一种消音粒子及其制备方法与应用与流程

文档序号:12400884阅读:328来源:国知局
一种消音粒子及其制备方法与应用与流程

本发明属于功能材料技术领域,具体涉及一种消音粒子及其制备方法与应用。



背景技术:

目前在消音涂料和阻尼减振涂料应用领域,一般涂料的主要成分包含基体、填充材料、偶联剂以及一些辅助剂。目前在汽车和轨道交通降噪应用方面,基体的材料一般包括沥青、PVC、丙烯酸,聚氨脂等。填充材料对阻尼消音涂料的性能有很大影响,包括提高阻尼值,提高吸音效果,改变玻璃化温度,降低成本等。目前的填充材料一般包括云母,二氧化钛,玻璃微珠,碳纤维,玻璃纤维,碳纳米管等。

对于填充材料而言,目前采用的无机填充材料存在以下问题或缺陷:1、填料的形状和粒径不均匀,导致消音或阻尼减振效果难以达到最佳效果。2、制备成本高,目前的填料一般采用化学合成或其它成型方法,工艺流程复杂。3、目前的填料一般密度较大,难以满足汽车,轨道交通轻量化的发展需求。



技术实现要素:

为解决填充材料存在的上述问题,本发明提出一种消音粒子作为填充材料,该消音粒子具有尺寸精确可控,对消音涂料的整体消音效果有很大的改善作用,同时该消音粒子制备方法简单,制造成本低,可广泛应用于汽车或轨道交通领域的消音涂料中。

具体来说,一种消音粒子,包括试剂液,所述试剂液采用试剂A、试剂B和试剂C中的其中一种或者几种,按重量百分比,所述试剂A、试剂B和试剂C均包括94-99%环氧树脂类低聚物,0.5-3%光引发剂,0.5-4%消泡剂。

如图1所示,消音粒子:消音涂料或消音材料的研究机理表明,为了提高消音涂料或消音材料的吸音性能,可在材料中添加适当形状的粒子(实心球、螺旋形颗粒、固体壁空心球、柱壳)形成的复合材料,粒子对声音衰减的贡献有:a.在声波的作用下粒子运动产生小气孔,使材料形变产生热量,从而耗散粒子的声能。b.粒子散射,当粒子的直径和声波的波长在同一个数量级时,声波发生Mie散射,当粒子的直径远小于声波的波长时,声波发生瑞利散射,由于散射的作用,可以改变声波传播路径使反射方向声能减弱。c.粒子散射使损耗低的波型(纵波)向损耗高的波型(横波)转换,提高材料的剪切模量,加强对声波能量的衰减。

优选的,所述环氧树脂类低聚物采用3,4-环氧环己基甲基-3,4-环氧环己基碳酸脂、双酚A环氧树脂、双(7-氧杂双环(4.1.0)3-庚甲基)己二酸酯中的一种或者几种。

优选的,所述光引发剂采用硫鎓盐类光引发剂 Omnicat432、硫鎓盐类光引发剂 Omnicat320和硫鎓盐类光引发剂 Omnicat550中的一种或者几种。

优选的,所述消泡剂采用BYK088、BYK307和BYK501中的一种。

具体配方如下,按重量百分比:

试剂A:(1)环氧树脂类低聚物:3,4-环氧环己基甲基-3,4-环氧环己基碳酸脂(95-99%)

(2)光引发剂:硫鎓盐类光引发剂Omnicat432(0.5-2.5%)

(3)消泡剂:BYK088(0.5-2.5%)

试剂B:(1)环氧树脂类低聚物:双酚A环氧树脂(95-99%)

(2)光引发剂:硫鎓盐类光引发剂Omnicat320(0.5-3%)

(3)消泡剂:BYK307(0.5-2%)

试剂C:(1)环氧树脂类低聚物:双(7-氧杂双环(4.1.0)3-庚甲基)己二酸酯(94-99%)

(2)光引发剂:硫鎓盐类光引发剂Omnicat550(0.5-2%)

(3)消泡剂:BYK501(0.5-4%)

本发明还提供一种制备所述消音粒子的方法,包括以下几个步骤:

步骤(1):试剂制备:将环氧树脂类低聚物、光引发剂和消泡剂倒入烧杯中,搅拌均匀;

步骤(2):将试剂液推送流出至容器形成液滴,光照并固化;

步骤(3):当粒子成型后,分散后的粒子被气流冲出,喷射到需要喷涂涂料的结构件上,和基体材料混合后在结构件上固定成为消音涂层。

优选的,所述步骤(2)中,推送的压力是0.01-0.6MPa;试剂液的流量为0.001-0.1mL/s。

优选的,所述步骤(2)中,光照时发射出辐射能量的能量密度范围是0.01-15mj/cm2,光源照射时间范围是0.1-5s;光源波长范围是355-445nm;

本发明采用以上技术方案,其优点在于,通过气压的压力推送流出至容器形成液滴,所述压力产生装置为空气压缩机,压力范围是0.01-0.6MPa,同时光源照射液滴形成粒子,改变试剂的比例以及流出的先后顺序可以形成不同核壳结构的功能粒子。粒子的大小通过改变试剂A,B,C的流量以及光源照射时间来控制(光源波长范围是365-445nm),流量大小范围是0.001-0.1mL/s, 光照时间范围是0.1-5s。当粒子形貌完成后,在所示容器的左侧通过气流将粒子转移到既定位置和基材进行融合制成消音涂料,所述容器为粒子形成过程提供反应的地点,一般为玻璃制成的圆形试管。所述既定位置为如图2所示的粒子产生后的放置或储存位置。本发明生产制备的粒子将添加到基材里面提高消音效果。

优选的,所述步骤(2)中,所述步骤(2)中的容器采用圆形管状,直径为0.01mm-1mm,容器中有水和乙醇,水和乙醇的体积比为1:1,水和乙醇的总量和试剂的重量比例范围是3:1~6:1。

优选的,所述步骤(2)中,所述步骤(3)中,所述基体材料采用沥青、PVC、丙烯酸和聚氨脂中的至少一种。

本发明还提供所述消音粒子在消音材料上的应用。

本发明进一步采用以上技术特征,其优点在于,当试剂A,B,C中的一种或几种流入容器后,控制出口的大小,出口为圆形管状(半径为r),直径2*r大小范围是0.01mm-1mm。使流出的溶液形成液滴,液滴在表面张力的作用下变成球状,这样的球状液滴在容器中分散,容器中充满乙醇或水,使液滴可以漂浮在容器中,并且不和容器中的液体(水或乙醇)发生化学反应或互溶。当液滴形成后,光源发射出一定强度的辐射能量,使液滴的表面固化,形成核壳结构的球形粒子,能量密度范围是0-15mj/cm2。光源照射的作用机理是使液滴发生凝胶化或液-固相变。由于形成的粒子的大小可以通过控制试剂的流速和出口大小来控制,液滴表面固化的厚度可以通过控制光照的强度和时间来控制,所以本发明提供的消音粒子的制备方法可以将粒子的直径控制到很小的尺寸(10-500um)。消音粒子的密度可以控制到很小的量级(小于0.5g/cm3),相比于目前传统的消音涂料功能填料,本发明的消音粒子可以达到轻量化的特点。

附图说明

图1是消音粒子的结构图。

图2是消音粒子的制备工艺流程图。

图3是实施例4与各种不同填料的阻尼涂料片的隔音量测试效果。

图4是实施例4制备的消音粒子采用动态光散射方法(DLS)测试其粒径分布图。

具体实施方式

下面对本发明的较优的实施例作进一步的详细说明:

实施例1

(1)试剂制备,对试剂A进行制样,制样步骤为在室温下先将环氧树脂类低聚物3,4-环氧环己基甲基-3,4-环氧环己基碳酸脂(95%),光引发剂Omnicat432(2.5%),消泡剂BYK088(2.5%)倒入烧杯中,机械搅拌5分钟。

(2)试剂液滴通过0.5MPa压力挤出到容器,调制试剂A的流量为0.001mL/s,容器中有水和乙醇,水和乙醇的体积比为1:1,水和乙醇的总量和试剂A的重量比是3:1。

(3)选择光源辐射时间为3s,光源辐射能量密度3mj/cm2

(4)粒子a成型后被分散在溶液中。

(5)分散后的粒子被气流冲出,喷射到需要喷涂涂料的结构件上,和基体材料混合后在结构件上固定成为消音涂层。

实施例2

(1)试剂制备,对试剂B进行制样,制样步骤为在室温下先将环氧树脂类低聚物双酚A环氧树脂(95%),光引发剂Omnicat320(3%),消泡剂BYK307(2%)倒入烧杯中,机械搅拌5分钟。

(2)试剂液滴通过0.6MPa压力挤出到容器,调制试剂B的流量为0.002mL/s;容器中有水和乙醇,水和乙醇的体积比为1:1,水和乙醇的总量和试剂的重量比是6:1。

(3)选择光源辐射时间为2s,光源辐射能量密度7mj/cm2

(4)粒子b成型后被分散在溶液中。

(5)分散后的粒子被气流冲出,喷射到需要喷涂涂料的结构件上,和基体材料混合后在结构件上固定成为消音涂层。

实施例3

(1)试剂制备,对试剂C进行制样,制样步骤为在室温下先将环氧树脂类低聚物双(7-氧杂双环(4.1.0)3-庚甲基)己二酸酯(94%),光引发剂Omnicat550(2%),消泡剂BYK501(4%)倒入烧杯中,机械搅拌5分钟。

(2)试剂液滴通过0.01MPa压力挤出到容器,调制试剂B的流量为0.1mL/s,容器中有水和乙醇,水和乙醇的体积比为1:1,水和乙醇的总量和试剂的重量比是4:1。

(3)选择光源辐射时间为5s,光源辐射能量密度15mj/cm2

(4)粒子c成型后被分散在溶液中。

(5)分散后的粒子被气流冲出,喷射到需要喷涂涂料的结构件上,和基体材料混合后在结构件上固定成为消音涂层。

实施例4

(1)试剂制备,对A,B两种试剂进行制样,按重量百分比,试剂A采用环氧树脂类低聚物3,4-环氧环己基甲基-3,4-环氧环己基碳酸脂(99%),光引发剂Omnicat432(0.5%),消泡剂BYK088(0.5%);试剂B采用环氧树脂类低聚物双酚A环氧树脂(99%),光引发剂Omnicat320(0.5%),消泡剂BYK307(0.5%)的比例,制样步骤为在室温下先将环氧树脂类低聚物,光引发剂,消泡剂倒入烧杯中,机械搅拌5分钟,分别制备出试剂A和试剂B。

(2)试剂液滴通过0.2MPa压力挤出到容器,调制试剂A的流量为0.005mL/s;容器中有水和乙醇,水和乙醇的体积比为1:1,水和乙醇的总量和试剂的重量比是5:1。

(3)选择光源辐射时间为0.1s,光源辐射能量密度10mj/cm2

(4)粒子a成型后被分散在溶液中。

(5)调制试剂B的流量为0.002mL/s,光源辐射时间为0.05s,光源辐射能量密度为12mj/cm2

(6)粒子d成型后被分散在溶液中,粒子d为核壳结构,核为粒子a,壳为试剂B固化后形成的壳层。

(7)分散后的粒子被气流冲出,喷射到需要喷涂涂料的结构件上,和基体材料混合后在结构件上固定成为消音涂层。

步骤四是采用A、B两种试剂形成核壳结构粒子的步骤,对于其他两种试剂的排列组合(BA、AC、CA、BC、CB等)形成核壳结构粒子的步骤类似,也能制备相应结构的核壳结构粒子。

实施例5

(1)试剂制备,对A,B,C三种试剂进行制样,按重量百分比,试剂A采用环氧树脂类低聚物3,4-环氧环己基甲基-3,4-环氧环己基碳酸脂(98%),光引发剂Omnicat432(1.5%),消泡剂BYK088(1.5%);试剂B采用环氧树脂类低聚物双酚A环氧树脂(97%),光引发剂Omnicat320(2%),消泡剂BYK307(1%);试剂C采用环氧树脂类低聚物双(7-氧杂双环(4.1.0)3-庚甲基)己二酸酯(99%),光引发剂Omnicat550(0.5%),消泡剂BYK501(0.5%),制样步骤为在室温下先将环氧树脂类低聚物,光引发剂,消泡剂倒入烧杯中,机械搅拌5分钟,分别制备出试剂A、试剂B和试剂C。

(2)试剂液滴通过0.4MPa压力挤出到容器,调制试剂A的流量为0.003mL/s,容器中有水和乙醇,水和乙醇的体积比为1:1,水和乙醇的总量和试剂的重量比是6:1。

(3)选择光源辐射时间为0.1s,光源辐射能量密度4mj/cm2

(4)粒子a成型后被分散在溶液中。

(5)调制试剂B的流量为0.008mL/s,光源辐射时间为0.05s,光源辐射能量密度为7mj/cm2

(6)粒子d成型后被分散在溶液中,粒子d为核壳结构,核为粒子a,壳为试剂B固化后形成的壳层。

(7)调制试剂C的流量为0.006mL/s,光源辐射时间为0.05s,光源辐射能量密度为5mj/cm2

(8)粒子e成型后被分散在溶液中,粒子e为三层核壳结构,核为粒子核壳结构的d粒子,壳为试剂C固化后形成的壳层。

(9)分散后的粒子被气流冲出,喷射到需要喷涂涂料的结构件上,和基体材料混合后在结构件上固定成为消音涂层。

步骤五是采用A、B、C三种试剂形成核壳结构粒子的步骤,对于其他三种试剂的排列组合(ACB、BAC、BCA、CAB、CBA等)形成核壳结构粒子的步骤类似,也能制备相应结构的核壳结构粒子。

实施例6

在消音和降噪应用领域,将实施例1-5所制备的消音粒子填充至涂料基体内部,消音粒子按重量比重为10%,制成片状涂料并测试其隔音效果。涂料基底的成分按重量百分比为:①25%苯乙烯丙烯酸乳液、②25%硅丙乳液、③30%丙烯酸乳液、④10%水。

涂料的制备步骤为:

(1)将涂料基底材料①-④和消音粒子在室温下,在烧杯中混合,搅拌5min使其均匀。

(2)将混合好的涂料用喷枪喷涂在铝制基板上,喷涂的厚度为2mm。

(3)将样品放置在烘箱中烘烤2小时,温度为60℃。

(4)涂料样品固化成为阻尼片。

(5)重复步骤(1)-(4),将相同量的玻璃微珠,云母片,玻璃纤维分别填充到涂料基体,并制备相应的阻尼涂料片。

测试隔音性能步骤:

(1)将上述制备的各种阻尼涂料片切割成直径为30mm的圆片。

(2)将上述直径为30mm的圆片放置在B&K4206型阻抗管中,采用四个传声器,使用传递函数法测试其隔音量,测试频率范围为500-6400Hz。

(3)测试完成后,进行数据对比,分析。

如图3所示,在500-6400Hz范围内,测试各种不同填料的阻尼涂料片的隔音量数据,3#为本发明步骤之四制备的消音粒子填充的阻尼涂料片,在用量相同的条件下(填充质量比10%),填充到相同厚度(2mm)的消音涂料基底中,与其它类型的填料,2#玻璃微珠,1#云母片,4#玻璃纤维等相比,其隔音量明显提高。

为了表征消音粒子的尺寸均匀的特点,对步骤之四制备的消音粒子采用动态光散射方法(DLS)测试其粒径分布图,如图4所示,从DLS粒径分布图来看,制备的消音粒子粒径基本分布在23-27μm,且粒子分布均匀。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1