包括氟类聚合物薄膜的有机薄膜晶体管及其制备方法

文档序号:3692886阅读:118来源:国知局
专利名称:包括氟类聚合物薄膜的有机薄膜晶体管及其制备方法
技术领域
本发明的实施方式涉及包括氟类聚合物薄膜的有机薄膜晶体管(下文称作“OTFT”)。本发明的各种实施方式涉及有机薄膜晶体管,其包括形成在基板上的栅极、栅绝缘层、有机半导体层、源极和/或漏极,其中氟类聚合物薄膜可以形成在栅绝缘层和有机半导体层之间的界面处。
背景技术
目前在显示器中使用的各种薄膜晶体管(TFT)可以包括无定形硅半导体、氧化硅绝缘膜和/或金属电极。随着近来各种导电有机材料的发展,研究集中在开发使用有机半导体的有机TFT上。因为在20世纪80年代开发的有机薄膜晶体管(OTFT)在优异的柔韧性和/或易于加工和制造方面具有优势,所以目前正在研究将它们用于显示器件,例如E-油墨器件(E-inkdevices)、有机电致发光器件和液晶显示器(LCD)。考虑到有机半导体的各种合成工艺、易于模塑成纤维和膜、优异的柔韧性和/或低制造成本,也可以将它们应用到各种应用中,例如功能电子和光学器件。与使用无定形Si的硅晶体管相比,使用由导电有机分子构成的有机半导体层的OTFT可能具有某些优势。例如,半导体层可以通过在环境压力下的印刷工艺形成,而不是常规的化学气相沉积(CVD)工艺,例如等离子体增强化学气相沉积(CVD),和任选地,可以使用塑料基板通过滚筒到滚筒(roll-to-roll)的工艺完成整个制造过程。
尽管有这些优势,与无定形硅TFT相比,OTFT也面临某些问题,包括低电荷载流子迁移率、高驱动电压和/或高阀值电压。近来在并五苯类OTFT中获得了0.6cm2·V-1·sec-1的电荷载流子迁移率,潜在地增加了OTFT在特定应用中的使用。然而,该迁移率对于实际TFT应用仍然是不可接受的。此外,并五苯类TFT的缺点为高驱动电压(≥100V)和/或比无定形硅TFT高50倍的高亚阀值电压(sub-threshold voltage)。
另一方面,其他现有技术公开了使用高介电常数(κ)绝缘膜的有机薄膜晶体管,其具有降低的驱动电压和/或阀值电压。根据该现有技术,栅极绝缘膜可以由无机金属氧化物制成,例如BaxSr1-xTiO3(钛酸锶钡(BST))、Ta2O5、Y2O3、TiO2等,和铁电绝缘体,例如PbZrxTi1-xO3(PZT)、Bi4Ti3O12、BaMgF4、SrBi2(Ta1-xNbx)2O9、Ba(Zr1-xTix)O3(BZT)、BaTiO3、SrTiO3、Bi4Ti3O12等等。此外,栅极绝缘膜可以通过化学气相沉积、物理气相沉积、溅射、和/或溶胶-凝胶涂覆而形成,并且可以具有大于15的介电常数。OTFT的最低驱动电压可以降低到-5V,但是最高电荷载流子迁移率为0.06cm2·V-1·sec-1,仍然是不能令人满意的。而且,因为大部分制造会需要200-400℃的高温,可应用的基板的范围会被限制,而且不能容易地应用常规的湿法工艺,例如简单涂覆和印刷,以制造这些器件。
其他现有技术建议使用聚酰亚胺、苯并环丁烯、光学丙烯酰类(photoacryls)等作为有机绝缘膜用材料。然而,因为与无机绝缘膜相比,这些有机绝缘膜会显示出不能令人满意的器件性能,它们不适于代替无机绝缘膜。
已经尝试使用双层或多层栅绝缘层,以改善薄膜电子器件的性能,例如包括由氮化硅和氧化硅制成的两层绝缘层的多层栅绝缘层,和包括由相同材料制成的两层绝缘膜的双层绝缘膜,这会改善半导体层的电绝缘性和/或晶体品质。然而,因为两个栅极绝缘膜仅仅被开发用于无定形硅-和单晶硅类无机TFT并使用无机材料,它们不适用于制造有机半导体。
因为OTFT近来的应用不仅扩展到LCD器件,还扩展到使用有机EL的挠性显示器用驱动器件,所以OTFT可能需要具有5cm2·V-1·sec-1以上的高电荷载流子迁移率、低驱动电压和/或低阀值电压。此外,用在OTFT中的绝缘膜可能需要优异的绝缘性。特别地,为了简化制造过程和/或降低制造成本,通过全印刷和/或全旋转工艺(all-printing and/or all-spin onprocesses),在塑料基板上制造OTFT是理想的。在这些情况下,尽管已经进行了许多研究以便以简单方式形成有机栅绝缘层,并增加在有机半导体层和有机栅绝缘层之间的界面处的电荷载流子迁移率,仍然没有获得满意的结果。

发明内容
根据本发明的实施方式,当氟类聚合物薄膜可以形成在栅绝缘层和有机半导体层(使用可以通过湿法工艺制造的聚合物半导体的OTFT)之间的界面处时,可以形成具有改善的电荷载流子迁移率和/或开关电流比(I开/I关比)的OTFT。
本发明的实施方式涉及用于制造OTFT的OTFT方法,所述OTFT具有更高电荷载流子迁移率、改善的电绝缘性、更低驱动电压和/或更低阀值电压,包括通过常规湿法工艺形成的绝缘膜。
根据本发明的实施方式,提供有机薄膜晶体管(OTFT),其包括形成在基板上的栅极、栅绝缘层、有机半导体层、源极和/或漏极,其中氟类聚合物薄膜形成在栅绝缘层和有机半导体层之间的界面处。
根据本发明的实施方式,提供制造有机薄膜晶体管(OTFT)的方法,该有机薄膜晶体管包括形成在基板上的栅极、栅绝缘层、有机半导体层、源极和/或漏极,其中该方法包括在栅绝缘层和有机半导体层之间形成氟类聚合物薄膜。
本发明的实施方式涉及OTFT和制造具有更高电荷载流子迁移率、更低驱动电压、更低阀值电压、改善的电绝缘性和/或更高开关电流比(I开/I关)的OTFT的方法。


结合附图,从下面的详细描述将更清楚地理解本发明的实施方式。图1-5表示此处描述的本发明的非限定性的实施例、实施方式和/或中间物(intermediates)。
图1为本发明实施方式的顶部接触式有机薄膜晶体管结构的截面图;图2为本发明另一实施方式的底部接触式有机薄膜晶体管结构的截面图;图3为本发明另一实施方式的顶部栅极有机薄膜晶体管结构的截面图;图4为根据本发明的实施方式和对比例1制造的有机薄膜晶体管的电流传输特性图;和图5为根据本发明的实施方式和对比例1制造的有机薄膜晶体管的电流传输特性图。
优选实施方式下面参考附图更详细地描述本发明的各种实施方式,附图中显示了本发明的某些实施方式。在图中,为了清楚的目的,可能会放大层和区域的厚度。
此处披露本发明的详细的示例性实施方式。然而,此处仅仅为了描述本发明实施方式的目的而披露具体结构和功能细节。然而,本发明可以以多种可替换的形式实施,并且不应解释为受到此处的实施方式的限制。
因此,虽然本发明的实施方式可以有各种改变和替换形式,通过附图中的实施例显示其实施方式,并在下面详细描述。然而,应该理解,并不是试图将本发明的实施方式限制到所披露的特定形式,而是正相反,本发明的实施方式覆盖本发明范围内的所有改变、等价物以及替换形式。在附图的描述中相同标记表示相同元素。
应该理解,尽管在本文中术语第一、第二等等可以用于描述各种元件,但是这些元件应该不限于这些术语。这些术语仅仅用于将元件彼此区分。例如可以将第一元件定义为第二元件,以及类似地,可以将第二元件定义为第一元件,而并不脱离本发明的实施方式的范围。本文中使用的术语“和/或”包括一种或多种相关所列术语的任何和全部组合。
应该理解,当一个元件被称作“连接”或“偶合”到另一元件时,其可以直接连接或偶合另一元件或者可以存在处于二者中间的元件。相反,当一个元件称作“直接连接”或“直接偶合”到另一元件时,不存在二者中间的元件。其他描述元件之间关系的术语应该以相似方式给与解释(例如“之间”相对于“直接之间”,“相邻”相对于“直接相邻”,等等)。
本文中使用的术语仅仅是为了描述特定实施方式,而不意图限定本发明的实施方式。如本文中使用的单数形式“一个”、“一种”和“该”意图包括复数形式,除非文中另有明确指示。还应该理解术语“包括”、“包含”和/或“包括”在本文中使用时表示所指特征、整数、步骤、操作、元件和/或成分的存在,但是不排除其他特征、整数、步骤、操作、元件、成分和/或其组合的存在。
还应该指出在某些可替换的具体实施中,所示功能/作用可以不以图中所示的顺序出现。例如,顺序显示的两图可以实际上为基本同时实施或者可以有时以相反的顺序实施,这取决于所涉及的功能/作用。
而且,使用的术语“化合物”指单一化合物或多种化合物。这些术语用于表示一种或多种化合物,但也可以仅仅表示单一化合物。
根据本发明的实施方式,有机薄膜晶体管可以包括基板、形成在基板上的栅极、形成在其上的绝缘层、形成在绝缘层上的氟类聚合物薄膜、形成在氟类聚合物薄膜上的充当有机半导体层的聚合物半导体、形成在有机半导体层上的源极和/或漏极。
本发明图1-3所示的实施方式是显示有机薄膜晶体管结构的截面示意图。具体地,本发明图1-3的实施方式分别显示了顶部接触式器件、底部接触式器件和顶部栅极器件。在本发明的范围和实质内,可以对这些器件的结构进行各种改进和变化。对于本发明图1的实施方式,标记1表示基板、标记2表示栅极、标记3表示栅绝缘层、标记4表示氟类聚合物薄膜、标记5表示有机半导体层(例如,有机聚合物层)、标记6和7分别表示源极和漏极。
根据本发明的实施方式,OTFT的基板1可以由包括但不限于玻璃、硅、塑料等的材料制成。
根据本发明的实施方式,栅极2、源极6和/或漏极7的适用材料由本领域常用的金属和导电聚合物制成。这些材料的实例包括但不限于金(Au)、银(Ag)、铝(Al)、镍(Ni)、钼(Mo)、钨(W)、铟-锡氧化物(ITO)、聚噻吩、聚苯胺、聚乙炔、聚吡咯、聚亚苯基亚乙烯基(polyphenylene Vinylenes)和聚乙烯二氧噻吩(polyethylenedioxythiophene)(PEDOT)/聚磺苯乙烯(polystyrenesulfonate)(PSS)混合物。
根据本发明的实施方式,有机薄膜晶体管的栅绝缘层3用的合适材料实例包括但不限于常用有机化合物,例如聚乙烯基苯酚、聚甲基丙烯酸甲酯、聚丙烯酸酯和聚乙烯醇;常用无机材料,例如SiNx(0<x<4)、SiO2和Al2O3。例如,聚乙烯基苯基类共聚物和交联剂和/或有机-无机混杂绝缘体(hybrid insulator)(分别参见,美国专利申请Nos.10/864,469和10/807,271,其全部内容在此引入作为参考)可以用作本发明实施方式的栅绝缘层3用的合适材料。
按照本发明的实施方式,可以通过常用湿法工艺形成栅绝缘层3,所述工艺可包括但不限于浸涂、旋涂、印刷、喷涂和辊涂。
如果需要,根据本发明的实施方式可以适当控制栅绝缘层3的厚度。例如,栅绝缘层的厚度可以为约3,000至约7,000(例如3,250、3,500、3,750、4,000、4,250、4,500、5,000、5,250、5,500、5,750、6,000、6,250、6,500和6,750)。
氟类聚合物薄膜4(在有机半导体层5和栅绝缘层3之间的界面处形成)的合适材料可以包括,当但不限于以下聚合物,其主链或侧链中存在的碳原子数与氟原子数的比例为约5∶1至约30∶1(例如6∶1、7∶1、8∶1、9∶1、10∶1、12∶1、14∶1、16∶1、18∶1、20∶1、22∶1、24∶1、26∶1和28∶1)。
适用于氟类聚合物的聚合物实例可以含有至少一种重复单元,该重复单元选自下面式1表示的重复单元和/或式2表示的重复单元式1 式2 式中X为氢原子、C1~14直链或支化烷基、氟原子或氯原子;Y为氧原子或C2~14亚烷基,R为下式3表示的基团式3 式中R1选自由下式4表示的官能团
式4 (式中n为0至约10的整数),R2独立地为下式5表示的任一官能团式5 式中R3独立地为由下式6表示的任一官能团式6 (式中X含有至少一个氟原子;X为H、F、CF3、CHF2、CH2F、OCF3、OCHF2或OCH2F;m为0至约18的整数,例如2,4,6,8,10,12,14和16),k为1-3之间的整数,条件是当k为2或更大时,R1可以各自相同或不同,l为0-5之间的整数,条件是当l为2或更大时,R2各自可以相同或不同。
根据本发明的实施方式,聚合物的特征在于其主链或侧链中存在的碳原子数与氟原子数的比例可以为约5∶1至约30∶1。
根据本发明的实施方式,为了改善绝缘层的电学性能,可以将氟原子引入氟类聚合物的主链或侧链中,以如上所述调节氟原子数与碳原子数的比例。
根据本发明的实施方式,栅绝缘层和有机活性层(active layer)之间的氟类聚合物层可以导致电荷载流子迁移率和/或开关电流比(I开/I关)的改善。
可以使用的氟类聚合物的具体实例为以下化合物,其包括但不限于下式7和8表示的化合物 式中(7)和(8)表示重复单元。可以使用其它合适材料。
根据本发明的实施方式,可以通过常规湿法涂覆工艺形成或沉积氟类聚合物薄膜4(例如120、140、160、180、200、220、240、260和280),并可以通过旋涂形成或沉积到约100至300的厚度。
根据本发明的实施方式,可以通过常用湿法工艺沉积氟类聚合物薄膜4,所述工艺包括但不限于旋涂、浸涂、印刷、喷墨涂覆和辊涂。可以使用其它适当工艺。
根据本发明的实施方式,包括氟类聚合物薄膜的有机薄膜晶体管的性能可以比使用常用聚合物半导体的常规OTFT优异,因为本发明实施方式的有机薄膜晶体管具有比常规OTFT更高的电荷载流子迁移率和/或开关电流比(I开/I关)。此外,有机薄膜晶体管(根据本发明实施方式)的栅绝缘层、氟类聚合物薄膜和/或有机半导体层可以通过常用湿法工艺,例如印刷或旋涂形成,而同时,有机薄膜晶体管的电学性能可以与通过更复杂工艺制造的Si TFT相比较。
可以使用所有已知聚合物材料形成有机薄膜晶体管的有机半导体层5(根据本发明的实施方式),所述材料包括(但不限于)聚噻吩衍生物,可以通过湿法工艺涂覆所述材料。按照本发明的实施方式,有机半导体层5的合适材料的实例包括(但不限于)聚噻吩、聚苯胺、聚乙炔、聚吡咯、聚亚苯基亚乙烯基及其衍生物。可以通过例如丝网印刷、印刷、旋涂、浸涂和喷墨(着色(ting))形成/沉积有机半导体材料。可以使用其它用于形成/沉积有机半导体材料的方法。
对于有机薄膜晶体管的结构没有特别限制,但是其实例包括顶部接触式、底部接触式和顶部栅极结构。其它OTFT结构可以根据本发明的实施方式制造。
可以通过以下方法制造OTFT(根据本发明的实施方式)在基板上形成栅极,通过湿法工艺(或其它合适工艺)例如旋涂、印刷等在其上形成栅绝缘层,通过湿法工艺(或其它合适工艺)在栅绝缘层上形成氟类聚合物薄膜,在氟类聚合物薄膜上形成有机半导体层和在有机半导体层上形成源极和漏极。
可以通过本发明的方法(根据本发明的实施方式)制造的有机薄膜晶体管的实例包括顶部接触式有机薄膜晶体管、底部接触式有机薄膜晶体管和顶部栅极有机薄膜晶体管。可以根据本发明的实施方式制成其它OTFT结构。
具体地,根据本发明的实施方式,可以通过包括以下步骤的方法制造顶部接触式有机薄膜晶体管,所述方法包括在基板上形成栅极,在其上形成栅绝缘层,在栅绝缘层上形成氟类聚合物薄膜,在氟类聚合物薄膜上形成有机半导体层(例如使用聚合物半导体)和在有机半导体层上形成源极和漏极。可以使用其它合适材料。
根据本发明的其它实施方式,可以通过包括以下步骤的方法制造底部接触式有机薄膜晶体管,该方法包括在基板上形成栅极,在其上形成栅绝缘层,在栅绝缘层上形成氟类聚合物薄膜,在氟类聚合物薄膜(或邻近)上形成源极和漏极和在其上形成有机半导体层(例如使用聚合物半导体)。可以使用其它合适材料。
根据本发明另一实施方式,可以通过包括下面步骤的方法制造顶部栅极有机薄膜晶体管,该方法包括在基板上形成源极和漏极,在源极和漏极之间和/或其上形成有机半导体层(例如使用聚合物半导体),在有机半导体层上形成氟类聚合物薄膜,在氟类聚合物薄膜上形成绝缘层和在绝缘层上形成栅极。可以使用其它合适材料。
参考下面的具体实施例更详细地描述本发明的实施方式。然而,以解释的目的给出这些实施例,而不意图限制本发明的实质和/或范围。
制备用于形成氟类聚合物薄膜的组合物(1)合成3,4-二氟-苯甲酸4-(2-氯羰基-乙烯基)-苯基酯将10g的3,4-二氟-苯甲酸4-(2-氯)羰基-乙烯基)-苯基酯(21.68mmol)溶解在200ml的二氯甲烷中,然后向其中加入2.84g(23.848mmol)亚硫酰二氯(SOCl2)。在35℃搅拌反应混合物6小时后,除去溶剂。真空干燥得到所需化合物1(产率90%)。
(2)合成马来酰亚胺-苯乙烯共聚物衍生物将2.74g(9.033mmol)的聚羟基马来酰亚胺-聚羟基苯乙烯溶解在50ml的N-甲基吡咯烷酮(NMP)中。在将溶液冷却到0℃后,向其中加入3.291g(32.52mmol)三乙胺(Et3N)。搅拌混合物30分钟。将6.995g(21.679mmol)的3,4-二氟-苯甲酸4-(2-氯羰基-乙烯基)-苯基酯加入混合物中,并在室温下搅拌4小时。将反应溶液倾入甲醇水溶液中,过滤获得固体。用水洗涤该固体数次,并真空干燥,获得所需化合物2(产率60%)。
该反应过程如下面的反应方案1所示反应方案1
制备用于形成另一氟类聚合物薄膜的组合物(1)合成4-[6-(3,4,5-三氟-苯氧基)-己氧基]-苯甲酸将2.75g的4-[6-(3,4,5-三氟-苯氧基)-己氧基]-苯甲酸乙基酯溶解在100ml的1,4-二噁烷中,然后向其中加入100ml的1.0M NaOH溶液。在搅拌一天后,用10%HCl溶液酸化反应溶液,并过滤获得固体。从乙醇中重结晶该固体获得4-[6-(3,4,5-三氟-苯氧基)-己氧基]-苯甲酸(产率62%)。
(2)合成4-[6-(3,4,5-三氟-苯氧基)-己氧基]-苯甲酰氯将10g(27.148mmol)的4-[6-(3,4,5-三氟-苯氧基)-己氧基]-苯甲酸溶解在200ml二氯甲烷中,然后向其中加入3.55g(29.862mmol)亚硫酰二氯。在35℃搅拌反应混合物6小时,然后除去溶剂。真空干燥获得所需化合物1(产率95%)。
(3)合成马来酰亚胺-苯乙烯共聚物衍生物将2.74g(9.033mmol)聚羟基马来酰亚胺-聚羟基苯乙烯溶解在50ml的N-甲基吡咯烷酮(NMP)中。将溶液冷却到0℃后,向其中加入3.291g(32.52mmol)三乙胺。搅拌混合物30分钟。将8.385g(21.679mmol)4-[6-(3,4,5-三氟-苯氧基)-己氧基]-苯甲酰氯加入混合物中,并在室温下搅拌4小时。将反应溶液倾入甲醇水溶液中,过滤获得固体。用水洗涤固体数次,并真空干燥得到所需化合物2(产率71%)。
该反应过程如下面的反应方案2所示反应方案2
将通过共混丙烯酸类交联剂和聚乙烯基苯基共聚物制备的有机绝缘体组合物旋涂到玻璃基板上,在基板上面形成铝栅极,以形成7,000厚的绝缘层,在100℃氮气气氛中烘焙1小时,形成6,000厚的栅绝缘层。之后,在栅绝缘层上,将如上所述制备的组合物的2wt%环己酮溶液以3,000rpm旋涂至厚度为300,在150℃固化10分钟形成氟类聚合物薄膜。在氟类聚合物薄膜上,将聚噻吩衍生物作为聚合物半导体材料旋涂到500的厚度,形成有机半导体层。在氮气气氛下形成该活性层。通过遮光掩模(shadowmask)(沟道长度100μm,沟道宽度1mm),以顶部接触的方式,在活性层上形成Au源极和漏极,以制造有机薄膜晶体管(OTFT)。测量OTFT的电荷载流子迁移率、阀值电压和电流比I开/I关,结果显示在下表1中。
从下面饱和区域的电流方程,从表示(ISD)1/2和VG之间关系的图线的斜率(slope)计算电荷载流子迁移率ISD=WC02Lμ(VG-VT)2]]>ISD=μC0W2L(VG-VT)]]>slope=μC0W2L]]>μFET=(slope)22LC0W]]>在上述方程中,ISD源-漏电流,μ和μFET电荷载流子迁移率,Co氧化物膜的电容,W沟道宽度,L沟道长度,VG栅极电压,VT阀值电压。
*I开(Ion)/I关(Ioff)比由打开状态的最大电流和关闭状态的最小电流的比值确定。I开/I关比由下面的方程表示IonIoff=(μσ)C02qNAt2VD2]]>其中I开最大电流,I关关闭状态漏泄电流,μ电荷载流子迁移率,σ薄膜的电导率,q电荷,NA电荷密度,t半导体膜厚度,C0绝缘膜电容,VD漏极电压。
从该等式可以看出,介电常数越大和介电膜厚度越小,则I开/I关比越大。因此,介电膜的种类和厚度将是确定I开/I关比的关键因素。关闭状态漏电流(I关)是关闭状态中的电流,可以由关闭状态的最小电流确定。
实施例和对比例1中获得的有机薄膜晶体管的电流传输特性示于图4。图4显示的曲线表示随着有效介电常数的增加,ISD相对于VG的变化。
按照上述相同方式制造OTFT,不同之处在于使用另一氟类聚合物化合物。测量OTFT的电荷载流子迁移率、阀值电压和电流比I开/I关,结果示于下表1。
实施例和对比例1获得的有机薄膜晶体管的电流传输特性示于图5。图5中的曲线表示随着有效介电常数的增加,ISD相对于VG的变化。
对于对比例1,按照与实施例1相同的方式制造OTFT,但是不形成任何氟类薄膜。测量OTFT的电荷载流子迁移率、阀值电压和电流比I开/I关,结果显示在下表1中。图4和5显示有机薄膜晶体管的电流传输特性,表示随着有效介电常数增加,ISD相对于VG的变化。
表1

从表1的数据可以看出,本发明实施例的OTFT可以具有更高电荷载流子迁移率、更低驱动电压、更低阀值电压和/或更高I开/I关比,同时显示出优异电绝缘性,并适于作为各种电子器件的晶体管。
从前面的描述中明显可知,本发明的实施例可以具有更高电荷载流子迁移率和/或更高I开/I关比。此外,因为本发明的实施方式的有机薄膜晶体管的有机半导体层和绝缘层可以容易地通过湿法工艺形成,所以可以通过简化的过程以降低的成本制造有机薄膜晶体管。
尽管为了解释的目的描述了本发明的实施方式,但是本领域技术人员应当理解,在不脱离本发明权利要求的范围和实质的情况下,可以做出各种改变、添加和代替。
权利要求
1.有机薄膜晶体管,包括基板、栅极、栅绝缘层、有机半导体层、源极和漏极,该有机薄膜晶体管包括在栅绝缘层和有机半导体层之间形成的氟类聚合物薄膜,其中所述氟类聚合物薄膜是由以下聚合物形成的,其碳原子数和氟原子数的比例为约5∶1至约30∶1并包含选自下式1表示的重复单元和下式2表示的重复单元中的至少一种重复单元 式中,X为氢原子、C1~14直链或支化烷基、氟原子或氯原子;Y为氧原子或C2~14亚烷基;R为下式3表示的基团 式中R1独立地为下式4表示的官能团中的任一种 (式中n为0至约10的整数),R2独立地为下式5表示的官能团中的任一种 和R3独立地为下式6表示的官能团中的任一种 (式中X含有至少一个氟原子;X独立地为H、F、CF3、CHF2、CH2F、OCF3、OCHF2或OCH2F;m为0至约18的整数),k为1-3之间的整数,条件是当k为2或更大时,R1各自可以相同或不同,和l为0-5之间的整数,条件是当l为2或更大时,R2各自可以相同或不同。
2.权利要求1的有机薄膜晶体管,其中氟类聚合物是由下式7或8表示的化合物
3.权利要求1的有机薄膜晶体管,其中氟类聚合物薄膜是通过旋涂、浸涂、印刷、喷墨涂覆或辊涂而形成或沉积的。
4.权利要求1的有机薄膜晶体管,其中氟类聚合物薄膜的厚度为约100至约300。
5.权利要求1的有机薄膜晶体管,其中栅绝缘层是由选自聚乙烯基苯酚、聚甲基丙烯酸甲酯、聚丙烯酸酯、聚乙烯醇、SiNx(0<x<4)、SiO2、Al2O3及其衍生物的材料制成的。
6.权利要求1的有机薄膜晶体管,其中有机半导体层是由选自聚噻吩、聚苯胺、聚乙炔、聚吡咯、聚亚苯基亚乙烯基及其衍生物的聚合物形成的。
7.权利要求1的有机薄膜晶体管,其中栅极、源极和漏极独立地由选自金(Au)、银(Ag)、铝(Al)、镍(Ni)、钼(Mo)、钨(W)、铟-锡氧化物(ITO)、聚噻吩、聚苯胺、聚乙炔、聚吡咯、聚亚苯基亚乙烯基和聚乙烯二氧噻吩(PEDOT)/聚磺苯乙烯(PSS)混合物的材料形成的。
8.权利要求1的有机薄膜晶体管,其中基板是由选自玻璃、硅和塑料的材料制成的。
9.权利要求1的有机薄膜晶体管,其中有机薄膜晶体管具有顶部接触式、底部接触式或顶部栅极构造。
10.制造有机薄膜晶体管的方法,包括在栅绝缘层和有机半导体层之间形成氟类聚合物薄膜,其中所述氟类聚合物薄膜是由以下聚合物形成的,其碳原子数和氟原子数的比例为约5∶1至约30∶1并包含选自下式1表示的重复单元和下式2表示的重复单元中的至少一种重复单元 式中X为氢原子、C1~14直链或支化烷基、氟原子或氯原子,Y为氧原子或C2~14亚烷基,R为下式3表示的基团 式中R1独立地为下式4表示的官能团中的任一种 (式中n为0至约10的整数),R2独立地为下式5表示的官能团中的任一种; R3独立地为下式6表示的官能团中的任一种 (式中X含有至少一个氟原子;X独立地为H、F、CF3、CHF2、CH2F、OCF3、OCHF2或OCH2F;m为0至约18的整数),k为1-3之间的整数,条件是当k为2或更大时,R1各自可以相同或不同,和l为0-5之间的整数,条件是当l为2或更大时,R2各自可以相同或不同。
11.权利要求10的方法,其中有机薄膜晶体管具有顶部接触式、底部接触式或顶部栅极构造。
12.权利要求10的方法,其中有机薄膜晶体管包括形成在基板上的栅极、栅绝缘层、氟类聚合物薄膜、有机半导体层和源极/漏极。
13.权利要求10的方法,其中氟类聚合物薄膜是通过旋涂、浸涂、印刷、喷墨涂覆或辊涂而形成或沉积的。
全文摘要
一种包括氟类聚合物薄膜的有机薄膜晶体管及其制备方法。该有机薄膜晶体管可以包括形成在基板上的的栅极、栅绝缘层、有机半导体层、源极和漏极,其中氟类聚合物薄膜可以在栅绝缘层和有机半导体层之间的界面处形成(或沉积)。该有机薄膜晶体管可以具有更高电荷载流子迁移率和/或更高开关电流比(I
文档编号C08L101/04GK1825651SQ20061000363
公开日2006年8月30日 申请日期2006年1月9日 优先权日2005年1月7日
发明者金周永, 李恩庆, 李芳璘, 具本原, 朴铉定, 李相润 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1