改进的脑膜炎双球菌多糖结合菌苗的制作方法

文档序号:3596334阅读:283来源:国知局
专利名称:改进的脑膜炎双球菌多糖结合菌苗的制作方法
技术领域
本发明涉及化学改性的脑膜炎双球菌(Neisseria meningitidis)B血清群多糖。本发明也提供多种菌苗,在该苗中相应改性的多糖与蛋白质载体结合。
由脑膜炎双球菌B血清群和大肠杆菌(E.coli)K1引起的脑膜炎仍是世界上主要的健康问题。B型脑膜炎发生于地方性和流行性,并约占全部记录的脑膜炎双球菌脑膜炎病例的一半,而K1-阳性大肠杆菌是新生儿脑膜炎的主要起因。现在尚无商业性的抗由脑膜炎双球菌B血清群和大肠杆菌K1引起的疾病菌苗。在很大程度上这是由于这样一个事实,即脑膜炎双球菌B血清群多糖(GBMP)在人体中仅产生很微弱的免疫。近来有某些报导基于GBMP与外膜蛋白质形成复合体的选择菌苗,然而迄今还没有这些菌苗对人体有效的明显证据。
近来,发展了基于含成化学改性的(N-丙酰化的)B血清群多糖-蛋白质(N-Pr-GBMP-蛋白质)结合物菌苗的新概念。该菌苗在鼠中诱导IgG抗体的高滴度。该抗体不仅是预防性的,而且同未改性的GBMP(即-N-乙酰基-GBMP)交叉反应。这一概念已公开在美国专利NO.4727136中并要求保护(1988年2月23日授权与Harold J.Jennings等人)。
已经指出,例如在美国专利NO.4727136中公开的增加交叉反应抗体的菌苗只是在牺牲极限免疫耐受性时才是有成效的。这种假设被一般抗原决定簇证实是含理的,该抗原决定簇由天然N-Ac-GBMP和人及动物组织中的α-(2-8)-连接的唾液酸残基(最少需要10个残基)链组成(Jennings,Contrib.Microbiol.Immunol.Basel,Karger,1989,Vol.10,151-165)。这些聚唾液基(polysialosyl)链的功能作为制备抗原并且大部分在胚胎中性细胞粘连方面与胚胎阶段有关(Finne etal,Biochem.Biophys.Res.Commun.,1983,112,482)。在出生后的成长过程中,这种抗原是向下降调节(Friedlander etal,J.Cell Biol.1985,101,412),但它在成年人在患病肌肉再生期间(Cashman at el,Ann.Neuron.,1987,21,481)在肿瘤细胞(Rothet al,Proc.Natl.Acad.Sci.,1988,85,299)以及在天然K细胞(NK)和CD3+T细胞(Husmann et al,Eur.J.Immunol.,1989,19,1761)中表现出来。尽管至今对这些胎儿抗原的极限碉受性尚未形成结论,但通常认为,由于这种交叉反应,一些许可机构对N-Pr-GBMP-蛋白质结合物要进行仔细研究,因为在它被批准商品出售之前需做证明该菌苗安全性的复杂实验,结果导致相当大的花费并延误时间。
本发明的一个目的是开发一种具有免疫特性的菌苗,其免疫特性强于N-Pr-GBMP蛋白质。本发明的另一目的是提供一种显示与GBMP交叉反应实质降低的菌苗。
本发明的一个方面,是提供具有唾液酸残基N-乙酰基(C2)被C4-C8酰基取代的改性脑膜炎双球菌B血清群多糖。
本发明的另一方面,是提供一种抗原结合物,该结合物含有结合到合适的免疫蛋白质上的N-C4-C8酰基多糖,并具有增强的致免疫性及诱导实质上降低的交叉反应抗体。
本发明的又一方面,是提供一种菌苗,该菌苗含有与合适载体或稀释剂结合的N-C4-C8酰基多糖-蛋白质结合物。本发明的菌苗也可含有对人体适用的治疗有效量的辅助剂,例如磷酸铝或氢氧化铝。
本发明的再一方面,是提供一种哺乳动物抗脑膜炎双球菌和大肠杆菌K1感染的免疫方法,该方法包括将免疫有效量的本发明菌苗通过肠胃外给药于受到这种感染的哺乳动物,包括人。该菌苗的典型给药量为每千克体重约1-50微克,例如每千克体重5-25微克。
另一方面,本发明提供了能够预防由脑膜炎双球菌B血清群和大肠杆菌K1引起的脑膜炎的γ-球蛋白馏分。该γ-球蛋白馏分通过用本发明的菌苗免疫哺乳动物而产生。然后将该γ-球蛋白馏分给药于一个个体,以提供预防或治疗由上述微生物正在引起的感染。由此可认为,本发明的免疫菌苗结合物由于它的良好致免疫性及最低诱导GBMP交叉反应抗体,它可作为治疗抗血清的来源。本发明的结合物也可用于增加单克隆抗体,并有可能用于抗遗传型抗体。
在我们的最近实验中已发现,由上述的Jennings等人的美国专利4727136中公开的N-Pr-GBMP-蛋白质结合物诱导的大多数杀菌和预防抗体与GBMP交叉反应抗体无关。实际上,大多数预防活性包含在与GBMP不交叉反应的N-Pr-GBMP特殊抗体种群中。根据这一点,可认为N-Pr-GBMP在脑膜炎双球菌B血清群表面复制一种独有的杀菌抗原决定簇。
本发明是以能够含成化学改性的GBMP′s这一发现为基础,该GBMP复制杀菌抗原决定簇,并且在其结合形式上,它不仅显示增强的致免疫性,而且也基本上免避同GBMP交叉反应的抗体诱导。
为实现本发明,一系列不同的化学改性的GBMP′s已分别被含成并与蛋白质结合,随后将结合物注射入鼠中,并与由N-Pr-GBMP-蛋白质结合物产生的效果相比较。意想不到的是,已经发现N-C4-C8酰基GBMP蛋白质结合物基本上复制杀菌抗原决定簇,并可以基本上降低交叉反应抗体的诱导,这种结合物的例子如正丁酰基、异丁酰基、正戊酰基、异戊酰基、新戊酰基、己酰基、庚酰基和辛酰基以及特别是N-丁酰基(N-Bu)GBMP-蛋白质结合物。
利用现有技术中公知的方法从脑膜炎双球菌中分离出脑膜炎双球菌B血清群多糖。结合上述方法,脑膜炎双球菌B血清群(株9818B)于37℃在发酵桶中生长,生长时用每升蒸馏水中含30克脱水Todd Hewitt Broth(Difco Laboratories,Detroit,Michigan)。在发酵桶中生长之前,该冻干株在37℃的蜡罐中于5%(V/V)Sheeps′Blood Agar(Difco Laboratories,Dotroit,Michigan)平皿上初始生长。然后将细菌转移至盛在Erlenmyer曲颈瓶中的1.0升Todd Hewitt Broth(如上述)中,以190转/分的速度在37℃下摇动该曲颈瓶7小时。然后将该接种物转移到发酵桶中。在发酵桶中生长(16小时)后,通过添加福尔马林使最终浓度达到0.75%而杀死细菌。细菌通过连续离心分离出,并且除了蛋白质通过搅拌含90%冷的(4℃)而不是热的(50-60℃)的苯酚的原多糖溶液进引提取的以外,基本上按照Bundle等人在J.Biol.Chem.,249,4797-4801(1974)中所述进行纯化。该后一种处理过程保证产生高分子量形式的GBNP。
大肠杆菌(018K1H7)(NRCC 4283)于37℃的发酵桶中在含有脱水Brain Heart Infusion(BHI;37克/升)(Difco Laboratiories,Detroit,Michigan)的蒸馏水中生长。在发酵桶中生长之前,该冻干株在Erlenmeyer曲颈瓶中的50mlBHI溶液(与上述相同)中生长,在37℃下以200转/分的速度摇动曲颈瓶7小时。然后这种生长转移到1.5升BHI(如上述)中并在如上述相同条件下生长7小时。然后将接种物转移到发酵桶中。
分离和纯化大肠杆菌K1囊多糖所用的工艺过程与上述分离脑膜炎双球菌B血清群多糖工艺过程完全一样。
应指出的是,有关上述的分离和纯化工艺过程并不是唯一可使用的,而其他公开的工艺过程也是适用的,例如Watson等人在J.Immunol.,81,331(1958)中描述的和在上述美国专利4727136中公开的那些工艺过程。
天然多糖进行N-脱去乙酰基,以在分子的唾液酸残基部分形成一个反应胺基。用任何已知的方法可发生N-脱乙酰作用,例如在增高温度(如约90-110℃)和PH值约为13-14的碱性水培养基中。合适的碱性水培养基是碱金属氢氧化物水涤液,例如约2M浓度的氢氧化钠。另外,肼的水溶液也可使用。N-脱乙酰作用程度可以从约30%至100%变化,这取于具体条件。优选的是达到约90-100%N-脱乙酰作用。N-脱去乙酰基产物可通过例如冷却、中和来回收,如需要可纯化,并冻干。
在进行N-脱乙酰作用之前,天然多糖具有约500000-800000道尔顿范围的平均分子量。由于N-脱乙酰作用的结果,产生具有平均分子量在约10000-50000道尔顿范围的多糖片段。
N-脱去乙酰基的多糖片段然后再N-酰化,以产生相应的N-酰化产物。N-酰化作用可通过下述步骤实现,即将N-脱去乙酰基的多糖溶解在pH为7.5-9.0的水培养基中,继之加入合适的酰基酐,酰基酐可选择地与乙醇一起加入,以增加溶解度,并冷却到10℃,以下,一直到反应完成为止。如果需要,反应培养基可以纯化,如通过渗析,然后回收N-酰化产物,典型的是通过冻干。反应在约10-20小时内基本完成。用分析技术,典型的是用1Hnmr(核磁共振)测定N-酰化作用程度,该作用程度至少为90%,并可能接近100%。N-酰化作用并不导致片段分子量任何明显降低。
根据本发明,为了结合作用的效果,优选具有平均分子量相当于约30-200个唾液酸残基的N-酰化物质。这一般通过使用Ultragel(商标)AcA44(颗粒直径60-140μm)柱,用PBS作洗脱液对N-酰化的GBMP进行凝胶过滤而得到。另外,也可使用合适尺寸的膜。
本发明使用平均分子量为10000-40000道尔顿,例如10000-15000道尔顿的N-酰化物质。这可通过收集含有上述平均分子量范围的N-酰化的GBMP物质的柱洗脱液馏分而得到。根据本发明,高平均分子量的,例如在30000-40000道尔顿范围的N-酰化物质也是适用的。
本发明的菌苗通过将N-酰化的多糖同一种合适的免疫载体蛋白质结合而产生。最好,载体蛋白质本身是免疫原。合适的载体蛋白质例子是破伤风类毒素、白喉类毒素、交叉反应物质(CRMs),最好是CRM197(从Sclavo Ltd.,Siena,Italy获得),以及细菌蛋白质载体,如脑膜炎双球菌外膜蛋白质类。
可以作用任何一种结合作用方式使改性的多糖片段与载体蛋白质结合。优选的方法是在美国专利4356170中公开的方法,即将末端醛基团(借助顺式-连位羟基基团的氧化作用)引入N-酰化的多糖,并通过还原性胺化作用使醛基团与蛋白质氨基团偶合。因此,多糖和蛋白质通过-CH2-NH-蛋白质键而连接。
然而应当说明的是,本发明的结合菌苗并不限于通过还原性胺化作用而产生的那些。因此,也可按照Schneerson,R.等人在b型流感嗜血杆菌多糖-蛋白质结合物的制备、特性和致免疫性(J.Exp.Med.,1952,361-476(1980))中的描述和美国专利4644059(授与Lance K.Gordon)的描述,用已二酰肼间隔基将N-酰化的多糖与载体蛋白质结合来生产菌苗。另外,也可用Merck发展的二元间隔基技术(按照Marburg,s.,等人在“Biomolecular Chemistry of MacromoleculesSynthesis of Bacteial Polysaccharide Conjugates With Neisseria Meningitidis Membrane Protein”,J.Am.Chem.Soc.,108,5282-5287(1986)中的描述),或者可能用还原末端方法(参阅授与Anderson的美国专利4673574)。
所得到的N-酰化的多糖-蛋白质结合物不具有有效交联,并且在水溶液中是可溶的。对菌苗的使用来说,这使及本发明的结合物成为良好的选择对象。
所得到的本发明的N-酰化的多糖-蛋白质结合物已在鼠中做过体外试验,结果普遍表明,与N-丙酰化的多糖相比,它具有改进的免疫性能。另外,观察到基本上降低形成交叉反应抗体。根据这一点,可以相信本发明的菌苗可用于抵抗由脑膜炎双球菌B血清群或大肠杆菌K1引起的脑膜炎。特别感兴趣的是,该菌苗可预防人的婴幼儿最易感染的细菌脑膜炎。
本发明的菌苗典型地是通过将结合物分散于任何适宜的可药用的载体中而形成,所述的载体例如生理盐水或其他可注射的液体。该菌苗肠胃外给药,如皮下的、腹膜内的或肌肉的。在菌苗中也可存在常用的添加剂,例如稳定剂如乳糖或山梨醇,及辅助剂如磷酸铝、氢氧化铝或硫酸铝。该菌苗也可能结合成为复合菌苗的一部分。
用于人的婴幼儿的菌苗的合适剂量通常在每千克体重约5-25微克或约1-10微克范围内。
实施例用下面非限制性实施例来说明本发明。为评定之目的已制备N-乙酰基、N-丙酰基、N-丁酰基、N-异丁酰基、N-戊酰基和N-己酰基-GBMP-蛋白质结合物,而结果在实施例中论述。
用于制备结合物的材料和方法(a)材料从Sigma Chemicals Co.,St.Louis,Mo.购得丙酸酐、丁酸酐、异丁酸酐、戊酸酐和己酸酐及多聚乙酰神经氨酸。由于多聚乙酰神经氨酸在结构上与脑膜炎双球菌B血清群多糖(GBMP)相同,所以以后把它当作GBMP。从Institut Armand Frappier,Laval,Quebec购得破伤风类毒素(TT),而其单体形式(用于所有结合作用)是按照上述制备措施经过一个Bio-Gel(商标)AO.5(200-400目)柱(1.6×90cm)(Bio-Rad,Richmond,CA.)平衡并用0.01M磷酸盐缓冲生理盐水(PBS)(pH7.4)进行洗脱而获得的。
(b)GBMP的N-脱乙酰作用将GBMP(Na+盐)(1.0g)溶解在5ml2M的NaOH溶液中,随后加入NaBH4(150mg),在一个螺旋盖Teflon(商标)容器(60ml)中将该溶液在110℃加热6小时。这种工艺规程基本上与J.Immunol.,134,2651(1985)和美国专利4727136(两者的作者都是Harold J.Jennings等人)中公开的工艺规程相同。然后冷却的稀释溶液在4℃对着蒸馏水进行完全渗析,并冻干。达到N-脱去乙酰基的GBMP的事实由在N-脱去己酰基的GBMP的1H-nmr光谱中甲基乙酰氨基信号(单独在σ2.07)消失而得到证实。
(c)GBMP的N-酰化作用将N-脱去乙酰基的GBMP(1.0g)溶解在50ml5%NaHCO3水溶液中。向5份独立的等分溶液(100ml上述溶液)中分别加入丙酸酐、丁酸酐、异丁酸酐、戊酸酐和己酸酐。这些试剂是在室温下于3小时时间内以3×0.5ml的等分量加入的,而用0.5NNaOH使溶液的pH保持在8.0。在每次加入酐的同时加入甲醇(0.5ml),以增加其溶解度。最后在4℃下将溶液搅拌16小时,在4℃下对着蒸馏水进行完全渗析,并冻干。获得单独的N-丙酰基化的、N-丁酰基化的、N-异丁酰基化的、N-戊酰基化的和N-己酰基化的GBMP,其产率都超出90%。在每种情况下,通过在N-脱去乙酰基的GBMP的相应的1H-nmr光谱中的消失证实N-酰化作用基本完成。
(d)不同N-酰化的GBMP片段尺寸使用Ultragel(商标)AcA44(颗粒直径60-140um)柱(IBF)以得到所需平均分子量的N-酰化的GBMP物质,收集用FLPC(见下面)在K00.5-K00.7测量的来自柱的洗脱馏分,渗析并冻干。这种K0的范围与约30-50个唾液酸残基的N-酰化的GBMP(平均分子量为10000-15000道尔顿,典型的是12000道尔顿)相一致。也可收集并结合与具有平均分子量为30000-40000道尔顿片段相对应的K00.2-K00.4范围内的馏分。因此,对在K00.2-0.7范围内洗脱的N-酰化的物质是特别感兴趣的。
(e)多糖结合物通过高碘酸盐氧化(见美国专利4356170)将末端酐基引入N-酰化的GBMP。室温下在暗处在0.1MNaIO4(偏高碘酸钠)(10ml)水溶液中将上面的N-酰化的GBMP片段氧化2小时。然后通过加入1ml1,2-亚乙基二醇将过量高碘酸盐消耗掉,随后在4℃下将该溶液完全渗析,并冻干。在N-脱乙酰作用过程中(除GBMP外)使用NaBH4使每个N-酰化的GBMP的末端还原性唾液酸残基转变为开链多羟基化合物残基。这种类型的残基对高碘酸盐是敏感的(见J.Immunol.,127,1011(1981)和美国专利4356170,Harold J.Jennings et al),因此,在两端都导致酐基团引入N-酰化的GBMP片段。
将100mg氧化的片段溶解在2ml0.1M的NaHCO3(PH8.1)缓冲液中,并向这种溶液添加20mgTT。最后,接着添加40mg氰基硼氢化钠(NaCNBH3),在室温下慢慢搅拌溶液。在结合过程中使用含Superose(商标名)12HR10/30(Pharmacia)的凝胶过滤柱进行FPLC,在PBS缓冲液(PH7.2)中以1ml/分的速度流动,在214nm处测量蛋白质和N-酰化的片段。片段的K0=0.6,TT的K0=0.39及结合物的K0=0.23。当所有TT耗尽时,这种结合反应就完成了,TT耗尽是按照对应于K00.39组分的FPLC色谱峰值损失测定的。在大多数情况下,结合反应在2天内可完成,但允许总反应时间为4天。在凝胶过滤之前,潜在的未反应的醛基最后用20mg氢化硼钠进行还原。
通过使用生物凝胶(Bio Gel)柱进行凝胶过滤、用PBS作洗脱液使多糖-TT结合物与多糖片段分离。含有结合物的洗脱液逆着蒸馏水进行渗析并冷冻干燥。N-酰化的GBMP-TT结合物含有12-30%、通常是12-20%的唾液酸,这种唾液酸是用间苯二酚方法测定的(这种方法见Svennerholm,L.,Quantitative Resorcinol-Hydrochloric Acid Method,Biochim.Biophys.Acta.24,604(1957))。这表明该结合物具有的多糖与TT的克分子比为2-3∶1。
免疫作用和免疫测定(a)免疫作用的程序20只雌性白色CFI鼠(出生8-10周)每只单独用存在于Freund完全辅药(FCA)(Difco,Detroit,MI)中的N-酰化的GBMP-TT结合物进行3次腹膜内免疫(每隔3星期进行一次)。每次免疫都含有足够的结合物(10-12μg)以便含有2μg唾液酸。在第3次注射后第11天鼠出现贫血。下面实验通过血清完成。
(b)放射性抗原结合测定这种测定按照改进的放射性免疫法测定抗体量(Farr)技术在体外使用[3H]-标记的GBMP(Jennings H.J.,et al,Determinant Specificities of the Groups B and C polysaccharides of Neisseria meningitidis,J.Immunol.,134,2651(1985))或者[3H]-标记的N-Pr-GBMP(Jennings H.J.,et al,Unigue Intermolecular Bactericidel Epitope involving the HomeSialo Polysaccharide Capsule on the Cell Surface of Group B Neisseria meningitidis and Escherichie coli K1,J.Immunol.,142,3585-3591(1989))进行。用于放射性抗原结合测定的反应混合物通过将20μl混合抗血清用PBS稀释至100μl,在Eppendorf聚丙烯微量试管中,与在50μlPBS中的[3H]标记的GBMP和[3H]-标记的N-Pr-GBMP混合而获得,所述的混合抗血清取自每只单独用N-酰化的GBMP-TT结合物免疫的20只鼠群。在4℃培育16小时后,在4℃向试管中加入150μl饱合硫酸铵(PH7.0)并搅拌试管,在4℃保持30分钟。将试管以15000转/分离心处理10分钟并从试管中取出130μl两等分试样。将两等分试样与2ml水及一种含甲苯闪烁体(ACS含水闪烁体)混合并在液体闪烁计数器中对混合物进行计数。结果示于表1中。
表1[3H]-标记的N-AC-GBMP与各种鼠的抗-N-酰基-GBMP-TT结合物血清的结合抗血清结合%a1 2 3 4N-Pr-GBMP-TT 40 40 39 12N-Bu-GBMP-TT 4 4 7 4N-Iso Bu-GBMP-TT 9 / / /N-Pen-GBMP-TT 36 / / /N-Hex-GBMP-TT 16 / / /a表示对取自20只免疫鼠的混合抗血清做的四次结合实验。
在表1和其他表中使用的缩写词N-Ac、N-Pr、N-Bu、N-IsoBu、N-Pen和N-Hex分别代表N-乙酰基、N-丙酰基、N-丁酰基、N-异丁酰基、N-戊酰基和N-己酰基。
数字1、2、3、4是4次重复实验结果。表1清楚地表明N-Ac-GBMP(其中载有相同的抗原决定簇如胎儿的N-CAM)与N-Bu-GBMP、N-IsoBu-GBMP、N-Pen-GBMP和N-Hex-GBMP诱导的抗血清的结合少于与N-Pr-GBMP诱导的抗血清的结合。由此从表1可以推知N-Bu、N-IsoBu、N-Pen和N-Hex多糖结合物比N-Pr结合物增加交叉反应抗体要少。
(c)定量沉淀素分析这些实验按照Kabat和Mayer方法(Experimental Immunochemistry charlesc.Thomas,springfield,p,22(1961))进行。100μl抗N-酰基GBMP-TT血清等分试样(在PBS中稀释至5倍)在试管中与总体积为200μl(用PBS调节)的增高浓度的N-乙酰基(多聚乙酰神经氨糖酸),N-丙酰基,N-丁酰基,N-异丁酰基,N-戊酰基和N-己酰基GBMP进行反应。在这些实验中使用这些衍生物的高分子量馏分,它们由Ultragel AcA 44柱(K00.4,通过FPLC测量)的洗脱而获得,这种柱预先用于测定N-酰化的GBMP片段尺寸。这些试管伴随每日混合在4℃培育4天,然后离心处理,抗体蛋白质数量按照Lowry等人的方法-用福林(Folin)酚试剂测定蛋白质(J.Biol.Chem.1933,265(1951))进行测定,结果示于表2表2使用不同的N-酰基GBMP作为沉淀抗原时,鼠的抗N-酰基-GBMP-TT血清的沉淀a抗血清 N-酰基-GBMP抗原N-乙 N-丙 N-丁 N-戊 N-已酰基 酰基 酰基 酰基 酰基N-Pr-GBMP-TT 0.16 0.40 0.20 0.15 0.15N-Bu-GBMP-TT 0.04 1.15 2.60 3.20 1.90N-Pen-GBMP-TT 0.13 0.38 0.44 6.35 3.55N-Hex-GBMP-TT 0.02 0.08 0.80 4.15 4.40
a表示以mg/ml抗血清表示的已沉淀的抗体最大数量。
关于交叉活性,表2第1栏表明,与N-Pr结合物相比,N-Bu和N-Hex结合物产生极少量交叉反应抗体。也可以看出,N-Pen结合物较N-Pr结合物产生的交叉反应抗体少。关于致免疫性(以相同应答表示),由表2可以看出,N-Bu-(2.60),N-Pen-(6.35)和N-Hex-(4.40)GBMP-TT结合物比N-Pr-GBMP-TT结合物(0.40)是更致免疫的。
(d)ELISA给EIA微量滴定板(Flowlabs,Mississauga,Ontario,Canada)的井涂上浓度为10μg/ml的溶于PBS中的或GBMP-、NPrGBMP-或NBu-GBMP10-BSA结合物溶液,每个井涂上100μl。该板在4℃放置18小时,在涂抹后,在室温将这些板用1%的溶于PBS的牛血清白蛋白溶液冲洗10分钟(阻塞步骤)。然后用在PBS中连续稀释10倍的100μl抗-鼠-N-酰基GBMP-TT结合物血清填入这些井中并在室温下将这些板培育1小时。用SBT冲洗后,在室温用50μl山羊抗鼠免疫球蛋白过氧化物酶标记的结合物(Kirkegard and Perry Laboratories)的相应稀释液培育1小时,然后吸出井中的物质并用SBT将板洗涤5次。最后向每个井中加入50μl四亚甲基蓝色过氧化物酶培养基(TMB)(Kirkegard and Perry Laboratories),10分钟后使用Multiscan分光光度计(Flow Laboratories,Mississauga,Ont.)。结果示于表3。
表3
混合鼠抗-N-酰基-GBMP-TT结合物血清对N-酰基-GBMP-BSA结合物的ELISA滴度涂敷抗原抗血清滴度aa,N-Pr-GBMPba,N-Bu-GBMPba,N-IsoBu-GBMPbN-AC-GBMP-BSA 7800 1000 7000N-Pr-GBMP-BSA 40000 39000 9800N-Bu-GBMP-BSA 26000 52000 9700N-IsoBu-GBMP-BSA / / 25000a滴度(GM)=50%的稀释溶液在450nm处最大吸光度的倒数。
b表示在鼠中由同系化合物N-酰基-GBMP-TT结合物诱导的N-酰基特殊抗血清。
关于交叉反应性,由表3可以看出,N-Bu-GBMP-TT结合物对N-AC-GBMP的交叉反应抗体的增加(1000)比N-Pr-GBMP-TT结合物(7800)少。其原因在于,GBMP与由N-Pr-GBMP-TT结合物诱导的抗体的结合少于与由N-Bu-GBMP-TT结合物诱导的抗体的结合。类似的解释适用于N-IsoBu-GBMP-TT结合物。
关于致免疫性。如同系结合的滴度52000(N-Bu)和40000(N-Pr)所示,N-Bu结合物比N-Pr结合物是更致免疫的。
(e)放射性结合抑制测定为了提高大分子尺寸化的N-酰基GBMP的浓度,向20μl的鼠抗-N-Pr-GBMP-TT结合物抗血清中添加抑制剂(溶于80μlPBS),其数量是在没有抑制剂时足以结合50%的(3H)-标记的N-Pr-GBMP。试管在37℃培育1小时并加入50μl溶于PBS中的(3H)-标记的-N-Pr-GBMP。在平静之后,按照上述放射性抗原结合测定法进行精确测定。作用下式计算抑制百分数抑制百分数=100×[(有抑制剂的每分钟计数-无抑制剂的每分钟计数)/(无抗体的每分钟计数-无抑制剂的每分钟计数)]结果列于表4。
表4(3H)-标记的N-Pr-GBMP与IgG2。IgG2b(A)a和IgG(B)a抗体诱导的鼠抗N-Pr-GBMP-TT结合物的结合抑制抑制剂bA BN-AC-GBMP >50.0 >50.0N-Pr-GBMP 0.6 0.3N-Bu-GBMP 0.3 0.2N-IsoBu-GBMP >50.0 /N-Pen-GBMP 2.3 2.5N-Hex-GBMP 10.2 10.0a是鼠的多克隆抗N-Pr-GBMP-TT血清馏分(Jennings等人在J.Immuol.,142,3585-3591(1938)中已描述)b是产生50%抑制作用的抑制剂的微克数。
杀菌测定 这些测定按照Jennigs等人在J.Exp.Med.,165,1207-1211(1987)中描述的方法进行。
脑膜炎双球菌株B(M986)用于这些测定。结果列于表5
表5(3H)-标记的-N-Pr-GBMP与各种鼠抗N-酰基-GBMP-TT结合物血清结合和相应的抗血清的杀菌滴度抗血清抗血清a(μl) 杀菌滴度bN-Pr-GBMP-TT 13 128N-Bu-GBMP-TT 10 64N-IsoBu-GBMP-TT ND 64N-Pen-GBMP-TT 24 64N-Hex-GBMP-TT >100 8N-Ac-GBMP-TT >100 8a是要求50%结合的抗血清(用PBS稀释至5倍)的μl数b是稀释实验某种稀释差别,例如128与64相比,在实验误差之内。
表4表明,N-Bu-GBMP象N-Pr-GBMP一样是一种对N-Pr-GBMP与其自身的同系抗体结合的良好抑制剂。因此,用N-Bu-GBMP代替N-Pr-GBMP不会使N-Pr-GBMP所具有的性能显著损失。表5表明,N-Bu-GBMP象N-Pr-GBMP一样也结合由N-Pr-GBMP-TT结合物诱导的抗体。由N-Bu-GBMP-TT和N-Pr-GBMP-TT结合物两者诱导的抗血清具有类似的杀菌滴度。这些数据表示,N-Bu-GBMP,N-IsoBu-GBMP和N-Pen-GBMP的模拟在脑膜炎双球菌B血清群表面杀菌抗原决定簇的能力与N-Pr-GBMP相当。
权利要求
1.一种大肠杆菌(E.coli)K1夹膜多糖,它具有的唾液酸残基N-乙酰基被C4-C8酰基取代。
2.一种权利要求1所述的改性多糖,其中C4-C8酰基选自正丁基,异丁基,正戊基,正己基,正庚基和正辛基。
3.一种权利要求2所述的改性多糖,其中酰基选自正丁基,异丁基,正戊基和正己基。
4.一种权利要求1所述的改性多糖,它的平均分子量在10,000-50,000范围内。
5.一种权利要求1所述的改性多糖,它具有的N-酰化作用度约为90%-100%。
全文摘要
所具有的唾液酸残基N-乙酰基被N-酰基取代而改性的脑膜炎双球菌B血清群多糖(GBMP)显示出增强的免疫反应。此外,与未改性脑膜炎双球菌B血清群和大肠杆菌(E.coli)K1囊多糖及其有共同抗原决定簇的其他组织细胞交叉反应的抗体诱导减到最小程度。改性的多糖与一种生理上可接受的蛋白质(例如破伤风类毒素)的结合诱导特殊预防抗体的产生,该抗体具有不可忽视水平的GBMP交叉反应抗体,因此能够预防由脑膜炎双球菌B血清群和大肠杆菌K1引起的感染。
文档编号C07K16/12GK1100428SQ9311476
公开日1995年3月22日 申请日期1993年11月22日 优先权日1989年12月14日
发明者哈罗德·J·詹宁斯, 弗朗西斯·米琼 申请人:加拿大国家研究委员会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1