具有纤维素Ⅱ型晶体结构的微纤化纤维素及含有该微纤化纤维素的成形体的制作方法

文档序号:3670823阅读:1334来源:国知局
专利名称:具有纤维素Ⅱ型晶体结构的微纤化纤维素及含有该微纤化纤维素的成形体的制作方法
技术领域
本发明涉及具有纤维素II型晶体结构的微纤化纤维素、含有该微纤 化纤维素的成形体、该微纤化纤维素及成形体的制造方法以及增强微纤 化纤维素及成形体的强度的方法。
背景技术
所有的植物的细胞壁都是被称作纤维素微纤维的宽约4nm的高强 度纳米纤维成为基本骨架。微纤化纤维素是将纸浆等植物纤维裂解至纤 维素微纤维的水平而得的由完全伸展的链晶体构成的纳米纤维。另外, 还已知有来源于细菌(主要是醋酸杆菌)的微纤化纤维素,作为利用了 它的食品广为人知的是椰果(nata de coco )。已知微纤化纤维素具有质 轻而强韧的特性,因而尝试过通过将其配合到树脂中来提高树脂的强度 等物性的做法(例如参照专利文献l)。
虽然可以进行向微纤化纤维素中添加酚醛树脂等树脂的方法,然而 断裂应变会变小而使脆性变大,根据情况有时会使树脂的强度降低,希 望能够提高强度及断裂应变等。
另一方面,纤维素根据其晶体结构,已知有I型、II型、III型、IV 型。天然来源的纤维素(例如棉花)为I型,微纤化纤维素也是I型。 已知通过将I型纤维素浸渍在氢氧化钠水溶液中,晶体结构会改变,成 为II型纤维素。
专利文献1 日本特表平9 - 509694号>^才艮

发明内容
本发明的目的在于,提供增强了强度(拉伸强度、弯曲强度、断裂 应变、断裂韧性(断裂之前的作功量)的微纤化纤维素及含有微纤化纤 维素的成形体。
本发明人将微纤化纤维素在碱溶液中进行了浸渍处理,结果发现,
3微纤化纤维素的晶体结构变为II型,由该具有II型晶体结构的微纤化 纤维素制作的片的拉伸强度、拉伸断裂应变及断裂韧性(断裂之前的作
功量)都得到大幅度增强,该增强的程度与配合了其他的纤维素纤维的 成形体的增强的强度相比大很多,从而完成了本发明。而且,由于如上 所述,可以确认到配合有进行了碱溶液处理的微纤化纤维素的成形体的 机械特性的提高,因此可以认为,利用碱溶液处理,微纤化纤维素自身 也与成形体同样地使机械特性提高。
即,本发明涉及下述的微纤化纤维素、含有该微纤化纤维素的成形 体、该微纤化纤维素及成形体的制造方法、以及微纤化纤维素及成形体 的强度增强方法。
第一项. 一种具有纤维素II型晶体结构的微纤化纤维素。
第二项. 一种含有1~100重量%的第一项中所述的微纤化纤维素 及0 ~ 99重量。/。的树脂的成形体。
第三项. 一种第一项中所述的微纤化纤维素的制造方法,其特征在 于,对微纤化纤维素进行碱溶液处理。
第四项.根据第三项所述的制造方法,其中,碱溶液处理是在碱水 溶液中浸渍微纤化纤维素的处理。
第五项. 一种制造第一项中所述的微纤化纤维素的方法,其特征在 于,是由含有植物纤维素纤维的材料来制造微纤化纤维素的方法,对该 材料进行碱溶液处理。
第六项.根据第五项所述的制造方法,其中,碱溶液处理是在碱水 溶液中浸渍所述材料的处理。
第七项. 一种第二项中所述的成形体的制造方法,其特征在于,配 合1~100重量%的第一项中所述的微纤化纤维素及0~99重量%的树 脂并成形。
第八项. 一种微纤化纤维素的强度增强方法,其特征在于,对微纤 化纤维素进行碱溶液处理。第九项.根据第八项中所述的强度增强方法,其中,碱溶液处理是 在碱水溶液中浸渍微纤化纤维素的处理。
第十项. 一种含有1 ~ 100重量%的微纤化纤维素及O ~ 99重量%的 树脂的成形体的强度增强方法,其特征在于,使用第一项中所述的微纤 化纤维素作为微纤化纤维素。
本发明的微纤化纤维素只要其晶体结构的主体为II型,其一部分也 可以具有其他的晶体结构。优选的微纤化纤维素的II型晶体结构所占
的比例为10~100%,更优选为30~100%,进一步优选为50~100%, 最优选为70 ~ 100 % 。
而且,所谓II型晶体结构是如下的晶体结构,即,晶系为单斜晶系, 从X射线衍射中明确看到的晶胞的尺寸为a: 0.908( nm), b: 0.817( nm ), Y: 117.1 (° )。 I型晶体结构是如下的晶体结构,即,晶系为单斜晶 系,从X射线衍射中明确看到的晶胞的尺寸为a: 0.793(nm), b: 0.803 (nm), Y: 97.2 (。)。微纤化纤维素的晶体结构可以利用X射线衍 射、拉曼分析、固体NMR分析等来确认。
本发明的微纤化纤维素的纤维直径的平均值优选为4nm ~ 400nm, 更优选为4nm 200nm,进一步优选为4nm~ 100nm。另外,其纤维长 度的平均值优选为50nm ~ 50 ji m,更优选为100nm ~ 10 n m。
本发明的成形体含有1 ~ 100重量%的具有II型晶体结构的微纤化 纤维素及0 ~ 99重量%的树脂。已知一般的微纤化纤维素即使不并用树 脂也可以成形,因而本发明的具有II型晶体结构的微纤化纤维素(以 下有时称作II型微纤化纤维素)也是即使不并用树脂也可以制成成形 体。但是,由于一般来说通过并用树脂会使成形加工变得容易,另外还 可以改变成形体的特性等,因此可以根据需要制成并用了树脂的成形 体。成形体中的II型微纤化纤维素的含量为1 ~ 100重量% ,优选为3 ~ 100重量%,更优选为5~100重量%,进一步优选为10~100重量%。 成形体中的树脂的含量为0~99重量0/。,优选为0~98重量%,更优选 为0 ~ 97重量% ,进一步优选为0 ~ 95重量% 。
树脂虽然没有特别限定,然而例如可以使用聚乳酸、氯乙烯树脂、乙酸乙烯酯树脂、聚苯乙烯树脂、ABS树脂、丙烯酸树脂、聚乙烯、聚 对苯二甲酸乙二醇酯、聚丙烯、氟树脂、聚酰胺、缩醛树脂、聚碳酸酯、 纤维素塑料、聚乙醇酸、聚-3-羟基丁酸酯、聚-4-羟基丁酸酯、聚 羟基戊酸酯聚己二酸乙二醇酯、聚己内酯、聚丙内酯等聚酯;聚乙二醇 等聚醚;聚谷氨酸、聚赖氨酸等聚酰胺;聚乙烯醇、聚氨酯等热塑性树 脂;酚搭树脂、尿素树脂、三聚氰胺树脂、不饱和聚酯、环氧树脂、邻 苯二曱酸二烯丙酯、聚氨酯、硅树脂、聚酰亚胺等热塑性树脂等,可以 单独使用一种,也可以组合使用两种以上,然而并不限定于它们。优选 聚乳酸等生物降解性树脂、酚醛树脂、环氧树脂。
作为生物降解性树脂的例子,可以举出L-乳酸、D-乳酸、DL-乳酸、乙醇酸、苹果酸、e -己内酯、N-甲基吡咯烷酮、三亚甲基碳 酸酯、对二氧杂环己酮、1, 5-二氧杂环庚烷-2-酮、氢氧化丁酸、 氢氧化戊酸等的均聚物、共聚物或这些聚合物的混合物,可以单独使用 一种,也可以组合使用两种以上。优选的生物降解性树脂为聚乳酸、聚 己内酯,更优选的为聚乳酸。
在本发明的成形体中也可以在II型微纤化纤维素、树脂中配合其它 的添加成分。例如,可以使用淀粉类、藻酸等多糖类;明胶、动物胶、 酪蛋白等天然蛋白类;陶瓷、金属粉末等无机化合物;着色剂、香料、 颜料、流动调整剂、流平剂、导电剂、抗静电剂、紫外线吸收剂、紫外 线分散剂、分散剂、除臭剂,然而并不限定于它们。
本发明的成形体是在拉伸强度或弯曲强度、拉伸断裂应变或弯曲断 裂应变、以及断裂韧性方面优良的材料,例如在后述的试验例中,与将 II型微纤化纤维素置换为I型微纤化纤维素的成形体相比,拉伸断裂应 变高达约3倍。
本发明的II型微纤化纤维素可以通过对微纤化纤维素进行碱溶液 处理来制造,另外,也可以对含有植物纤维素纤维的材料进行碱溶液处 理,通过将利用碱溶液处理变为II型晶体结构的纤维素材料用与公知 的微纤化纤维素的制造方法相同的方法进行微细化来制造。本说明书 中,为了方便,将前者称作微纤化纤维素的制造方法1,将后者称作微 纤化纤维素的制造方法2。在微纤化纤维素的制造方法l中,作为被处理物的微纤化纤维素的 制造方法是公知的, 一般来说,通过将纤维素利用精炼机、高压均化器、 介质搅拌磨、石磨、研磨机等磨碎或打浆而裂解或微细化来制造,然而
也可以利用日本特开2005-42283号7>才艮中所述的方法等>^知的方法来 制造。另外,也可以利用微生物(例如醋酸杆菌(acetobacter ))来制 造。另外,还可以利用市售品。纤维素已知是以植物(例如木材、竹、 麻、黄麻、洋麻、农业废弃物、布、纸浆、再生纸浆、旧纸)、动物(例 如海鞘类)、藻类、微生物(例如醋酸杆菌)等为起源的,而本发明中 可以使用其中的任意种类。优选为来源于植物、微生物的纤维素纤维, 更优选为来源于植物的纤维素纤维。
作为非处理物的微纤化纤维素的纤维直径的平均值优选为4nm~ 400nm,更优选为4nm ~ 200nm,进一步优选为4nm ~ 100nm。另外, 其纤维长度的平均值优选为50nm ~ 50 n m,更优选为100nm ~ 10 n m。
微纤化纤维素的制造方法1的碱溶液处理是通过使碱溶液接触微纤 化纤维素(被处理物)来进行的。接触的方法没有特别限制,然而可以 例示出将被处理物浸渍在碱溶液中的方法、将碱溶液向被处理物喷雾的 方法、向被处理物滴加碱溶液的方法、对被处理物冲流碱溶液的方法等。 优选的碱溶液处理的方法是将被处理物浸渍在碱溶液中的方法。
在碱溶液处理中,作为碱溶液可以使用氬氧化碱(水酸化7v1^力y)
水溶液、氨水等。优选为氢氧化碱水溶液、氨水,更优选为氢氧化钠水 溶液、氨水,进一步优选为氢氧化钠水溶液。碱溶液的浓度没有特别限 制,通常来说为5 ~ 40重量% ,优选为5 ~ 30重量% ,更优选为10 ~ 25 重量%,进一步优选为15~25重量%。
碱溶液处理的温度通常来说为0~150"C,优选为15~100匸,更优 选为15~60n。另外,碱溶液处理的时间通常来说为1秒~24小时, 优选为1分钟~18小时,更优选为1~16小时。另外,碱溶液处理也可 以在加压条件下进行。
碱溶液处理后根据需要经过用水等清洗、干燥等工序而得到具有纤 维素II型晶体结构的微纤化纤维素。
7本发明的微纤化纤维素的制造方法2是将含有植物纤维素纤维的材 料进行碱溶液处理,通过将利用碱溶液处理变为一II型晶体结构的纤维
来制造。作为含有植物纤维素纤维的材料,例如可以例示出木材、竹、 麻、黄麻、洋麻、农业废弃物、布、纸浆、再生纸浆、旧纸,然而并不
限定于它们,可以使用含有微纤化纤维素的制造中所利用的植物纤维素 纤维的材料。另外,可以将这些材料根据需要利用精炼机等制成可以有 效地进行碱溶液处理的形状(例如粉体、纤维状、片状等)。在这些材 料含有木质素等细胞壁基质成分的情况下,在进行了将其一部分或全部 除去等操作,将纤维素晶体用碱调整为充分地膨胀的状态后,用于与制 造方法1中所说明的相同的碱溶液处理中。
进行了碱溶液处理的材料可以利用微纤化纤维素的制造中所用的 公知的裂解或微细化技术, 一般来说是通过利用高压均化器、介质搅拌 磨、石磨、研磨机等磨碎或打浆来制成本发明的微纤化纤维素,然而也 可以应用日本特开2005 - 42283号公报中所述的方法等特殊的公知的方 法来制造。
本发明的成形体的制造方法是将微纤化纤维素成形或根据需要配 合0~99重量%的树脂而成形来制造成形体的方法,其特征在于,使用 本发明的微纤化纤维素作为微纤化纤维素。成形的方法可以应用一般的 将微纤化纤维素成形的方法、将含有微纤化纤维素的树脂成形的方法。
本发明的微纤化纤维素的强度增强方法是利用碱溶液处理来增强 微纤化纤维素的拉伸强度或弯曲强度、拉伸断裂应变或弯曲断裂应变、 以及断裂韧性(断裂之前的作功量)的方法。如前所述,由于由具有II 型晶体结构的微纤化纤维素制作的片的拉伸强度、拉伸断裂应变及断裂
韧性与通常的微纤化纤维素的这些物性相比,得到大幅度增强,因此可 以认为,利用碱溶液处理,微纤化纤维素自身也被与成形体同样地提高 了强度特性。本发明的强度增强方法中的碱溶液处理可以设为与本发明 的微纤化纤维素的制造方法中的碱溶液处理相同。即,本发明的强度增 强方法中的碱溶液处理条件可以采用上述的本发明的制造方法1中的碱 溶液处理条件。
本发明的成形体的强度增强方法与本发明的成形体的制造方法相
8同,其特征在于,在将微纤化纤维素成形或根据需要配合0~99重量。/0 的树脂而成形时,使用本发明的微纤化纤维素作为微纤化纤维素。成形 的方法可以应用将一般的微纤化纤维素成形的方法、将含有微纤化纤维 素的树脂成形的方法。本发明的成形体的强度增强方法中,与使用一般 的微纤化纤维素而得的成形体相比,拉伸强度或弯曲强度、拉伸断裂应 变或弯曲断裂应变、以及断裂韧性得到增强。特别是断裂应变及断裂韧 性的增强的强度如后述的试验例中所示,与含有纸浆的成形体的由纸浆 的碱处理的有无所造成的断裂应变及断裂韧性的增强相比明显更大。
本发明的微纤化纤维素、利用本发明的制造方法或强度增强方法得 到的微纤化纤维素作为成形体的材料来说非常有用。这是因为,本发明 的微纤化纤维素的成形体及含有该微纤化纤维素的树脂成形体与一般 的微纤化纤维素的成形体及含有该微纤化纤维素的树脂成形体相比,强 度特性非常优良。所以,除了可以用于以往使用微纤化纤维素成形体及 含有微纤化纤维素的树脂成形体的领域中以外,还可以用于比以往的微 纤化纤维素成形体及含有微纤化纤维素的树脂成形体更要求抗冲击性 的领域中。例如,可以作为汽车、电车、船舶、飞机等运输机器的内装 饰材料、外装饰材料、结构材料等;个人电脑、电视机、电话、钟表等 电气化产品等的壳体、结构材料、内部部件等;手机等移动通信机器等 的壳体、结构材料、内部部件等;携带音乐播放机、影像播放机、印刷 机器、复印机、体育用品等的壳体、结构材料、内部部件等;建筑材料; 文具等办公机器等来使用。
利用本发明,例如可以提供拉伸强度、弯曲强度、拉伸断裂应变、 弯曲断裂应变、断裂韧性得到大幅度增强的微纤化纤维素及含有该微纤 化纤维素的成形体。


图1是表示试验例的拉伸强度试验的结果的图表,上段表示MFC 样品的结果,下段表示纸浆样品的结果。另外,纵轴为应力(MPa), 横轴为应变。
图2是表示试验例的弯曲强度试验的结果的图表,上段表示MFC 样品的结果,下段表示纸浆样品的结果。另外,纵轴为应力(MPa),
9横轴为应变。
图3是表示试验例的X射线衍射的结果的图表。a表示碱处理样品 的图,b表示非碱处理样品的图。纵轴为强度,横轴为衍射角。
具体实施例方式
下面,利用实施例等对本发明进行详细说明,然而本发明并不限定 于它们。
实施例
试验例
将微纤化纤维素(以下有时称作MFC )、碱溶液处理微纤化纤维素、 纸浆、碱溶液处理纸浆以片状成形,分别混合酚醛树脂,进行了拉伸强 度试验、弯曲强度试验、X射线衍射。将结果表示于图1 (拉伸强度试 验)、图2 (弯曲强度试验)及图3 (X射线衍射)中。
<试样>
MFC: "Cellish" (KY100G、 Daicel Chemical Industries公司制)
-纸浆NBKP (漂白针叶树牛皮纸浆、大昭和制纸制)
-酚醛树脂Resol型(PL2340、数均分子量3300、群荣化学工业公司 制)
<片的制作>
通过将固体成分为0.2重量%的纸浆悬浊水充分地搅拌并抽吸过 滤,在过滤器上制膜,去掉滤纸。在制作了厚约0.2mm的片后,脱水 至该片的水分量达到约40%,在70匸下干燥24小时。同样地由固体成 分为0.2重量%的MFC的悬浊水制成了片。
<碱溶液处理>
将MFC片及纸浆片分别在20 %浓度的氢氧化钠水溶液中在常温下 浸渍12小时后,在流水中水洗而除去碱。而且,对作为对照的片未进行该碱处理。
<拉伸试验用样品的制作>
将4种片(非碱溶液处理MFC片、碱溶液处理MFC片、非碱溶 液处理纸浆片及碱溶液处理纸浆片)成形,以便用于拉伸试验。
将MFC片重叠了 4层后,在20n下浸渍在溶解有10重量%的酚 醛树脂的曱醇溶液中。而且,为了使最终的成形体中的酴醛树脂含量尽 可能均等,对于纸浆片的情况,将溶解有盼醛树脂的曱醇溶液的浓度设 为5%。其后,除去甲醇,在模具内进行100MPa、 160"C、 30分钟的热 压成形。所得的成形体大小为50mm x 40mm x 0.3mm ,密度为 1.42g/cm3。另外,非碱溶液处理MFC成形体、碱溶液处理MFC成形 体、非碱溶液处理纸浆成形体及碱溶液处理纸浆成形体中的酚醛树脂的 含量分别为19.3重量%、 18.5重量%、 18.9重量%及16.0重量%。
<弯曲试验用样品的制作>
将4种片(非碱溶液处理MFC片、碱溶液处理MFC片、非碱溶 液处理纸浆片及碱溶液处理纸浆片)成形,以便用于弯曲试验。
将MFC片重叠了 15层后,在20n下浸渍在溶解有10重量%的酚 醛树脂的曱醇溶液中。而且,为了使最终的成形体中的酚醛树脂含量尽 可能均等,对于纸浆片的情况,将溶解有酚醛树脂的甲醇溶液的浓度设 为5%。其后,除去甲醇,在模具内进行100MPa、 160t:、 30分钟的热 压成形。所得的成形体大小为50mm x 40mm x lmm,密度为1.42g/cm3。 另外,非碱溶液处理MFC成形体、碱溶液处理MFC成形体、非碱溶 液处理纸浆成形体及碱溶液处理纸浆成形体中的酚醛树脂的含量分别 为13.6重量%、 18.5重量%、 18.9重量%及19.3重量%。
<拉伸强度试验>
将拉伸试验用样品切割为30mm x 4mm x 0.3mm的大小,用夹头 (夹头间的距离为20mm)夹持长度方向的两端,以lmm/分钟的变形 速度拉伸。将结果表示于图1中。
<弯曲强度试验>将弯曲强度用样品切割为40mmx7mmxlmm的大小,以2点支 撑长度方向的两端(跨度30mm),以5mm/分钟的变形速度对中央施加 集中载荷(3点支撑中央集中载荷方式)。将结果表示于图2中。
<X射线衍射>
与上述的片的制作方法相同,制成厚O.lmm的非碱溶液处理MFC 片及碱溶液处理MFC片(25mm x 25mm x O.lmm ),用于X射线衍射。 将结果表示于图3中。
在拉伸强度试验(图1)中,MFC因有无20%浓度的碱溶液处理 (NaOH水溶液浸渍12小时),而使断裂应变从约0.025 (非碱溶液处 理MFC)增大到约0.075 (碱溶液处理MFC),增大为约3倍(图1上 段)。与之相对,纸浆虽然由于在碱溶液处理而断裂应变增大,然而它 是从约0.01 (非碱溶液处理纸浆)达到约0.014 (碱溶液处理纸浆)的 程度(图1下段)。所以,对于利用碱处理得到的含有纤维素纤维的成 形体的拉伸断裂应变增强效果(断裂韧性(断裂之前的作功量)增强效 果)来说,MFC—方要远远大于纸浆。
弯曲强度试验(图2)中,如果是纸浆,则弯曲所致的断裂应变因 碱处理而从约0.032 (非碱溶液处理纸浆)增大为约0.04 (碱溶液处理 纸浆),利用碱溶液处理得到的效果约为1.25倍,提高了约25% (图2 下段)。与之相对,如果是MFC,则从约0.032 (非碱溶液处理MFC) 至少增大到0.11 (碱溶液处理MFC )(而且,在碱溶液处理MFC的试 验中,由于在很大地弯曲下未断裂,因此在途中停止了试验。)(图2上 段)。所以,对于利用碱处理得到的含有纤维素纤维的成形体的弯曲断 裂应变增强效果(断裂韧性(断裂之前的作功量)增强效果)来说, MFC —方要远远大于纸浆。
在MFC片的X射线的衍射(图3 )中,在衍射角约22.5°所看到 的纤维素I (图3b)的特征性的峰消失,在衍射角约20°出现纤维素 11(图3a)所特有的峰。所以很明显,利用碱处理,纤维素的晶体形态 从纤维素I变为纤维素II。另外,在纸浆片中也可以看到同样的晶体结 构变化。工业上的利用可能性
本发明不仅可以用于以往微纤化纤维素所被应用的领域,而且还可 以应用于要求更高的强度的领域。
权利要求
1. 一种具有纤维素II型晶体结构的微纤化纤维素。
2. —种成形体,其中,含有1~100重量%的权利要求1中所述的 微纤化纤维素及0 ~ 99重量%的树脂。
3. —种权利要求1中所述的微纤化纤维素的制造方法,其特征在 于,对微纤化纤维素进行碱溶液处理。
4. 根据权利要求3所述的制造方法,其中,碱溶液处理是在碱水 溶液中浸渍微纤化纤维素的处理。
5. —种制造权利要求1中所述的微纤化纤维素的方法,其特征在 于,是由含有植物纤维素纤维的材料来制造微纤化纤维素的方法,对该 材料进行碱溶液处理。
6. 根据权利要求5所述的制造方法,其中,碱溶液处理是在碱水 溶液中浸渍所述材料的处理。
7. —种权利要求2中所述的成形体的制造方法,其特征在于,配 合1~100重量%的权利要求1中所述的微纤化纤维素及0~99重量% 的树脂并成形。
8. —种微纤化纤维素的强度增强方法,其特征在于,对微纤化纤 维素进行碱溶液处理。
9. 根据权利要求8所述的强度增强方法,其中,碱溶液处理是在 碱水溶液中浸渍微纤化纤维素的处理。
10. —种含有1 ~ 100重量%的微纤化纤维素及O ~ 99重量%的树脂 的成形体的强度增强方法,其特征在于,使用权利要求l中所述的微纤 化纤维素作为微纤化纤维素。
全文摘要
以往,虽然出于提高树脂的强度等特性的目的,将微纤化纤维素配合在树脂成形体中,然而只能获得与树脂本来的强度相同程度的强度。为此,本发明的目的在于,提供强度高的树脂成形体。通过在树脂中配合将微纤化纤维素进行碱溶液处理而得的具有II型晶体结构的微纤化纤维素,所得的成形体与配合了通常的微纤化纤维素的树脂的成形体相比,拉伸强度或弯曲强度、拉伸断裂应变或弯曲断裂应变、以及断裂韧性(断裂之前的作功量)得到大幅度增强。
文档编号C08B1/00GK101490090SQ20078002720
公开日2009年7月22日 申请日期2007年7月13日 优先权日2006年7月19日
发明者安东尼奥·德雄·中垣内, 矢野浩之 申请人:国立大学法人京都大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1