一种紫外光照消除可降解高分子薄膜表面皱纹的方法与流程

文档序号:11503931阅读:503来源:国知局
一种紫外光照消除可降解高分子薄膜表面皱纹的方法与流程

本发明涉及解决应力松弛相关的复合材料失效问题,具体涉及一种利用紫外光照消除可降解高分子薄膜表面皱纹的方法。



背景技术:

材料复合与功能化是现代材料学发展的一大趋势。基于此策略,材料各基元间优势互补、协同作用,赋予复合材料优异的综合性能和新功能,从而极大拓展其在现代航空航天、汽车工业和机械制造等领域的广泛应用。然而,材料各基元间存在物性差异,在外界刺激的作用下,常会诱导界面应力的积聚。当应力松弛时,最终导致一系列不可避免的致命的材料问题,如表面起皱、脱层和开裂等。如何有效防止表面起皱和消除表面皱纹一直是现代复合材料学面临的一项前沿性挑战课题。从起皱机制可知,复合基元间的物性差异和界面残余应力的存在是引发皱纹产生的两大关键。目前已有的关于防皱/消皱方面的研究工作多集中在利用相界面优化处理来减小不同基元间的物性差异,从而有效降低和避免表面起皱。然而这类方法涉及步骤多、操作较复杂、更重要的是会在一定程度上削弱材料的综合性能。另一种策略就是通过其他途径解决相界面应力场在材料中的可控松弛和释放,但这方面的相关研究工作目前还十分有限。



技术实现要素:

针对上述现有技术,本发明提供一种紫外光照消除可降解高分子薄膜表面皱纹的方法。本发明方法操作简便,洁净高效,在复合材料领域防止材料失效和提高材料使用寿命方面有着广泛的应用前景。

为了解决上述技术问题,本发明提出的一种紫外光照消除可降解高分子薄膜表面皱纹的方法,包括以下步骤:

步骤一、将pdms预聚体和交联剂按质量比为10:1混合后,充分搅拌形成均匀的预聚合物,将上述预聚合物在真空泵中脱气后浇筑到表面皿中,70℃下加热4h进行热交联固化,得到pdms弹性体;

步骤二、将步骤一得到的pdms弹性体进行氧等离子体表面活化处理,然后旋涂溶有0.5-5%质量分数可降解高分子的有机溶剂溶液,真空泵中脱气除去残余的有机溶剂,得到软硬复合体系;

步骤三、对步骤二得到的软硬复合体系施加0.02-0.3mpa的压缩应力使其表面产生皱纹形貌,

步骤四、对步骤三得到的表面起皱的软硬复合体系进行紫外光照,光照剂量为9-60jcm-2,从而消除软硬复合体系的表面皱纹图案。

本发明的步骤二中,可降解高分子是聚乳酸、聚丙烯酸甲酯类和聚氨酯中的一种。

与现有技术相比,本发明的有益效果是:

本发明选用pdms为基底,与旋涂得到的高分子薄膜构成软硬复合体系。对复合体系施加外界应力使其表面产生皱纹形貌,对已有的表面皱纹进行紫外光照,通过改变光照剂量等实验参数,控制光照剂量与界面残余应力的相对大小,可以调控复合体系表面皱纹的消除与否。

附图说明

图1为本发明实施例1中pdms/plla复合体系在0.023mpa单轴压缩应力下得到的表面皱纹图案的光镜图。

图2为本发明实施例1中表面起皱的pdms/plla复合体系经9.2jcm-2紫外光照后得到的光镜图。

图3为本发明实施例2中pdms/plla复合体系在0.075mpa单轴压缩应力下得到的表面皱纹图案的光镜图。

图4为本发明实施例2中表面起皱的pdms/plla复合体系经13.8jcm-2紫外光照后得到的光镜图。

图5为本发明实施例3中pdms/pmma复合体系在0.034mpa各向同性压缩应力下得到的表面皱纹图案的光镜图;

图6为本发明实施例3中表面起皱的pdms/pmma复合体系经15.7jcm-2紫外光照后得到的光镜图。

具体实施方式

下面结合附图和具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。

本发明紫外光照消除可降解高分子薄膜表面皱纹的方法的设计思路是:利用高分子薄膜的光降解反应,引起膜/基复合系统中应力场的扰动和松弛,从而实现表面皱纹图案的消除。对已有的表面皱纹进行紫外光照,通过改变光照剂量等实验参数,控制光照剂量与界面残余应力的相对大小,可以调控复合体系表面皱纹的消除与否。

实施例1:

一种紫外光照消除可降解高分子薄膜表面皱纹的方法,包括以下步骤:

步骤一、将聚二甲基硅氧烷(pdms)预聚体和交联剂sylgard184(购自美国道康宁公司)按质量比为10:1混合,用玻璃棒充分搅拌形成均匀的预聚合物;将上述预聚合物在循环水式多用真空泵中脱气1小时后,浇筑到表面皿中;在70℃下加热4h进行固化;获得pdms软基底;

步骤二、将步骤一得到的pdms软基底进行氧等离子体表面活化处理,然后旋涂2wt%聚左旋乳酸(plla)的氯仿溶液(旋涂参数:4000rpm,60s),真空泵中脱气除去残余的有机溶剂,得到pdms/plla软硬复合体系。

步骤三、将步骤二得到的pdms/plla复合体系施加0.023mpa单轴压缩应力,得到平行条带状的表面皱纹图案,如图1的光镜图所示;

步骤四、对步骤三得到的表面起皱的pdms/plla复合体系进行剂量为9.2jcm-2的紫外光照,得到表面无皱纹的光滑plla薄膜,如图2的光镜图所示。

实施例2:

一种紫外光照消除可降解高分子薄膜表面皱纹的方法,其制备过程与实施例1基本相同,不同仅在于:

步骤三中,对pdms/plla复合体系施加的单轴压缩应力的大小由0.023mpa改为0.075mpa,得到平行条带状的表面皱纹图案,如图3的光镜图所示;

步骤四、对表面起皱的pdms/plla复合体系紫外光照的剂量由9.2jcm-2改为13.8jcm-2,所得到的表面无皱纹的光滑plla薄膜,如图4的光镜图所示。

实施例3:

一种紫外光照消除可降解高分子薄膜表面皱纹的方法,其制备过程与实施例1基本相同,不同之处在于:

步骤二中,可降解高分子选用的是聚甲基丙烯酸甲酯(pmma);

步骤三中,对pdms/pmma复合体系施加的压缩应力由0.023mpa的单轴压缩应力改为0.034mpa各向同性压缩应力,得到迷宫状的表面皱纹图案,如图5的光镜图所示;

步骤四中、对表面起皱的pdms/pmma复合体系紫外光照的剂量由9.2jcm-2改为15.7jcm-2,所得到的表面无皱纹的光滑pmma薄膜,如图6的光镜图所示。

本发明中,通过调节紫外光照时间(不同光照剂量),进而调节皱纹的擦除与否。皱纹消除所需的光照剂量与高分子薄膜种类及施加的外界应力大小有关。

以上具体实施案例仅仅是部分实验,并不是用来限制本发明的实施范围。本领域的相关技术人员依据本发明或不脱离本发明宗旨的情况下,所进行的等效变形和相关修饰,这些都在本发明的保护之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1