制备3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的方法

文档序号:3556461阅读:131来源:国知局
专利名称:制备3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的方法
技术领域
本发明涉及制备3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物(3,4-dihydro-1,2,3-oxathizain-4-one-2,2-dioxide)化合物或其盐的方法,其通常可用作在食品工业中的增甜剂或其原料或用于精细化工的中间材料。
背景技术
例如在Angewandte Chemie International Edition,12,10(1973),869-876(或German未审查专利申请公开号2453063)中披露了制备3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的方法。在该方法中,通过碱,例如甲醇化的KOH的作用,环化乙酰基乙酰胺-N-磺酰基卤化物(氟化物或氯化物),由此形成3,4-二氢-1,2,3-氧杂噻嗪,例如6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物或其盐。通过使卤代磺酰基异氰酸酯与合适的乙酰基乙酰化试剂反应,制备乙酰基乙酰胺-N-磺酰基卤化物。然而,这种方法不适合作为工业方法,因为用作原料的卤代磺酰基异氰酸酯和酰氨基磺酰基卤化物是特殊的化合物,且难以处理。
日本未审专利申请公开号03-184948、日本已审专利申请公开号03-54940、05-70627和06-25189分别各自公开了制备6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物或其盐的方法,该方法通过使乙酰基乙酰胺-N-磺酸或其盐与SO3在惰性有机溶剂中反应,使产物环化,然后闭环。其中,日本已审专利申请公开号03-54940公开了喷雾塔反应器(spray tower reactor)或配备有机械搅拌器的薄膜反应器作为在短时间内进行低温下环化的设备,并用于获得高产率。这些设备不仅利用内部冷却,而且通过溶剂汽化的潜热作用除去热量,以便除去大量的环化和脱水中产生的热量。当喷雾塔或配备有机械搅拌器的薄膜蒸发器,例如刮板式薄膜蒸发器用作制备3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的反应器时,该设备(反应器)是昂贵的且在制备中表现得不够稳定。这是因为反应器中的停留时间和反应控制极大地影响反应结果,但是对于工业生产中的各种可能的变化该设备难以控制这些参数。在此方面,上述日本已审专利申请公开号03-54940说明了管式反应器作为待使用的反应器的实例,但是没有教导管式反应器的具体实例和具体优势。

发明内容
由此,本发明的目的是提供工业上有效制备3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的方法,该方法具有良好的操作稳定性,而无需使用昂贵的设备。
在深入研究以获得上面的目的后,本发明的发明人发现可以通过使用连续流动反应器连续进行反应,而在良好操作稳定性下以高产率制备3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐。基于这些发现完成了本发明。
具体地,本发明提供制备由下式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的方法 式中R1和R2彼此相同或不同,并且各自是氢原子或对反应惰性的有机基团;和R3是氢原子或对反应惰性的有机基团,该方法包括使由下式(1)表示的β-酮酰胺-N-磺酸或其盐在酸酐存在下环化,有或没有进一步使环化的产物水解的步骤,其中该环化使用连续流动反应器连续进行。

式(1)中R1、R2和R3的定义与式(2)中相同。
例如,管式反应器或静止型混合器(motionless mixer)用作连续流动反应器。连续流动反应器在其入口部分可以具有搅拌式混合器、超声波混合器和静止型混合器中的至少一种。
取代基R1和R2可以各自为例如氢原子、烷基、链烯基、炔基、环烷基、酰基、芳烷基或芳基,R3可以为例如氢原子、烷基、链烯基、炔基、环烷基、酰基、芳烷基或芳基。
酸酐可以为例如衍生自选自以下至少一种酸的酸酐硫酸、磺酸、卤代硫酸、焦磷酸、硝酸和硼酸。
3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物可以由6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物代表。
本发明的方法在连续流动反应器中连续进行环化,可以降低设备成本,并且工业上有效地在良好操作稳定性下制备3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐。
参考附图,从下面的优选实施方式的说明,本发明的其它目的、特征和优势将变得显而易见。


图1为用于本发明的制备方法的生产装置的实例的示意图;和图2为用于本发明的制备方法的生产装置的另一实例的示意图。
优选实施方式根据本发明,通过使由式(1)表示的β-酮酰胺-N-磺酸或其盐在酸酐存在下环化,有或没有进一步使环化的产物水解的步骤,而制备由式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐。
在式(1)中,在R1、R2、R3中对反应惰性的有机基团可以为任何对反应惰性的有机基团,且包括例如烷基、链烯基、炔基、环烷基、酰基、芳烷基和芳基。烷基的实例为直链或支链烷基,其各自具有1~10个碳原子,包括各自具有1~6个碳原子的烷基,例如甲基、乙基、丙基、丁基、异丁基和叔丁基。链烯基包括各自具有2~10个碳原子的直链或支链链烯基,包括各自具有2~5个碳原子的链烯基,例如乙烯基、烯丙基、异丙烯基、1-丁烯基和2-丁烯基。炔基包括各自具有2~10个碳原子的直链或支链炔基,包括各自具有2~5个碳原子的炔基,例如乙炔基、丙炔基、1-丁炔基和2-丁炔基。环烷基的实例为各自具有3~10个碳原子的环烷基,例如环丙基、环丁基、环戊基和环己基,其中优选各自具有4~8个碳原子的环烷基。酰基的实例为各自具有2~10个碳原子的直链或支链脂族酰基,例如乙酰基、丙酰基、丁酰基、异丁酰基和戊酰基;和各自具有7~11个碳原子的芳族酰基,例如苯甲酰基、甲苯甲酰基和萘酰基。芳烷基的实例为C6-C10芳基-C1-C4烷基,例如苯甲基。芳基的实例为各自具有6~10个碳原子的芳基,例如苯基。
由式(1)表示的β-酮酰胺-N-磺酸的盐包括其中磺酸基被碱中和的盐(磺酸盐),和其中R3为氢原子、式中的-NH-被碱中和的盐。这些盐(磺酸的盐和-NH-的盐)通常包括金属盐、铵盐和有机碱的盐。金属盐的实例为碱金属(元素周期表第1A族)例如Li、Na和K的盐;碱土金属(元素周期表第2A族)例如Mg、Ca、Sr和Ba的盐;元素周期表第3B族的金属例如Al和Ga的盐;和过渡金属的盐。元素周期表中过渡金属的实例为第3A族金属、第4A族金属、第5A族金属、第6A族金属、第7A族金属(例如Mn)、第8族金属(例如Fe)、第1B族金属(例如Cu、Ag和Au)、第2B族金属(例Zn)、第4B族金属和第5B族金属。优选的金属盐是单价金属、二价金属或三价金属的盐,包括碱金属例如Na和K的盐;碱土金属例如Mg和Ca的盐;Al盐;和过渡金属例如Mn和Fe的盐。其中,从经济效率和安全性角度看,通常优选碱金属例如Na和K的盐。
有机碱的实例是脂族胺、脂环族胺、芳族胺、环状胺、含氮芳族杂环化合物。脂族胺包括例如,包括单C1-C10烷基胺的伯胺,例如甲基胺和乙胺;包括二-C1-C10烷基胺的仲胺,例如二甲基胺和乙基甲基胺;和包括三-C1-C10烷基胺的叔胺,例如三甲基胺和三乙基胺。脂环族胺的实例为单-C3-C12环烷基胺、二-C3-C12环烷基胺或三-C3-C12环烷基胺,例如环己基胺。芳族胺的实例为单-C6-C10芳基胺,例如苯胺和二甲基苯胺;二-C6-C10芳基胺,例如二苯基胺;三-C6-C10芳基胺,例如三苯基胺;和芳烷基胺,例如苄基胺。环状胺的实例为哌啶、N-甲基哌啶和吗啉。含氮芳族杂环化合物的实例为吡啶、喹啉、及其衍生物。优选的有机碱为脂族胺和任何叔胺。
式(1)中的取代基R1、R2和R3可以以任何合适的组合使用,但是优选R1和R2各自是氢原子或具有1~4个碳原子的烷基,和R3是氢原子或具有1~4个碳原子的烷基。式(1)的化合物通常优选乙酰基乙酰胺-N-磺酸,其中R1为具有1~4个碳原子的烷基,R2和R3为氢原子;其中R1为甲基的乙酰基乙酰胺-N-磺酸是特别优选的。式(1)化合物的盐(磺酸盐)优选是与叔胺的盐。
此处酸酐作为用于由式(1)表示的β-酮酰胺-N-磺酸或其盐(以下称作“底物(substrate))”的环化剂,例如环化脱水剂。酸酐的实例为衍生自无机酸或有机酸的酸酐。无机酸包括,例如硫酸;卤代硫酸,例如氟代硫酸和氯代硫酸;包括焦磷酸和卤代焦磷酸例如氟代焦磷酸的焦磷酸;硝酸;和硼酸,例如原硼酸和偏硼酸。有机酸包括,例如磺酸;有机磷酸,包括C1-C4烷基磷酸,例如甲基磷酸和磷酸的单-C1-C4烷基酯,例如磷酸单甲酯和磷酸单乙酯。酸酐可以是任何衍生自一分子酸脱水结果的酸酐、衍生自酸的两个和多个分子脱水结果的酸酐;和衍生自不同酸的两个或多个分子脱水结果的酸酐(复合酸酐)。这些酸酐的每种可以单独使用或组合使用。酸酐优选衍生自含有硫酸的酸酐,其中通常优选硫酸酐(SO3)。
对于1摩尔底物,酸酐的量为1摩尔或几摩尔(例如,大约1~约20摩尔),优选约1~约10摩尔,通常优选约4~约6摩尔。
式(1)的β-酮酰胺-N-磺酸或其盐的环化,例如环化-脱水可以在溶剂不存在下进行,或者优选在溶剂存在下进行。可以使用任何对反应惰性。通常对酸酐惰性的无机或有机溶剂作为反应溶剂,但是通常使用对反应惰性的有机溶剂。该溶剂通常基本上是无水溶剂。
有机溶剂的实例为脂族烃,例如戊烷、己烷和辛烷;脂环族烃,例如环己烷;芳族烃,例如苯、甲苯、二甲苯和乙基苯;卤代烃,包括卤代烷烃,例如二氯甲烷、二氯乙烷、氯仿、三氯乙烯、四氯乙烯和三氯氟乙烯;酯,包括羧酸酯,例如乙酸甲酯、乙酸乙酯、乙酸丁酯和丙酸甲酯;酮,包括脂族酮,例如丙酮、甲基乙基酮和甲基异丁基酮,和环状酮,例如环己酮;醚,包括开链醚,例如二乙基醚、二异丙基醚、1,2-二甲氧基乙烷、溶纤剂(乙二醇单乙基醚及其衍生物)、卡必醇类(二甘醇一乙醚及其衍生物)和Diglyme(二甘醇二甲基醚及其衍生物),芳族醚,例如苯甲醚、1,2-二甲氧基苯和二苯基醚和环醚,例如四氢呋喃、二氧戊环和二噁烷;亚砜,例如二甲基亚砜、环丁砜(sulfolane)、2-甲基环丁砜和3-甲基环丁砜。这些溶剂的每个可以单独使用或组合使用。优选的溶剂是卤代烃,其中通常优选二氯甲烷。
本发明的关键特征是使用连续流动反应器连续进行环化。连续流动反应器优选是管式反应器或静止型混合器。在使用管式反应器或静止型混合器作为反应器的本发明的方法中,为了更高的环化结果,优选用于反应的底物和酸酐独立地溶解或分散在溶剂中,并在反应前冷却到例如10℃或更低(约-100℃~约10℃),优选-80℃~10℃,更优选-30℃~10℃。在含有待供入反应器的底物的混合物中底物的浓度可以适当地设定在不劣化例如操作性的范围内,并且通常为约0.1~50重量%,优选为约1~15重量%。同样,在含有待供入反应器的酸酐的混合物中酸酐的浓度可以适当设定在不劣化例如操作性的范围,并且通常为约0.1~50重量%,优选为0.5~30重量%,更优选为约1~15重量%。
考虑反应性和操作性,反应溶剂的总量可以适当设定,且对于每1重量份的底物,通常设定在约1~约1000重量份的范围内,优选约5~500重量份,更优选为约5~50重量份,并且特别优选约10~20重量份。
通过连续将由式(1)表示的β-酮酰胺-N-磺酸或其盐和酸酐供入管式流动反应器或配备有从外部冷却的冷却器(例如冷却夹套或冷却罐(冷却剂罐))的静止型混合器进行环化。环化的反应温度通常为约-100~约0℃,优选为约-80℃~约-5℃,并且更优选为约-50℃~约-15℃。
管式反应器的材料可以为但是不限于不锈钢管或通常衬有玻璃或Teflon(注册商标)的衬管。待使用的管的内径没有特别限制,但是为了令人满意地除去环化过程中产生的热量,优选为几十毫米或更小(例如,约0.2~约30毫米),更优选为约10毫米或更小(例如,约0.2~约10毫米)。设定管的长度以满足反应所需的停留时间。停留时间通常为约0.001~约60秒,优选为约0.01~约40秒,更优选为约0.1~10秒,并且特别优选为约1~约10秒。根据下面的方程计算来确定停留时间停留时间(秒)=[反应器的容积(毫升)/供入的原料混合物的总量(毫升/秒)]
管式反应器在其入口部分可以具有加速式(1)的β-酮酰胺-N-磺酸或其盐与酸酐混合的设备(下面称作“预混合器”)。预混合器的实例为搅拌式混合器、超声波混合器、静止型混合器(例如静态混合器)和管接头(piping joint)。在预混合器(如果使用)中的停留时间为例如约0.0005~约30秒,优选为约0.01~约20秒,更优选为约0.1~约10秒,特别优选为约1~约10秒。在随后的管式反应器中的停留时间为例如约0.001~约60秒,优选为约0.01~40秒,更优选为约0.1~30秒,特别优选为约1~30秒。
诸如静态混合器的静止型混合器也可以用作反应器。这种静止型混合器具有较高的除热能力,并如果作为反应器可以具有比管式反应器更大的内径。静止型混合器的内径为例如约0.2~约30毫米,优选为约0.5~约20毫米。静止型反应器包括但不限于Sulzer静态混合器和Kenics静态混合器。在作为反应器的静止型混合器中的停留时间为例如约0.001~约60秒,优选为约0.01~约40秒,更优选为约0.1~10秒,并且特别优选为约1~10秒。如果用作反应器,静止型混合器在其入口部分也可以具有预混合器。在这种情况下,在预混合器中的停留时间为例如约0.0005~约30秒,优选为约0.01~约20秒,更优选为约0.1~约10秒,特别优选为约1~约10秒,并且在随后的静止型混合器中的停留时间为例如约0.001~约60秒,优选为约0.01~40秒,更优选为约0.1~10秒,特别优选为约1~10秒。
在静态混合器中元件的数目没有特别限制,但是优选为10个或更多,更优选为17个或更多。
环化使得水或碱(例如,在使用式(1)的化合物的盐的情况下)离开,由此产生式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物。在某些酸酐类型和/或量的情况下,可以形成式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物和酸酐的加合物。此时,3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物可以通过使环化产物进一步水解获得。
例如根据需要通过将环化后的反应混合物进行适当处理并将混合物与水混合,而进行水解。可以通过任何系统,例如连续系统、间歇系统或半连续系统进行水解。在连续水解中,可以使用将在环化中使用的搅拌罐或连续反应器。水温和反应温度各自为例如约0℃~约50℃,并优选为约0℃~约10℃。对于每1摩尔用于环化的酸酐,水的量为例如约1~约100摩尔,优选为约1~约50摩尔,并且更优选为约2~约20摩尔。水可以过量使用。
所得的式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物可以通过分离方法,例如蒸馏、浓缩、萃取、结晶、重结晶和/或柱色谱分离和纯化。例如,在水解完成后,反应混合物分离成有机层和水层,从有机层中回收目标化合物,将与水不相容或不混溶的溶剂加入到水层中由此萃取并回收残留在水层中的目标化合物。不相容或不混溶的溶剂的实例为将在环化中使用的溶剂或有机单-或二羧酸的酯,例如列于描述反应溶剂的酯。包括来自水层的萃取物的有机层用常规干燥剂(例如硫酸钠)干燥,并浓缩以由此分离目标化合物。如果有必要,浓缩后的化合物通常可以通过重结晶进一步纯化。
式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物的盐可以通过使由式(2)表示的化合物(式中R3为氢原子)进行常规成盐反应,例如与碱的反应而得到。式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物的盐的实例为金属盐、铵盐和有机碱的盐。金属盐和有机碱的类型和优选实例是与式(1)表示的β-酮酰胺-N-磺酸的盐中的类型和优选实例相同。典型优选的盐为碱金属例如钠和钾的盐。
这种式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物的碱金属盐可以通过是式(2)表示的化合物(式中R3为氢原子)与含有碱金属的碱反应而获得。此处碱的实例为碱金属的氢氧化物,例如氢氧化钠和氢氧化钾;碱金属的碳酸盐,例如碳酸钠和碳酸钾;和碱金属的碳酸氢盐,例如碳酸氢钠和碳酸氢钾。
式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物的盐可以通过分离方法,例如浓缩、萃取、结晶、重结晶和/或柱色谱分离和纯化。
式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的实例为6-(C1-C4烷基)-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物例如6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物、6-乙基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物、6-正丙基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物和6-异丙基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;6-芳基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如6-苯基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;5,6-二-(C1-C4烷基)-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如5-甲基-6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物和5-甲基-6-乙基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;5-芳基-6-(C1-C4烷基)-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如5-苯基-6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;5-(C1-C4烷基)-6-芳基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如5-甲基-6-苯基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;6-(C3-C8环烷基)-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如6-环戊基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物和6-环己基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;5-(C3-C8环烷基)-6-(C1-C4烷基)-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如5-环戊基-6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物和5-环己基-6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;5-(C1-C4烷基)-6-(C3-C8环烷基)-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如5-甲基-6-环戊基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物和5-甲基-6-环己基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;6-(C2-C4链烯基)-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如6-乙烯基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物;6-(C2-C6酰基)-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,例如6-乙酰基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物,及这些化合物的盐。
其中,式中R1为甲基的式(2)的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物,例如6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物是优选的,因为某些它们的生理可接受的盐,例如与Na、K或Ca的盐用作食品工业中的增甜剂,其中钾盐通常作为Acesulfame(Acesulfame钾)。
图1和图2显示了用于本发明的装置的非限制性实例。图1显示了生产装置的实施方式,其中在环化中使用管式反应器。在该实施方式中,含有底物的混合物和含有酸酐的混合物分别连续地从导管1和导管2,经过预混合器3供入用于反应的管式反应器4中。预混合器3可以是简单的管接头,或具有微型搅拌器的混合器、超声波混合器,或静止型混合器,例如静态混合器。预混合器3可以省略。管式反应器4具有用于冷却(除热)的冷却剂夹套或冷却剂罐5。环化后反应混合物从管式反应器4连续引出,引入水解反应器6,在其中进行水解,以及将水解后的反应混合物从槽式管路(chute piping)7排出。水解可以根据任何体系,例如连续体系、间歇体系或半连续体系进行。在图中省略了在例如连续体系中使用的水供料管线。水解反应器6可以为通常的搅拌罐以及用于环化的连续反应器。
图2显示了当使用静止型搅拌器例如静态搅拌器进行环化时的制造设备的实施方式。在该实施方式中,含有底物的混合物和含有酸酐的混合物分别连续地从导管1和导管2,经过预混合器3供入用于反应的静止型混合器8中。预混合器可以是上述的任何预混合器。预混合器3可以省略。静止型混合器8具有用于冷却(除热)的冷却剂夹套或冷却剂罐5。环化后的反应混合物从静止型混合器8连续引出,引入水解反应器6,在其中进行水解,以及将水解后的反应混合物从槽式管路7排出。水解可以根据任何体系,例如连续体系、间歇体系或半连续体系进行。此处可以使用前述水解反应器6。
将参考下面的几个实施例更详细地说明本发明,这些实施例不意图限制本发明的范围。
实施例1使用内径为2毫米且有效长度为1米的不锈钢管作为反应器进行反应。将总量为55毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于112克二氯甲烷中,并冷却到4℃。单独地将324毫摩尔硫酸酐溶于278克二氯甲烷中,并冷却到4℃。分别以4.2毫升/分钟和6.4毫升/分钟的速率将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液连续供应到浸于-30℃的冷却剂中的反应器中。停留时间为18秒。反应混合物从反应器中连续取样,供入在Erlenmeyer烧瓶中冷却到0℃的120克水中,并在0℃~10℃的温度下使用磁力搅拌器搅拌进行水解。在反应完成后,将反应混合物分离成二氯甲烷层和水层,将水层进一步用100毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为75%。
实施例2使用内径为2毫米且有效长度为1米的不锈钢管作为反应器进行反应,该不锈钢管配备有Kenics静态混合器作为原料的混合器(预混合器)。Kenics静态混合器具有3.4毫米的内径和10厘米的长度并且含有17个元件。将总量为55毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于314克二氯甲烷中,并冷却到4℃。单独地将317毫摩尔硫酸酐溶于575克二氯甲烷中,并冷却到4℃。分别以5.1毫升/分钟和7.0毫升/分钟的速率将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液连续供应到浸于-30℃的冷却剂中的反应器入口处的预混合器中。在预混合器和在反应器中的停留时间分别为4.5秒和16秒。将反应混合物从反应器中连续取样,供入在Erlenmeyer烧瓶中冷却到0℃的120克水中,并在0℃~10℃的温度下使用磁力搅拌器搅拌进行水解。在反应完成后,将反应混合物分离成二氯甲烷层和水层,将水层进一步用300毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为89%。
实施例3使用Kenics静态混合器作为反应器进行反应,该Kenics静态混合器具有3.4毫米的内径和10厘米的长度并且含有17个元件。将总量为28毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于273克二氯甲烷中,并冷却到4℃。单独地将157毫摩尔硫酸酐溶于439克二氯甲烷中,并冷却到4℃。分别以5.1毫升/分钟和7.4毫升/分钟的速率将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液连续供应到浸于-30℃的冷却剂中的反应器中。停留时间为4.3秒。将反应混合物从反应器中连续取样,供入在Erlenmeyer烧瓶中冷却到0℃的120克水中,并在0℃~10℃的温度下使用磁力搅拌器搅拌进行水解。在反应完成后,将反应混合物分离成二氯甲烷层和水层,将水层进一步用300毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为84%。
实施例4使用Kenics静态混合器作为反应器进行反应,该Kenics静态混合器具有3.4毫米的内径和10厘米的长度并且含有17个元件。将总量为28毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于362克二氯甲烷中,并冷却到4℃。单独地将139毫摩尔硫酸酐溶于585克二氯甲烷中,并冷却到4℃。分别以5.5毫升/分钟和7.4毫升/分钟的速率将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液连续供应到浸于-30℃的冷却剂中的反应器中。停留时间为4.2秒。将反应混合物从反应器中连续取样,供入在Erlenmeyer烧瓶中冷却到0℃的120克水中,并在0℃~10℃的温度下使用磁力搅拌器搅拌进行水解。在反应完成后,将反应混合物分离成二氯甲烷层和水层,将水层进一步用300毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为86%。
实施例5使用Kenics静态混合器作为反应器进行反应,该Kenics静态混合器具有8.0毫米的内径和26厘米的长度并且含有17个元件。将总量为19毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于250克二氯甲烷中,并冷却到3℃。单独地将109毫摩尔硫酸酐溶于404克二氯甲烷中,并冷却到3℃。分别以71毫升/分钟和103毫升/分钟的速率将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液供应到浸于-30℃的冷却剂中的反应器中。停留时间为4.5秒。将反应混合物从反应器中连续取样,供入在Erienmeyer烧瓶中冷却到0℃的120克水中,并在0℃~10℃的温度下使用磁力搅拌器搅拌进行水解。在反应完成后,将反应混合物分离成二氯甲烷层和水层,将水层进一步用300毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为85%。
实施例6使用内径为0.5毫米且有效长度为2米的不锈钢管作为反应器进行反应。将总量为28毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于363克二氯甲烷中,并冷却到4℃。单独地将157毫摩尔硫酸酐溶于583克二氯甲烷中,并冷却到4℃。分别以2.1毫升/分钟和3.2毫升/分钟的速率将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液连续供应到浸于-30℃的冷却剂中的反应器中。停留时间为4.4秒。将反应混合物从反应器中连续取样,供入在Erlenmeyer烧瓶中冷却到0℃的120克水中,并在0℃~10℃的温度下使用磁力搅拌器搅拌进行水解。在反应完成后,将反应混合物分离成二氯甲烷层和水层,将水层进一步用300毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为87%。
实施例7使用内径为4毫米且有效长度为2米的不锈钢管作为反应器进行反应。该反应器配备有Kenics静态混合器作为原料的混合器(预混合器),Kenics静态混合器具有8.0毫米的内径和26厘米的长度并且含有17个元件,该反应器在原料混合部分的管接头处具有插入管,其中两种液体开始在静态混合器部分中混合。将总量为60毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于300克二氯甲烷中,并冷却到-10℃。单独地将382毫摩尔硫酸酐溶于418克二氯甲烷中,并冷却到-10℃。分别以141毫升/分钟和199毫升/分钟的速率将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液供应到浸于-30℃的冷却剂中的反应器入口处的预混合器中。在预混合器和在反应器中的停留时间分别为2.3秒和4.4秒。将反应混合物从反应器中连续取样,供入在Erlenmeyer烧瓶中的60克水中,并在15℃~25℃的温度下使用磁力搅拌器搅拌进行水解。在反应完成后,将反应混合物分离成二氯甲烷层和水层,将水层进一步用200毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为91%。
实施例8使用内径为4毫米且有效长度为2米的不锈钢管作为反应器进行反应。该反应器配备有Kenics静态混合器作为原料的混合器(预混合器),Kenics静态混合器具有8.0毫米的内径和26厘米的长度并且含有17个元件,该反应器在原料混合部分的管接头处具有插入管,其中两种液体开始在静态混合器部分中混合。将总量为134毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于400克二氯甲烷中,并冷却到-10℃。单独地将950毫摩尔硫酸酐溶于533克二氯甲烷中,并冷却到-10℃。分别以139毫升/分钟和193毫升/分钟的速率将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液连续供应到布置在浸于-30℃的冷却剂中的反应器入口处的预混合器中。在预混合器和在反应器中的停留时间分别为2.4秒和4.5秒。将反应混合物从反应器中连续取样,供入在Erlenmeyer烧瓶中的60克水中,并在15℃~35℃的温度下使用磁力搅拌器搅拌进行水解。在反应完成后,将反应混合物分离成二氯甲烷层和水层,将水层进一步用200毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为85%。
对比例1使用内径为5厘米、长度为20厘米并配备有三个擦拭器(wipers)的玻璃WFE作为反应器。将总量为40毫摩尔的乙酰基乙酰胺-N-磺酸三乙基铵溶于60克二氯甲烷中,并冷却到0℃。单独地将229毫摩尔硫酸酐溶于94克二氯甲烷中,并冷却到0℃。使-30℃的冷却剂流进反应器的夹套中,并且擦拭器以700rpm的速率旋转。在16分钟的反应时间内,将乙酰基乙酰胺-N-磺酸三乙基铵的溶液和硫酸酐溶液分别连续滴加到擦拭器的搅拌轴和WFE反应器的壁上。从WFE反应器的底部排出的反应混合物连续供入在冰浴中冷却到0℃的烧瓶内的20克水中,并且在0℃~10℃下使用磁力搅拌器搅拌进行水解。在反应完成后,加入100克二氯甲烷和10克水,搅拌混合物并将反应混合物分离成二氯甲烷层和水层。将水层进一步用100毫升二氯甲烷萃取两次。通过HPLC确定合并的二氯甲烷层中的6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物的量,发现基于乙酰基乙酰胺-N-磺酸三乙基铵的收率为37%。
虽然已经参考目前被认为是优选的实施方式描述了本发明,应该理解本发明并不限于披露的实施方式。相反,本发明意图覆盖包括在本发明的实质和范围中的各种改进和等价物。权利要求的范围应给予最宽的解释,以便包含所有这些改进和等价结构和功能。
权利要求
1.一种制备由下式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的方法 式中R1和R2彼此相同或不同,并且各自是氢原子或对反应惰性的有机基团;和R3是氢原子或对反应惰性的有机基团,该方法包括使由下式(1)表示的β-酮酰胺-N-磺酸或其盐在酸酐存在下环化的步骤,有或没有进一步使环化的产物水解的步骤, 其中该环化使用连续流动反应器连续进行;式(1)中R1、R2和R3的定义与式(2)中相同。
2.权利要求1的方法,进一步包括使用管式反应器或静止型混合器用作连续流动反应器。
3.权利要求2的方法,进一步包括使用管式反应器或静止型混合器作为反应器,该管式反应器或静止型混合器在反应器的入口部分具有选自搅拌式混合器、超声波混合器和静止型混合器中的至少一种。
4.权利要求1的方法,其中R1和R2彼此相同或不同,并且各自为氢原子、烷基、链烯基、炔基、环烷基、酰基、芳烷基或芳基,R3为氢原子、烷基、链烯基、炔基、环烷基、酰基、芳烷基或芳基。
5.权利要求1的方法,进一步包括使用衍生自至少一种酸的酸酐作为酸酐,该酸选自硫酸、磺酸、卤代硫酸、焦磷酸、硝酸和硼酸。
6.权利要求1~5中任意一项的方法,其中3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物为6-甲基-3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物。
全文摘要
一种制备由右式(2)表示的3,4-二氢-1,2,3-氧杂噻嗪-4-酮-2,2-二氧化物化合物或其盐的方法,式中R
文档编号C07D291/06GK1680344SQ200510009349
公开日2005年10月12日 申请日期2005年2月17日 优先权日2004年2月17日
发明者小林宪儿, 渡边仁志, 龟井登, 山本靖 申请人:大赛璐化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1