何前述方法的组合进行给药,如本领域普通人员所已知的(参见,如“雷明顿药物科学”第18版,Mack出版公司,1990,纳入本文作为参考)。预期的或包含在本发明中的组合物包括常规的药物制剂,包括静脉内给药的制剂或通过任何其它方法或任何如本领域普通人员所已知的以前描述的组合给药(参见,如“雷明顿药物科学”第18版,Mack出版公司,1990,纳入本文作为参考)。
给予受试者的本发明的组合物的实际剂量可通过物理和生理的因素来决定,如体重、病情的严重性、需要治疗的疾病类型、以前的或同时正在进行的治疗干扰、患者的突发性疾病以及给药的途径。不管怎样,负责给药的专业人员能确定组合物中活性成分的浓度以及给予个体受试者的适当的剂量。
在某些实施方式中,药物组合物可包含,如至少包含0.1%的活性化合物。在其它的实施万式中,活性化合物可占约2%至约75%重量单位、或约25%至约60%重量单位,以及任何从其中引伸出来的范围。在其它的非限制实施例中,每次给药剂量也可包含从约1微克/kg/体重、约5微克/kg/体重、约10微克/kg/体重、约50微克/kg/体重、约100微克/kg/体重、约200微克/kg/体重、约350微克/kg/体重、约500微克/kg/体重、约1毫克/kg/体重、约5毫克/kg/体重、约10毫克/kg/体重、约50毫克/kg/体重、约100毫克/kg/体重、约200毫克/kg/体重、约350毫克/kg/体重、约500毫克/kg/体重,至约1000毫克/kg/体重或更多,以及包含任何从其中引伸出来的范围。在从这里列出的数字中引伸出范围的非限制的实施例中,可给药的范围为约5mg/kg/体重至约100mg/kg/体重,约5微克/kg/体重至约500毫克/kg/体重等,基于前述的数字。同样,剂量可以约为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、30、40、45、50、60、70、80、90、100或更高mg/m2,包括它们之间的所有剂量。
在各种实施方式中,药物制剂或组合物中铂复合物的浓度约在0.1μM、0.5μM、1μM、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、25μM、50μM、0.1mM、0.5mM、1mM、至10μM、11μM、12μM、13μM、14μM、15μM、16μM、17μM、18μM、19μM、20μM、50μM、0.1mM、1mM、2 mM、3 mM、4mM、5 mM、6mM、7mM、8mM、9mM、或10mM的范围内。
无论如何,所述制剂或组合物可包含各种抗氧化剂以延迟一种或多种组分的氧化。并且,可以通过防腐剂如各种抗细菌剂和抗真菌剂预防微生物的作用,包括但不限于对羟基苯甲酸(如对羟基苯甲酸甲酯,对羟基苯甲酸丙酯)、氯丁醇、苯酚、山梨酸、硫柳汞或其组合。
本发明的治疗组合物可配制成游离碱、中性或盐形式的组合物。药学可接受的盐,包括酸添加的盐,如那些与蛋白质组合物的自由氨基形成的,或与无机酸(例如盐酸或磷酸)形成的,或与有机酸(如醋酸、草酸、酒石酸、扁桃酸)形成的盐。与自由羧基形成的盐也可来自无机碱,如钠、钾、铵、钙或铁的氢氧化物;或有机碱如异丙胺、三甲胺、组氨酸或普鲁卡因(procaine)。
在某些实施方式中,本发明的治疗组合物通常制备成经由一些途径如静脉内注射来给药。在这些实施方式中,组合物可包括如溶液、悬浮液、乳剂或其组合。
无菌的可注射溶液通过将活性化合物以所需量加入到适当的溶剂中来制备,加入各种前面列举的所需的其它成分,接着过滤灭菌。通常,通过将各种灭菌的活性成分加入到灭菌的赋形剂中来制备分散相,所述灭菌的赋形剂包含基础分散介质和/或其它成分。在用于制备灭菌的可注射溶液、悬浮液或乳剂的灭菌粉末情况下,优选的制备方法是真空干燥或冻干技术,其从事先灭菌过滤的液体介质中生产具有活性成分以及任何附加的所需成分的粉末。如果需要,液体介质应是经适当缓冲的,并且在注射前,液体稀释物首先用足够的盐或葡萄糖进行等渗处理。也考虑了用于直接注射的高度浓缩的组合物的制备,预期其中DMSO作为溶剂的应用将引起非常快速的渗透,传递高浓度的活性剂到一个小的部位。
在制造和储藏条件下,所述组合物必须是稳定的,在防止微生物(如细菌和真菌)污染作用的情况下应进行保存。应注意,应该保持最小的内毒素污染,在安全的水平上,如低于0.5ng/mg蛋白。
VII.实施例以下的实施例属于本发明的优选的实施方式的例证。本领域的技术人员应注意,伴随着本发明人所发现的技术,在实施例中揭示的技术在本发明的实践中效力很好,因而可认为构成了本发明实施的优选方式。然而,根据这里所揭示的,本领域技术人员应该意识到,在特异的实施方式中可进行许多的改变,它们是被公开的并仍然获得相同或相似的结果,并没有背离本发明的意愿和范围。
实施例1实验步骤卵巢A2780和2008细胞系是顺铂敏感的,而相应的2780CP和2008/C13*细胞系经过体外与顺铂接触后,经选择是具有抗性的。SKOV-3细胞系建立自一个对顺铂治疗产生抗性的患者,并认为是顺铂抗性的模型。A2780和2780CP细胞具有野生型p53功能,而SKOV-3没有p53功能。2008和2008/C131细胞的p53状态目前未知。
细胞毒评估步骤。所有的细胞系保持在添加了10%胎牛血清、50μg/ml青霉素、50μg/ml链霉素、100μg/ml新霉素和0.3mg/ml L-谷氨酸的RPMI 1640培养基中。卵巢细胞系也需要2μg/ml胰岛素,用于最大化生长。细胞在37℃、含有潮湿的气体5%CO2:95%空气下单层生长。通过标准MTT试验测定细胞毒性。简要地说,指数生长细胞进行胰蛋白酶化,以在使用前移走它们。稀释肿瘤细胞至适当的浓度(2,000-30,000细胞/ml)后,在96孔微量滴定板的每个孔中加入100μl细胞悬浮液的等分试样。使细胞附着过夜,然后与BSO接触24小时,BSO的浓度等于或小于最大耐受浓度(MTC)。在加入BSO 22小时后,加入铂复合物,2小时后洗涤细胞并再孵育。再过5天后,当对照细胞在指数生长阶段时,将50μl的MTT溶液(3mg/ml)加入到每个孔中。接着进行3小时的孵育,将培养介质移走,用50μl的100%DMSO取代,以溶解MTT甲(formazan)晶体。滴定板在摇晃器上摇动5分钟,在多孔扫描分光光度计上测量570nm的吸光度。
IC50值定义为,与对照孔相比,抑制50%细胞生长的药物浓度(μM)。IC50浓度通过应用计算机程序,依据是否符合S型(sigmoidal)曲线来确定。抗性因素以抗性细胞系对应的IC50与亲代细胞系对应的IC50的比例来计算。剂量修正系数(DMF)获自没有BSO的IC50与带有BSO的IC50的比例。
实施例2抗肿瘤活性评估本发明人已经鉴定了特异的铂复合物,当其与GSH合成抑制剂(如BSO)组合给药时,显示出(1)抗肿瘤活性大大增强,以及(2)对于顺铂-抗性的细胞具有敏感性。数据证明,在等基因对的敏感性和抗性的肿瘤模型中,特异性类似物对于抗性细胞的活性比对敏感细胞的活性大大增强(表1)。
表1.在BSO不存在或存在下,顺铂以及类似物对于人A2780和2780CP细胞系的细胞毒性
MTC=BSO最大耐受浓度。
nd=未确定。
有人提出,提高水平的GSH可构建一种顺铂抗性的机制,并且通过降低抗肿瘤剂可用的量,GSH使铂复合物失去活性。更近地时候,已经暗示GSH参与程序性细胞死亡或凋亡途径的调节。提高水平的GSH可抑制凋亡过程,因而提高对抗肿瘤治疗或处理的抗性。因此,本发明人确定用BSO或其它抑制GSH活性或合成的化合物在细胞水平上降低GSH是否提高顺铂和其它铂复合物或化合物的抗肿瘤活性。
顺铂和许多铂类似物在与BSO联合时显示提高的抗肿瘤活性,提高倍数在敏感性和抗性模型中都低于2倍(表2)。特异的类似物,如复合物号7、11、12和17(分别是氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、和氨络物/六亚甲基亚胺-四氯-铂(IV))在GSH-去除的人2780CP肿瘤细胞中提高活性5-14倍。这些类似物还显示出,与对相应的A2780顺铂-敏感性细胞相比,它们对于顺铂-抗性细胞的选择性效率大大提高。这些类似物的抗性倍数(resistance factor)同样大大地降低了,如下面表3中所证实的。特别地,复合物号11、12和17分别显示抗性系数为0.39、0.44和0.27(表3)。这些提高的活性在携带野生型p53或无p53(表4-6)的人肿瘤细胞系中可见,被发现与p53状态无关。
表2.在人A2780和2780CP细胞系中顺铂及类似物与BSO相结合的剂量修正系数(DMF)
DMF以不存在BSO(对照)的IC50与存在BSO的IC50的比例来确定。
MTC=BSO最大耐受浓度nd=未确定。
表3.在不存在或存在BSO的情况下,人2780CP细胞系中顺铂和类似物的抗性系数
抗性系数以存在或不存在BSO的2780CP细胞中的IC50与不存在BSO的A2780细胞中的IC50的比例来确定。
MTC=BSO最大耐受浓度nd=未确定。
表4.在BSO不存在或存在下,顺铂和类似物对抗人肿瘤细胞系的细胞毒性
由不存在(对照)或存在BSO所确定的铂复合物的细胞毒性[所有细胞系采用最大耐受浓度(MTC),除了SKOV-3,其采用次-MTC]。
nd=未确定表5.在BSO不存在或存在下,人肿瘤细胞系中顺铂和类似物的剂量修正系数(DMF)
DMF以不存在(对照)BSO的IC50与存在BSO(所有细胞系采用BSO最大耐受浓度(MTC),除了SKOV-3,其采用次-MTC)的IC50的比例来确定。
nd=未确定。
表6.在BSO不存在或存在下,人肿瘤细胞系中顺铂和类似物的抗性系数(RF)
抗性系数以(1)存在或不存在BSO的2780CP细胞中IC50与不存在BSO的A2780细胞中IC50的比例,或(2)存在或不存在BSO的2008/C13*和SKOV-3细胞系中IC50与不存在BSO的2008细胞中IC50的比例来确定。
MTC=BSO最大耐受浓度。
nd=未确定。
****************************************根据本发明所公开的,这里揭示和要求的所有组合物和/或方法可被制作和实现,没有不适当的实验。当本发明的组合物和方法以优选的实施方式的方式被描述时,对于本领域技术人员显而易见的是可对组合物和/或方法以及方法的步骤次序进行改变,这不背离本发明的概念、意愿和范围。更特别地,很显然某些化学和生理学相关的试剂可适合作为这里描述的试剂,将达到相同或相似的结果。所有这些对于本领域技术人员来说显而易见的、相似的取代和变化属于本发明的意愿、范围和概念内,如附加的权利要求所限定的。
参考文献以下的参考文献提供了可采用的步骤或其它详细资料,对这里所公开的内容作补充,特异地纳入本文作为参考。
美国专利4,177,263Anderson,Adv.Pharmacol.,3865-78,1997.
Anderson和Meister,Proc.Natl.Acad.Sci.USA,80707-711,1983.
Burg等,Bioorg.Med.Chem.,10(1)195-205,2002Campbell等,Anal.Biochem.,194268-277,1991
Comess等,Biochemistry,31,3975-3990,1992.
Dikici等,Pediatr.Int.,43(6)577-580,2001.
Eastman,In顺铂,一种主要抗癌药物的化学和生物化学,Lippert(ed.),Wiley-VCH,苏黎世,瑞士111-134,1999.
Esmali等,Am.J.Ophthalmol.,132(6)945-947,2001Gzrini等,Am.J.Kidney Dis,38(6)E35,2001.
Griffith,J.Biol.Chem.,25713704-13712,1982.
Griffith和Meister,J.Biol.Chem.,2547558-7560,1979.
Hatzakis等,J.Interferon.Cytokine Res,21(10)861-869,2001.
Jamieson和Lippard,Chem.Rev.,992467-2498,1999.
Johnson et al,.Prog.Clin.Biochem.Med.,101-24,1989.
Kolokol’tsov等,Bull Exp.Biol.Med.,132(1)686-688,2001Kunze,Arch.Pharm.,329(11)503-509,1996.
Lepre和Lippard,Nucleic Acids Mol.Biol.,49-38,1990.
Meister和Anderson,Glutathione.Annl.Rev.Biochen.,52711-760,1983.
O’Dwyer等,在顺铂,一种主要抗癌药物的化学和生物化学,Lippert(ed.),Wiley-VCH,苏黎世,瑞士,31-72,1999.
Reedijk,Chem.Commun.,801-806,1996.
雷明顿药物科学,15thed.,第624-652页,Mack出版公司,Easton,PA,1980.
雷明顿药物科学,18thEd.Mack出版公司,第1289-1329页,1990.
Richman和Meister,J.Biol.Chem.,2501422-1426,1973.
Rosenberg,在顺铂,一种主要抗癌药物的化学和生物化学,Lippert(ed.),Wiley-VCH,苏黎世,瑞士,3-30,1999/Tew,Cancer Res.54(16)4313-4320,1994.
Tew等,Adv.Drug Delic.Rev.,26(2-3)91-104,1997.
Zamble和Lippard,在顺铂,一种主要抗癌药物的化学和生物化学,Lippert(ed.),Wiley-VCH,苏黎世,瑞士,73-110,1999.
权利要求
1.一种抗肿瘤制剂,包含一种具有以下结构式的化合物 或其盐。
2.根据权利要求1的制剂,它还包含谷胱甘肽的负调节剂。
3.根据权利要求2的制剂,其中所述谷胱甘肽的负调节剂是谷胱甘肽合成抑制剂。
4.根据权利要求3的制剂,其中谷胱甘肽合成抑制剂是L-丁硫氨酸亚砜胺。
5.一种抗肿瘤制剂,它包含一种具有以下结构式的化合物 或其盐。
6.根据权利要求5的制剂,它还包含谷胱甘肽的负调节剂。
7.根据权利要求6的制剂,其中所述谷胱甘肽的负调节剂是谷胱甘肽合成抑制剂。
8.根据权利要求7的制剂,其中谷胱甘肽合成抑制剂是L-丁硫氨酸亚砜胺。
9.一种抗肿瘤制剂,包含一种具有以下结构式的化合物 或其盐。
10.根据权利要求9的制剂,它还包含谷胱甘肽的负调节剂。
11.根据权利要求10的制剂,其中所述谷胱甘肽的负调节剂是谷胱甘肽合成抑制剂。
12.根据权利要求11的制剂,其中谷胱甘肽合成抑制剂是L-丁硫氨酸亚砜胺。
13.一种抗肿瘤制剂,它包含一种具有以下结构式的化合物 或其盐。
14.根据权利要求13的制剂,它还包含谷胱甘肽的负调节剂。
15.根据权利要求14的制剂,其中所述谷胱甘肽的负调节剂是谷胱甘肽合成抑制剂。
16.根据权利要求15的制剂,其中谷胱甘肽合成抑制剂是L-丁硫氨酸亚砜胺。
17.一种药物制剂,它包含选自以下组的铂复合物氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)和氨络物/六亚甲基亚胺-四氯-铂(IV)。
18.根据权利要求17的药物制剂,其中选定的铂复合物的浓度大约在0.1mM至20mM范围内。
19.根据权利要求17的药物制剂,其中选定的铂复合物的浓度大约在1mM至10mM范围内。
20.根据权利要求17的药物制剂,其中选定的铂复合物的浓度大约在1mM至5mM范围内。
21.根据权利要求17的药物制剂,其中该制剂还包含谷胱甘肽的生物学调节剂。
22.根据权利要求21的药物制剂,其中所述的谷胱甘肽的生物学调节剂是谷胱甘肽合成抑制剂。
23.根据权利要求22的药物制剂,其中,所述的谷胱甘肽合成抑制剂是L-丁硫氨酸亚砜胺。
24.根据权利要求17的药物制剂,其中L-丁硫氨酸亚砜胺的浓度大约在1μM至300μM范围内。
25.根据权利要求17的药物制剂,其中L-丁硫氨酸亚砜胺的浓度大约在10μM至200μM范围内。
26.根据权利要求17的药物制剂,其中L-丁硫氨酸亚砜胺的浓度大约在20μM至100μM范围内。
27.根据权利要求17的药物制剂,它还是静脉内注射的药学制剂。
28.一种抑制顺铂-抗性细胞的增殖的方法,该方法包括给予所述细胞氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、或氨络物/六亚甲基亚胺-四氯-铂(IV)。
29.根据权利要求28的方法,其中所述顺铂-抗性细胞位于受试者体内。
30.根据权利要求29的方法,其中所述受试者是哺乳动物。
31.根据权利要求30的方法,其中,所述的哺乳动物是人或小鼠。
32.根据权利要求28的方法,它还包括给予谷胱甘肽的生物学调节剂。
33.根据权利要求32的方法,其中所述谷胱甘肽的生物学调节剂是谷胱甘肽合成抑制剂。
34.根据权利要求33的方法,其中谷胱甘肽合成的抑制剂是L-丁硫氨酸亚砜胺。
35.一种治疗癌细胞的方法,该方法包括给予所述细胞氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、或氨络物/六亚甲基亚胺-四氯-铂(IV)。
36.根据权利要求35的方法,其中所述癌细胞位于受试者体内。
37.根据权利要求35的方法,其中所述受试者是哺乳动物。
38.根据权利要求37的方法,其中所述哺乳动物是人或小鼠。
39.根据权利要求35的方法,它还包括给予谷胱甘肽的生物学调节剂。
40.一种增强细胞的抗肿瘤活性的方法,该方法包括给予制剂,该制剂包含选自以下组的铂复合物氨络物/环庚胺-二氯-铂(II)、氨络物/哌啶-二氯-铂(II)、氨络物/六亚甲基亚胺-二氯-铂(II)、和氨络物/六亚甲基亚胺-四氯-铂(IV),以及结合使用的谷胱甘肽合成的抑制剂。
41.根据权利要求40的方法,其中所述谷胱甘肽合成的抑制剂为L-丁硫氨酸亚砜胺。
42.根据权利要求41的方法,其中L-丁硫氨酸亚砜胺的浓度大约在1μM至300μM范围。
43.根据权利要求41的方法,其中L-丁硫氨酸亚砜胺的浓度大约在10μM至200μM范围。
44.根据权利要求41的方法,其中L-丁硫氨酸亚砜胺的浓度大约在20μM至100μM范围。
45.一种制备氨络物/环庚胺-二氯-铂(II)的方法,该方法包括a)用200mmol的KI处理20mmol的K2PtCl4水溶液,室温下搅拌10分钟;b)逐滴加入二倍当量的环庚胺,搅拌30分钟,形成cis-PtII(c-C7H11NH2)2I2沉淀;c)过滤和用水洗涤cis-PtII(c-C7H11NH2)2I2沉淀;d)从DMF/H2O混合物再结晶cis-PtII(c-C7H11NH2)2I2沉淀,用水、甲醇和乙醚洗涤;e)真空干燥cis-PtII(c-C7H11NH2)2I2沉淀;f)在50ml 60-70%HClO4中将干燥的cis-PtII(c-C7H11NH2)2I2沉淀悬浮,在悬浮液中加入150mL乙醇,室温下搅拌,形成褐色的[PtII(c-C7H11NH2)I2]2沉淀;g)过滤该褐色的[PtII(c-C7H11NH2)I2]2沉淀,并用水洗涤;h)真空干燥经洗涤的褐色[PtII(c-C7H11NH2)I2]2沉淀;i)将5mmol的褐色[PtII(c-C7H11NH2)I2]2沉淀与5ml的1.5M NH4OH在25ml的水中混合,室温下搅拌过夜,形成黄色的cis-PtII(NH3)(c-C7H11NH2)2I2沉淀;j)过滤该黄色的cis-PtII(NH3)(c-C7H11NH2)I2沉淀,用水洗涤;k)真空干燥经洗涤的cis-PtII(NH3)(c-C7H11NH2)I2沉淀;l)将4mmol的cis-PtII(NH3)(c-C7H11NH2)I2沉淀与7.4mmol的AgNO3在200ml水中混合,在黑暗中搅拌过夜,形成AgI沉淀;m)通过硅藻土过滤移走AgI沉淀,形成cis-PtII(NH3)(c-C7H11NH2)NO3滤出液;n)在cis-PtII(NH3)(c-C7H11NH2)NO3滤出液中加入10mL浓缩的HCl,搅拌该混合物3小时,形成黄色的PtII(NH3)(C7H11N)Cl2沉淀;o)减压蒸发该混合物至约2mL,过滤黄色的PtII(NH3)(C7H11N)Cl2沉淀;p)用水和丙酮洗涤黄色的PtII(NH3)(C7H11N)Cl2沉淀,真空干燥经洗涤的黄色的PtII(NH3)(C7H11N)Cl2沉淀。
46.一种制备氨络物/哌啶-二氯-铂(II)的方法,该方法包括a)将5.5mmol的K[Pt(NH3)Cl3]溶解在50mL水中;b)在100ml水中加入55mmol的KI,形成棕色溶液,搅拌20分钟;c)在棕色溶液逐滴加入10ml水中的55mmol哌啶,直至形成金黄色Pt(NH3)(C5H11N)I2沉淀,搅拌1小时;d)过滤金黄色的Pt(NH3)(C5H11N)I2沉淀,用丙酮洗涤;e)真空干燥经洗涤的金黄色Pt(NH3)(C5H11N)I2沉淀;f)在100ml水中悬浮4.24mmol的Pt(NH3)(C5H11N)I2沉淀;g)加入在100ml水中的8.48mmol AgNO3,黑暗中室温下搅拌24小时;h)过滤AgI沉淀;i)蒸发AgI滤液至50mL;j)在搅拌时逐滴加入1∶1 HCl溶液,形成亮黄色Pt(NH3)(C5H11N)Cl2化合物;以及k)过滤该亮黄色Pt(NH3)(C5H11N)Cl2化合物,在热水中再结晶该亮黄色Pt(NH3)(C5H11N)Cl2化合物,并且真空干燥该亮黄色Pt(NH3)(C5H11N)Cl2晶体。
47.一种制备氨络物/六亚甲基亚胺-二氯-铂(II)的方法,该方法包括a)在50mL水中溶解5.5mmol的K[Pt(NH3)Cl3];b)加入在100mL水中的55mmol KI,形成棕色溶液,并搅拌20分钟;c)向棕色溶液中逐滴加入在10mL水中的55mmol的六亚甲基亚胺,直至形成金黄色的Pt(NH3)(C6H13N)I2沉淀,搅拌1小时;d)过滤金黄色的Pt(NH3)(C6H13N)I2沉淀,用丙酮洗涤;e)真空干燥经洗涤的金黄色的Pt(NH3)(C6H13N)I2沉淀;f)在100ml水中悬浮4.24mmol的Pt(NH3)(C6H13N)I2沉淀;g)加入在100mL水中的8.48mmol AgNO3,室温下在黑暗中搅拌24小时;h)过滤AgI沉淀;i)蒸发AgI滤液至50mL;j)边搅拌边逐滴加入1∶1 HCl溶液,形成亮黄色Pt(NH3)(C6H13N)Cl2化合物;以及k)过滤亮黄色Pt(NH3)(C6H13N)Cl2化合物,并在热水中再结晶该亮黄色Pt(NH3)(C6H13N)Cl2化合物,在真空下干燥该亮黄色Pt(NH3)(C6H13N)Cl2化合物。
48.一种制备氨络物/六亚甲基亚胺-四氯-铂(IV)的方法,该方法包括a)在含有2.61mmol PtII(NH3)(C6H13N)Cl2的200mL水中加入10ml的H2O2,搅拌15分钟,过滤该溶液,浓缩到最小体积;b)用丙酮沉淀,形成黄色(PtIV(NH3)(C6H13N)trans-(OH)2Cl2)产物;c)真空干燥该黄色(PtIV(NH3)(C6H13N)trans-(OH)2Cl2);d)在100mL水中溶解该黄色的1.64mmol的PtIV(NH3)(C6H13N)trans-(OH)2Cl2(0.65g;1.64mmol);e)加入20mL浓缩的HCl,在室温下搅拌24小时,形成澄清的黄色溶液;f)过滤该澄清的黄色溶液,浓缩该澄清的黄色溶液至最小体积,形成黄色晶体PtIV(NH3)(C6H13N)Cl4;以及g)过滤、在水中洗涤该黄色的晶体PtIV(NH3)(C6H13N)Cl4,真空干燥。
全文摘要
本发明涉及用于肿瘤和其它高增殖疾病治疗的方法和组合物的应用。在某些实施方式中,描述了用于治疗肿瘤和/或高增殖疾病的方法,通过单独给药包含至少一种铂复合物的组合物,或与谷胱甘肽调节剂相结合给药来进行。特别地,该方法可被用于治疗顺铂(cisplatin)或卡铂(carboplatin)抗性的肿瘤细胞。
文档编号C07F15/00GK1681558SQ03821455
公开日2005年10月12日 申请日期2003年9月5日 优先权日2002年9月11日
发明者Z·H·西迪克, A·R·科卡 申请人:得克萨斯州大学系统董事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1