一种磁化的三元光阳极复合薄膜及其制备方法

文档序号:10727350阅读:829来源:国知局
一种磁化的三元光阳极复合薄膜及其制备方法
【专利摘要】本发明公开了一种磁化的三元光阳极复合薄膜及其制备方法,属于光伏电池技术领域。本发明首先采用溶液法制备半导体阵列膜和磁性金属离子,然后采用还原沉积法在阵列膜上沉积金属材料,构筑新型的由磁性金属离子/金属/半导体组成的三元光阳极复合薄膜。然后通过施加静态外磁场磁化磁性金属离子,进而影响磁性金属离子介质特性,从而实现对局域表面等离激元共振的动态控制,增强局域表面等离激元共振效应,提升光伏电池的光吸收性能,进而提高电池的光电转换效率。本发明具有成本低、易操作、效率提升效果好的特点,具有较大的应用前景。
【专利说明】
-种磁化的H元光阳极复合薄膜及其制备方法
技术领域
[0001] 本发明属于光伏电池技术领域,特别设及一种磁化的=元光阳极复合薄膜及其制 备方法。该复合薄膜由磁性金属离子/金属/半导体组成的=元光阳极复合薄膜,并通过施 加外磁场磁化磁性金属离子材料来动态控制其介质特性。
【背景技术】
[0002] 光电转换效率是光伏电池得W商业化应用的非常关键的指标。近年来,研究人员 进行了各项研究来提高染料敏化太阳能电池的光电转换效率,包括寻找新的半导体作为光 阳极薄膜、研制新型染料、电解质和对电极。但是由于电池对可见光的利用率较低,严重影 响了其性能的提高,因此,如何提高电池对光的吸收效率成为一个关键性的问题。
[0003] 通过陷光结构的设计提高太阳能电池对光的吸收效率己成为了太阳能电池研究 的热点问题。在众多的陷光结构中,金属表面等离子体纳米结构在局域能量增强和宽带吸 收方面表现出优良的性能,在光伏电池结构设计中展现出重要的价值。表面等离子体激元 的研究成果被应用于光电子集成器件、纳米光刻蚀技术、太阳能电池、表面增强拉曼散射等 诸多领域。最近,贵金属纳米颗粒金、银、铜的表面等离子体共振效应引起了研究者的高度 重视。很多研究者利用金属纳米颗粒的光散射与局域表面等离激元共振效应化SPR)实现了 薄膜太阳能电池的光吸收与光电流增强。中国专利201110004974.3提出了采用将金属纳米 颗粒分散在醇溶剂中形成金属纳米颗粒胶体溶液,在娃太阳电池片迎光面上,丝网印刷或 喷淋或旋涂金属纳米颗粒胶体溶液,实现娃太阳电池表面等离子体增益的方法。中国专利 201010243362.5通过薄膜沉积的方法在太阳能电池片上沉积一层金属层,不需要采用模板 法,通过低溫退火工艺获得尺寸均一可控的金属纳米颗粒,从而获得等离子体增效的薄膜 太阳能电池。
[0004] 然而,局域表面等离激元共振在光伏电池中的应用依然具有一些难W避免的缺 陷,例如:局域表面等离激元共振特性受很多因素的影响,如金属元素、形貌、尺寸、周围环 境介质W及等离子体共振禪合的影响;并且局域表面等离激元共振的最强作用往往发生在 金属/电介质界面,而且穿透深度往往只有数十个纳米,导致局域表面等离激元共振对电池 效率的影响程度有限。

【发明内容】

[0005] 为了解决上述现有技术存在的问题,本发明的首要目的在于提供一种磁化的=元 光阳极复合薄膜的制备方法。该方法通过组装一种由磁性金属离子/金属/半导体组成的= 元光阳极复合薄膜,并通过施加外磁场磁化磁性金属离子来动态控制其介质特性,从而实 现增强局域表面等离激元共振效应的目的,提升太阳能电池的光吸收性能,进而改善太阳 能电池的光电转换效率。
[0006] 本发明的另一个目的在于提供由上述制备方法得到的=元光阳极复合薄膜。
[0007] 本发明的目的通过下述技术方案实现:一种磁化的=元光阳极复合薄膜的制备方 法,包括如下步骤:
[0008] (1)用溶液法制备半导体阵列膜W及负载在半导体阵列膜上的磁性金属离子;
[0009] (2)将步骤(1)制备的负载了磁性金属离子的半导体阵列膜放入金属盐溶液中,用 氨水调节pH值为8.5,浸泡l-30min后放入与金属等摩尔量的还原剂水溶液中浸泡l-30min, 取出,用去离子水冲洗,然后于450°C烧结30min,得到S元光阳极复合薄膜;
[0010] (3)施加外磁场对步骤(2)的=元光阳极复合薄膜进行磁化;
[0011] (4)将步骤(3)磁化后的S元光阳极复合薄膜朝上放入N719染料溶液中浸泡一晚 后取出,用无水乙醇冲洗后于80°C干燥20min,得到磁化的S元光阳极复合薄膜。
[0012] 所述的磁化的=元光阳极复合薄膜作为染料敏化太阳能电池的光阳极膜与对电 极组装成=明治结构,加入电解质,进行测试。
[0013] 步骤(1)中;
[0014] 所述的半导体优选为二氧化铁、氧化锋或二氧化锡。
[0015] 所述的磁性金属离子优选为儘离子、铁离子、钻离子、儀离子中的一种或至少两种 混合物。磁性金属离子同时具有电荷的特性和自旋的特性,起到提高电荷传输和实现=元 光阳极复合薄膜磁化增强局域表面等离激元共振效应的作用。
[0016] 所述的磁性金属离子的含量优选为0.5-10wt%。
[0017] 步骤(2)中:
[001 引所述的金属盐优选为 HAuCl4、AgN03、Cu(N03)2、Al(N03)3、出 PtCl6、Ni(N03)2、Zn (N03)2、Sn(M)3)2中的一种或至少两种混合物。金属盐在还原剂的作用下被还原为具有局域 表面等离激元共振效应的金属纳米颗粒,利用金属纳米颗粒的局域表面等离激元共振效 应,实现了薄膜太阳能电池的光吸收与光电流增强。当光照射在金属纳米颗粒表面时,在纳 米颗粒的附近产生局域的近场增强,使光聚焦在薄膜上,增强光的吸收。
[0019] 所述的金属盐溶液的浓度优选为0.5-50mM。
[0020] 所述的还原剂为巧樣酸纳、葡萄糖、水合阱或棚氨化钢中的一种。
[002U 步骤(3)中:
[0022] 所述的外磁场可W由磁铁或通电线圈提供;
[0023] 所述的外磁场的磁感应强度为0.1-15T,优选0.2-10T,更优选为2-5T。磁场是一种 外加的调节手段,在其作用下,光伏层的吸光特性会受到调制,产生光增强、发光峰劈裂、移 动等多种物理效应。局域表面等离激元共振效应是等离子体电池提高光电转换效率的重要 机理,入射光照射到金属表面,自由电子在电磁场的驱动下在金属和介质界面上发生集体 振荡,产生表面等离激元,它们能够局域在金属纳米颗粒周围或者在平坦的金属表面传播。 有文献报道,通过组装金属-磁光材料构成的多层结构上磁化表面等离激元,在分界面上如 果施加不同方向的外磁场,可W对表面等离激元的特性产生不同的影响,甚至可W增强其 局域表面等离激元共振效应,运一发现已被应用于单向波导、隔离器、太赫兹透镜、生物传 感器等方面。
[0024] -种磁化的=元光阳极复合薄膜,由上述制备方法得到。
[0025] 本发明相对于现有技术具有如下的优点及效果:
[0026] (1)本发明通过在半导体薄膜上负载磁性金属离子和金属,组装成一种磁性金属 离子/金属/半导体组成的=元光阳极复合薄膜,然后施加外磁场使磁性金属离子磁化可W 显著地增强局域表面等离激元共振效应,提升染料敏化太阳能电池的光吸收性能,进而极 大地改善其光电转换效率。
[0027] (2)本发明通过施加外磁场影响磁光材料介质特性,可W实现对表面等离激元的 动态控制。
[0028] (3)本发明易操作,成本低,效果好。
【具体实施方式】
[0029] 下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
[0030] 实施例1
[0031] (1)水热蓋中加入去离子水20ml和浓盐酸20ml,揽拌5min,然后加入0.5ml铁酸下 醋,揽拌30min,再加入0.5mM的硝酸铁溶液,揽拌5分钟,盖好盖子,放入马弗炉中150°C放置 lOh,取出用去离子水冲洗,惊干,即得到负载有磁性金属离子的二氧化铁阵列膜;
[0032] (2)在烧杯1中配制浓度为0.5mM的硝酸银溶液,并用氨水调节抑等于8.5,在烧杯2 中配制浓度为0.5mM的巧樣酸纳水溶液;
[0033] (3)将步骤(1)制备的二氧化铁阵列膜放入烧杯1浸泡5min,取出放入烧杯2中浸泡 Imin,取出,用去离子水冲洗,然后450°C烧结30min,得到S元光阳极复合薄膜;
[0034] (4)施加外磁场对步骤(3)处理过的薄膜进行磁化,所采用的外磁场的磁感应强度 为0.5T;
[0035] (5)磁化后的薄膜朝上放入N719染料溶液中浸泡一晚。第二日,从染料溶液中取出 薄膜,用无水乙醇冲去膜上多余的染料。然后将此Ti化薄膜放入烘箱中于8(TC下干燥20分 钟,W除去乙醇。由此得到的磁化的=元光阳极复合薄膜作为染料敏化太阳能电池的光阳 极膜;
[0036] (6)与对电极组装成S明治结构,加入电解质,进行测试。
[0037] 实施例2
[003引 (1)水热蓋中加入去离子水20ml和浓盐酸20ml,揽拌5min,然后加入0.5ml铁酸下 醋,揽拌30min,再加入5mM的硝酸铁溶液,揽拌5分钟,盖好盖子,放入马弗炉中15(TC放置 lOh,取出用去离子水冲洗,惊干,即得到负载有磁性金属离子的二氧化铁阵列膜;
[0039] (2)在烧杯1中配制浓度为4mM的硝酸银溶液,并用氨水调节抑等于8.5;在烧杯2中 配制浓度为4mM的巧樣酸纳水溶液;
[0040] (3)将步骤(1)制备的二氧化铁阵列膜放入烧杯1浸泡15min,取出放入烧杯2中浸 泡浸泡5min,取出,用去离子水冲洗,然后450°C烧结30min,得到S元光阳极复合薄膜;
[0041] (4)施加外磁场对步骤(3)处理过的薄膜进行磁化,所采用的外磁场的磁感应强度 为1T;
[0042] (5)磁化后的薄膜朝上放入N719染料溶液中浸泡一晚。第二日,从染料溶液中取出 薄膜,用无水乙醇冲去膜上多余的染料。然后将此Ti化薄膜放入烘箱中于8(TC下干燥20分 钟,W除去乙醇。由此得到的磁化的=元光阳极复合薄膜作为染料敏化太阳能电池的光阳 极膜;
[0043] (6)与对电极组装成S明治结构,加入电解质,进行测试。
[0044] 实施例3
[0045] (I)水热蓋中加入去离子水20ml和浓盐酸20ml,揽拌5min,然后加入0.5ml铁酸下 醋,揽拌30min,再加入IOmM的硝酸铁溶液,揽拌5分钟,盖好盖子,放入马弗炉中15(TC放置 lOh,取出用去离子水冲洗,惊干,即得到负载有磁性金属离子的二氧化铁阵列膜;
[0046] (2)在烧杯1中配制浓度为4mM的硝酸银溶液,并用氨水调节抑等于8.5;在烧杯2中 配制浓度为4mM的巧樣酸纳水溶液;
[0047] (3)将步骤(1)制备的二氧化铁阵列膜放入烧杯1浸泡15min,取出放入烧杯2中浸 泡1 Omin,取出,用去罔子水冲洗,然后450 C烧结30min,得到二兀光阳极夏合薄胺;
[0048] (4)施加外磁场对步骤(3)处理过的薄膜进行磁化,所采用的外磁场的磁感应强度 为2T;
[0049] (5)磁化后的薄膜朝上放入N719染料溶液中浸泡一晚。第二日,从染料溶液中取出 薄膜,用无水乙醇冲去膜上多余的染料。然后将此Ti化薄膜放入烘箱中于8(TC下干燥20分 钟,W除去乙醇。由此得到的磁化的=元光阳极复合薄膜作为染料敏化太阳能电池的光阳 极膜;
[0050] (6)与对电极组装成S明治结构,加入电解质,进行测试。
[0化1 ] 实施例4
[0化2] (1)水热蓋中加入去离子水20ml和浓盐酸20ml,揽拌5min,然后加入0.5ml铁酸下 醋,揽拌30min,再加入5mM的硝酸铁溶液,揽拌5分钟,盖好盖子,放入马弗炉中15(TC放置 lOh,取出用去离子水冲洗,惊干,即得到负载有磁性金属离子的二氧化铁阵列膜;
[0053] (2)在烧杯1中配制浓度为4mM的硝酸银溶液,并用氨水调节抑等于8.5;在烧杯2中 配制浓度为4mM的巧樣酸纳水溶液;
[0054] (3)将步骤(1)制备的二氧化铁阵列膜放入烧杯1浸泡20min,取出放入烧杯2中浸 泡1 Omin,取出,用去罔子水冲洗,然后450 C烧结30min,得到二兀光阳极夏合薄胺;
[0055] (4)施加外磁场对步骤(3)处理过的薄膜进行磁化,所采用的外磁场的磁感应强度 为5T;
[0056] (5)磁化后的薄膜朝上放入N719染料溶液中浸泡一晚。第二日,从染料溶液中取出 薄膜,用无水乙醇冲去膜上多余的染料。然后将此Ti化薄膜放入烘箱中于8(TC下干燥20分 钟,W除去乙醇。由此得到的磁化的=元光阳极复合薄膜作为染料敏化太阳能电池的光阳 极膜;
[0057] (6)与对电极组装成S明治结构,加入电解质,进行测试。
[0化引实施例5
[0059] (1)水热蓋中加入去离子水20ml和浓盐酸20ml,揽拌5min,然后加入0.5ml铁酸下 醋,揽拌30min,再加入5mM的硝酸儀溶液,揽拌5分钟,盖好盖子,放入马弗炉中150°C放置 lOh,取出用去离子水冲洗,惊干,即得到负载有磁性金属离子的二氧化铁阵列膜;
[0060] (2)在烧杯1中配制浓度为4mM的硝酸银溶液,并用氨水调节抑等于8.5;在烧杯2中 配制浓度为4mM的巧樣酸纳水溶液;
[0061] (3)将步骤(1)制备的二氧化铁阵列膜放入烧杯1浸泡20min,取出放入烧杯2中浸 泡1 Omin,取出,用去罔子水冲洗,然后450 C烧结30min,得到二兀光阳极夏合薄胺;
[0062] (4)施加外磁场对步骤(3)处理过的薄膜进行磁化,所采用的外磁场的磁感应强度 为5T;
[0063] (5)磁化后的薄膜朝上放入N719染料溶液中浸泡一晚。第二日,从染料溶液中取出 薄膜,用无水乙醇冲去膜上多余的染料。然后将此Ti化薄膜放入烘箱中于8(TC下干燥20分 钟,W除去乙醇。由此得到的磁化的=元光阳极复合薄膜作为染料敏化太阳能电池的光阳 极膜;
[0064] (6)与对电极组装成S明治结构,加入电解质,进行测试。
[0065] 光电转换效率评价
[0066] 染料敏化太阳电池的光电特性数据采用W下方法测得:在lOOmW/cm2强度的白光 福照下,由KEiraLEY2400数字源表向电池提供一个偏压,记录电路中电流与电压关系便得 至IjI-V曲线图,根据I-V曲线图得到光电特性数据。实验中白光由150W太阳光模拟器(9600, 化iel,USA)提供所需光强,并用标准娃电池进行校准(美国化iel公司提供的M-95510)。所 用的染料敏化太阳电池面积均为0.2cm2。
[0067] 实验测试结果与纯二氧化铁半导体作为染料敏化太阳能电池光阳极进行对比,结 果请看下表1:
[006引表1实施例1-5光电转换效率结果
[0069]
[0070] 从表中数据可W看到,在半导体上负载了不同含量的磁性金属离子纳米粒子和金 属材料后,均不同程度地增加了染料敏化太阳电池的光电转换效率。
[0071] 上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的 限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化, 均应为等效的置换方式,都包含在本发明的保护范围之内。
【主权项】
1. 一种磁化的三元光阳极复合薄膜的制备方法,其特征在于,包括如下步骤: (1) 用溶液法制备半导体阵列膜以及负载在半导体阵列膜上的磁性金属离子; (2) 将步骤(1)制备的负载了磁性金属离子的半导体阵列膜放入金属盐溶液中,用氨水 调节pH值为8.5,浸泡l-30min后放入与金属等摩尔量的还原剂水溶液中浸泡l-30min,取 出,用去离子水冲洗,然后于450°C烧结30min,得到三元光阳极复合薄膜; (3) 施加外磁场对步骤(2)的三元光阳极复合薄膜进行磁化; (4) 将步骤(3)磁化后的三元光阳极复合薄膜朝上放入N719染料溶液中浸泡一晚后取 出,用无水乙醇冲洗后于80°C干燥20min,得到磁化的三元光阳极复合薄膜。2. 根据权利要求1所述的磁化的三元光阳极复合薄膜的制备方法,其特征在于,步骤 (1)中所述的半导体为二氧化钛、氧化锌或二氧化锡。3. 根据权利要求1所述的磁化的三元光阳极复合薄膜的制备方法,其特征在于,步骤 (1)中所述的磁性金属离子为锰离子、铁离子、钴离子、镍离子中的一种或至少两种混合物。4. 根据权利要求1所述的磁化的三元光阳极复合薄膜的制备方法,其特征在于,步骤 (1) 中所述的磁性金属离子的含量为〇. 5-10wt%。5. 根据权利要求1所述的磁化的三元光阳极复合薄膜的制备方法,其特征在于,步骤 (2) 中所述的金属盐为HAuCl4、AgN03、Cu(N03)2、Al(N0 3)3、H2PtCl6、Ni(N03) 2、Zn(N03)2、Sn (N〇3 ) 2中的一种或至少两种混合物。6. 根据权利要求1所述的磁化的三元光阳极复合薄膜的制备方法,其特征在于,步骤 (2)中所述的金属盐溶液的浓度为0.5-50mM。7. 根据权利要求1所述的磁化的三元光阳极复合薄膜的制备方法,其特征在于,步骤 (2) 中所述的还原剂为柠檬酸纳、葡萄糖、水合肼或硼氢化钠中的一种。8. 根据权利要求1所述的磁化的三元光阳极复合薄膜的制备方法,其特征在于,步骤 (3) 中所述的外磁场由磁铁或通电线圈提供。9. 根据权利要求1所述的磁化的三元光阳极复合薄膜的制备方法,其特征在于,步骤 (3)中所述的外磁场的磁感应强度为0.1 -15T。10. -种磁化的三元光阳极复合薄膜,由权利要求1-9任一项所述的制备方法得到。
【文档编号】H01G9/20GK106098384SQ201610427721
【公开日】2016年11月9日
【申请日】2016年6月16日
【发明人】许元妹, 张海燕, 李学识, 王文广, 李锦伦
【申请人】广东工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1