异靛青‑双键‑异靛青类聚合物及其合成方法与应用与流程

文档序号:11399232阅读:293来源:国知局
异靛青‑双键‑异靛青类聚合物及其合成方法与应用与流程

本发明属于材料领域,涉及一种异靛青-双键-异靛青类聚合物及其合成方法与应用。



背景技术:

场效应晶体管(field-effecttransistors)是通过电场来调控半导体材料导电能力的有源器件,被用来放大和转换电信号。与无机场效应晶体管相比,有机场效应晶体管与之最大的区别就是用有机半导体材料取代了无机半导体材料。有机半导体材料有四大优势:一是有机分子可以通过简单的化学修饰进行改性;二是有机半导体材料具有良好的柔性和韧性;三是可以通过溶液法制备器件;四是有降低成本的潜力。

在有机场效应晶体管中,按照导电沟道中载流子种类,有机半导体材料可以分为p型,n型和双极性材料,其载流子分别为空穴,电子,空穴和电子。按照材料的分子量来分,可以分为小分子和聚合物材料。聚合物因为其较高的黏性和良好的成膜性被认为是半导体溶液处理方法的一种良好材料,是最具有潜力实现大面积柔性器件的材料。目前的研究表明,有三类聚合物体系表现出很好的ofets性能,分别是吡咯并吡咯二酮(diketopyrrolopyrrole,dpp),萘酰亚胺(naphthalenedicarboximide,ndi)和异靛青(isoindigo,iid)。由于iid吸电子能力不强,其聚合物的lumo能级比较高,不利于电子注入和传输,因此该类聚合物一般是p型材料。而双极性材料在有机电路如振荡器中有重要应用价值,因此设计新型的iid双极性材料迫在眉睫。



技术实现要素:

本发明的目的是提供一种异靛青-双键-异靛青类聚合物的制备方法及其应用。

本发明提供的异靛青-双键-异靛青类聚合物,其结构通式如式ⅰ所示:

所述式i中,x为h或者f;r为碳原子总数为1-60的直链或支链烷基;ar为芳香族基团;n为自然数。

当x为h时,式i简写为ivi;当x为f时,式i简写为f4ivi。

所述式i(ivi和f4ivi)中,r为碳原子总数为1-60的直链或支链烷基。优选地,可为碳原子总数为1-30、10-30或20-30的直链或支链烷基。更优选地,可为4-癸基十四烷基,也即-(ch2)3-ch(c10h21)c10h25。

所述式i中ar基团从下面的基团中选取任意一种:

所述ar基团中,都表示取代位。

所述ar基团中,n为10-150,优选地,n为15或20。

所述式i(ivi和f4ivi)所示聚合物,当x代指h,r代指ar代指即为聚合物pivi-bt和pf4ivi-bt;pivi-bt用式xxviii表示,pf4ivi-bt用式xxix表示;

按照本发明的另一方面,提供了一种异靛青-双键-异靛青类聚合物的制备方法,将式v所示化合物(ivi-2br和f4ivi-2br)与双甲基锡化合物在配体和催化剂作用下进行聚合反应,得到所述式i所示聚合物:

所述式v中x指h或者f原子,当x为h时,式v简写为ivi-2br;当x为f时,式v简写为f4ivi-2br;r为碳原子总数为1-60的直链或支链烷基。

所述的异靛青-双键-异靛青类聚合物的制备方法中,双甲基锡化合物选自如下化合物中的任意一种:

(即2,5-双(三甲基锡)噻吩并[3,2-b]噻吩)、

(即5,5’-双(三甲基锡)-2,2’-联二噻吩)、

所述配体选自三(邻甲苯基)膦、三苯基膦、和三苯基胂中的至少一种。

所述催化剂选自二(三苯基膦)二氯化钯、四(三苯基膦)钯和三(二亚苄基丙酮)二钯中的至少一种。

所述式i的制备过程中,式v所示化合物与双甲基锡化合物以及配体和催化剂在氩气的氛围下,在溶剂中加热搅拌反应通过still偶联反应得到式i。

所述式v所示化合物的投料摩尔份数为1.00份;

所述双甲基锡化合物的投料摩尔份数为0.90~1.10份;

所述配体的投料摩尔份数为0.05~0.90份;

所述催化剂的投料摩尔份数为0.01~0.10份;

优选地,所述式v所示化合物、双甲基锡化合物、配体和催化剂的投料摩尔用量比具体为1.0:1.0:0.08:0.02。

优选地,所述聚合反应温度为90~140℃,具体为130℃;

优选地,所述聚合时间为2小时~80小时,具体时间为72小时;

优选地,所述聚合反应的溶剂具体选自甲苯、氯苯和二甲苯中的一种。

在所述聚合反应完毕后,将所得反应体系冷却后依次加入浓盐酸和甲醇的混合溶剂中,室温下搅拌一个小时后过滤,将所得沉淀用索氏提取器依次用甲醇、丙酮、正己烷抽提,抽提至无色后,除去小分子和催化剂,再用三氯甲烷抽提得到式i所述化合物。其中,甲醇和浓盐酸的体积比具体可为15:1,浓盐酸的浓度具体可为12mol/l。

按照本发发明的另一方面,所述式v所示化合物按照如下步骤制备所得:

(1)化合物式ⅲ的制备:化合物ⅱ在1,4二氧六环做为溶剂的条件下与水合肼进行反应生成化合物ⅲ(r的定义与结构通式i中r的定义相同):

(2)化合物ⅳ的制备:化合物ⅱ,以及化合物ⅵ在配体以及催化剂存在的情况下缩合反应生成化合物ⅳ(r的定义与结构通式i中r的定义相同):

(3)化合物v的制备:化合物ⅳ和化合物ⅲ在含盐酸的醋酸溶液中反应从而得到化合物v(r的定义与结构通式i中r的定义相同):

上述方法步骤(1)中,所述化合物ⅱ和水合肼的投料比为1:50-100,优选1:60,反应步骤中反应温度为60-150℃,反应时间为12-36h。

上述方法步骤(2)中,化合物ⅵ和化合物ⅱ以及三(邻甲基苯基)磷和三(二亚苄基丙酮)二钯的投料比为1:1.5–2:0.1–0.4:0.01–0.50,优选1:1.9:0.2:0.05,反应步骤中反应温度为60-150℃,反应时间为12-72h。

上述方法步骤(3),中化合物ⅳ和化合物化合物ⅲ的投料比为1:2-3,优选1:2.2,反应步骤中反应温度为100-150℃,反应时间为12-36h。

上述步骤(1)至步骤(3)所述反应均在有机溶剂中进行。所述步骤(1)中,所述溶剂具体可为1.4二氧六环;所述步骤(2)中,所述溶剂具体可为氯苯,二甲苯或者甲苯中的一种;所述步骤(3)中,所述溶剂具体可选自含浓盐酸的醋酸溶液。

上述本发明所提供的结构通式i所示聚合物在制备ofets中的应用及含有所提供结构通式i所示聚合物的ofets,也属于此发明要求保护的范围。所述ofets,构成半导体层的材料为权利要求1所述结构通式i所示聚合物。

此发明具有以下有益效果有:

(1)原料是已经商业化的产品或有文献报道的产品,合成的路线比较简单,而且产率也比较高,此合成路线也可以借鉴到其他类似物合成的方法中。

(2)ivi和f4ivi聚合物的对称性和平面性都比较好,而且f4ivi中氟原子的引入,聚合物的拉电子能力更强,从而使聚合物的lumo能级得以降低,这样更加有利于半导体层电子的注入和传输,从而得到双极性材料。

(3)ivi和f4ivi类聚合物有可能可以应有与有机太阳能电池或者其他的有机光电功能器件中。

(4)以本发明的聚合物作为半导体层制备ofets的迁移率(μ),pivi-bt为单极性有机场效应晶体管,其空穴迁移率最高可达0.32cm2v-1s-1,pf4ivi-bt为双极性有机场效应晶体管,其空穴迁移率最高为1.03cm2v-1s-1;电子迁移率最高为1.82cm2v-1s-1,在双极性ofets中有良好的应用前景。

附图说明

图1为式i所示化合物的合成路线;

图2a为pivi-bt聚合物在溶液以及薄膜状态下的紫外可见吸收光谱图;

图2b为pf4ivi-bt聚合物在溶液以及薄膜状态下的紫外可见吸收光谱图;

图3为异靛青-双键-异靛青类聚合物的循环伏安曲线图;

图4为异靛青-双键-异靛青类聚合物场效应晶体管的结构示意图;

图5a为pivi-bt为半导体层的聚合物场效应晶体管表现p型(空穴传输)性能输出特性曲线图;

图5b为pivi-bt为半导体层的聚合物场效应晶体管表现p型(空穴传输)性能转移特性曲线图;

图5c为pf4ivi-bt为半导体层的聚合物场效应晶体管表现p型(空穴传输)性能输出特性曲线图;

图5d为pf4ivi-bt为半导体层的聚合物场效应晶体管表现p型(空穴传输)性能转移特性曲线图;

图5e为pf4ivi-bt为半导体层的聚合物场效应晶体管表现n型(电子传输)性能输出特性曲线图;

图5f为pf4ivi-bt为半导体层的聚合物场效应晶体管表现n型(电子传输)性能转移特性曲线图;

图6为异靛青-双键-异靛青类聚合物化学结构通式。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

实施例1

式i所述化合物的合成路线如图1所示,核磁表征通过仪器mercury-vx300n(400mhz);质谱表征通过仪器ionspec4.7tftms。

1.式v所述化合物的制备过程如下:

(1)式ⅲ所述化合物的制备:(当x代指h时)将化合物ⅱ(500mg,0.889mmol)和5ml水合肼加入50ml1.4-二氧六环溶剂中,然后在氩气的氛围下回流反应24h,反应停止后冷却至室温,然后加入水和二氯甲烷萃取,水洗三遍,取有机相用无水硫酸钠进行干燥。然后旋蒸除掉溶剂后,通过柱色谱层析(pe:ch2cl2=2:1)进行分离,得到400mg黄色油状液体,产率为82.1%。

式ⅲ所述化合物结构表征数据如下:

核磁氢谱:1hnmr(cdcl3,400mhz,ppm):δ7.15(dd,j1=7.84hz,j2=1.56hz,1h),7.09(d,j=7.8hz,1h),6.95(d,j=1.28,1h),3.63(t,j=7.4hz,2h),3.45(s,2h),1.62(t,j=7.4hz,2h),1.26(m,39h),0.88(t,j=7.4hz,6h).

(当x代指f时)

核磁氢谱以及碳谱:1hnmr(400mhz,cdcl3,δ):7.18(m,1h),6.90(d,j=8.0hz,1h),3.80(t,j=7.6hz,2h),3.50(s,2h),1.64(m,2h),1.32–1.02(m,39h),0.88(m,6h).13cnmr(100mhz,cdcl3,δ):δ

174.08,145.13,142.71,132.49,132.40,126.50,126.46,126.10,120.97,120.93,109.35,109.15,63.50,42.41,42.37,37.24,37.08,35.77,33.61,33.50,31.93,30.42,30.13,30.09,29.98,29.71,29.66,29.59,29.36,26.67,26.62,26.19,26.16,22.69,14.10.

质谱:hr-maldi-tof:[m+na]+calcdforc32h53brfnnao:588.31926,found:588.31881.

(2)式ⅳ所述化合物的制备(当x代指h时)的制备:将化合物ⅵ(430mg,0.764mmol)和化合物ⅱ(244mg,0.40mmol)以及三(邻甲基苯基)磷(24mg,0.08mmol)和三(二亚苄基丙酮)二钯(18mg,0.02mmol.)放入schlenk管中,然后在氩气的氛围下抽放气三次,然后加入鼓泡后的氯苯溶剂,在130℃的条件下反应2天,然后等反应冷却至室温后,加入水和三氯甲烷,有三氯甲烷萃取三遍,取有机相有无水硫酸钠干燥,在真空下移除溶剂后,进行柱色谱(pe:ch2cl2=2:1)分离,从而得到415mg(yield:0.76%)红色固体。

式ⅳ所述化合物结构表征数据如下:

核磁氢谱以及碳谱:1hnmr(c6d6,400mhz,ppm):δ7.30(d,j=7.72hz,2h),6.83(s,2h),6.87(d,j=7.76hz,2h),6.57(s,2h),3.42(t,j=6.84hz,4h),1.55(s,4h),1.32(m,78h),0.91(d,j=6.92hz,12h)。13cnmr(100mhz,cdcl3,δ):182.54,158.45,151.60,145.88,132.01,125.97,122.46,117.57,107.82,40.70,37.10,33.48,31.91,30.78,30.12,29.70,29.64,29.35,26.64,24.52,22.68,14.11.

质谱:hr-maldi-tof:[m+na]+calcdforc32h53brfnnao:1014.56,found:1014.80

(当x代指f时)

核磁氢谱以及碳谱:1hnmr(cdcl3,400mhz,ppm):δ7.52(s,2h),6.83(s,2h),7.47(d,j=8.16hz,2h),6.57(t,j=5.52hz,2h),3.89(t,j=7.04hz,4h),1.71(s,4h),1.32(m,78h),0.86(d,j=6.36hz,12h).13cnmr(100mhz,cdcl3,δ):181.98,158.08,147.11,144.61,137.87,137.78,134.90,134.79,126.08,121.81,121.31,119.80,43.15,37.09,33.47,31.91,30.47,30.09,29.70,29.65,29.35,26.61,26.01,22.68,14.11.

质谱:hr-maldi-tof:[m+na]+calcdforc66h104f2n2nao4:1049.78622,found:1049.78614.

(3)式v所述化合物的制备(当x代指h时)将化合物ⅳ(174mg,0.175mmol)和化合物ⅲ(211.8mg,0.386mmol)溶解在6ml乙酸中,然后加入5ml的浓盐酸,在氩气的氛围下回流反应24h,等反应降至室温以后,用甲醇洗涤反应生成的固体,然后固体用柱色谱层析(pe:ch2cl2=2:1)分离,最后得到112.08mg黑色固体(产率31.2%)。

式v所述化合物结构表征数据如下:

核磁氢谱以及碳谱:1hnmr9.20(d,j=8.36hz,2h),9.08(d,j=8.6hz,2h),7.21(s,2h),7.19(s,2h),7.17(dd,j1=8.64hz,j2=6.84hz,2h),6.93(s,4h),3.81(t,j=6.64hz,4h),3.73(t,j=7.04hz,4h),1.70(t,j=6.92hz,8h),1.23(m,156h),0.86(d,j=6.92hz,24h).13cnmr(100mhz,cdcl3,δ):168.10,167.77,145.57,145.36,140.97,133.14,131.50,131.07,130.47,130.37,126.29,124.95,121.89,121.44,120.64,111.16,105.21,40.61,40.47,37.16,33.54,31.93,30.95,30.88,30.15,30.12,29.73,29.66,29.37,26.69,24.72,24.56,22.70,14.13.

质谱:hr-maldi-tof:[m+na]+calcdforc32h53brfnnao:2075.89,found:2075.46.

(当x代指f时)

核磁氢谱以及碳谱:1hnmr(cdcl3,400mhz,ppm)δ8.88(d,j=8.52hz,2h),8.77(d,j=8.64hz,2h),7.30(s,2h),7.13(d,j=2.28hz,2h),7.05(d,j=2.24hz,,2h),6.93(s,4h),3.85(t,j=7.36hz,8h),1.62(t,j=7.04hz,8h),1.16m,156h),0.79(d,j=7.56hz24h).13cnmr(100mhz,cdcl3δ):166.22,165.90,144.88,143.63,142.42,141.22,132.06,131.16,131.07,130.92,128.52,128.42,125.42,125.01,124.45,123.35,122.84,122.28,118.43,113.46,113.27,41.72,36.20,36.14,36.09,32.54,30.92,29.75,29.64,29.13,29.03,28.72,28.66,28.36,26.07,25.67,25.26,25.14,21.67,13.08.

质谱:hr-maldi-tof:[m+h]calcdforc130h207br2f4n4o4:2124.44015,found:2124.44131。

2、式ⅰ的聚合物pivi-bt制备过程如下:

(1)当x代指h时,将化合物v(120mg,0.05845mmol),5,5’-双(三甲基锡)-2,2’-联二噻吩(28.75mg,0.05845mmol),三(邻甲基苯基)磷(1.4mg,4.676umol)和三(二亚苄基丙酮)二钯(1mg,1.169umol)加入到干燥的schlenk管中,然后在氩气的氛围下充放气三遍,后加入6ml鼓泡后的氯苯溶剂,在130℃的条件下搅拌三天,冷却后,加入8ml浓盐酸,100ml甲醇,在室温条件下搅拌5h,过滤。将得到的沉淀物用滤纸包裹装入索氏提取器进行抽提。先用甲醇、丙酮、乙酸乙酯、正己烷抽提至无色,再用三氯甲烷抽提得到最终产物。

式ⅰ的pf4ivi-bt(当x代指f时)方法同聚合物pivi-bt的制备

式ⅰ所述结构表征数据如下:

分子量(gpc)pivi-bt的mn=46.3kda,pdi=4.6,pf4ivi-bt的mn=32.8kda,pdi=2.29。

从以上表征数据可知,该化合物结构为式i所示化合物pivi-btp和f4ivi-bt,结构式如下所示:

实施例2

聚合物pivi-bt和pf4ivi-bt的光谱性能、电化学性能以及场效应晶体管性能如下:

图2为聚合物pivi-bt和pf4ivi-bt在溶液中和薄膜中的紫外可见吸收光谱。

由图2可知,聚合物pivi-bt和pf4ivi-bt薄膜的光学带隙分别为1.6ev和1.53ev(光学带隙计算公式eg=1240/λ,其中eg为光学带隙,λ为紫外吸收曲线的边界值)。

图3为聚合物pivi-bt和pf4ivi-bt薄膜的cv曲线。测定在chi760e电化学工作站中进行,采用传统的三电极结构测试,玻碳电极为工作电极,铂丝为辅助电极,银/氯化银为参比电极,四丁基六氟磷酸铵作为电解质。测试在乙腈溶液体系中进行。循环伏安的条件为:扫描范围为-2~2伏特(vs.ag/agcl),扫描速率为100v/s。该聚合物具有氧化峰和还原峰,可当作有机半导体材料。根据cv曲线,聚合物pivi-bt和pf4ivi-bt的homo能级分别为–5.54ev和–5.64ev,lumo能级分别为–3.94ev和–4.11ev。聚合物具有比较合适的homo能级和lumo能级,聚合物pivi-bt具有p型材料,而聚合物pf4ivi-bt为双极性材料。

聚合物pivi-bt和pf4ivi-bt应用于场效应晶体管。图3为有机场效应晶体管的结构示意图,如图所示,采用辛基三氯硅烷(ots)修饰的sio2/si作为衬底,在二次水、乙醇、丙酮中超声清洗后于80℃真空干燥。源漏电极为掩膜版热蒸镀的25nm厚的金为源、漏电极。实施例1所得的聚合物为半导体层,将其浓度为8mg/ml的邻二氯苯溶液中通过匀胶的方法在辛基三氯硅烷(ots)修饰的sio2/si衬底上形成有源层。随后在实施例1所得的聚合物薄膜表面通过匀胶形成1350纳米厚的聚甲基丙烯酸甲酯作为场效应管绝缘层,90℃除溶剂60分钟;在绝缘层上通过掩膜版热蒸镀80nm厚铝作为栅电极,完成场效应管制备。

在室温下用通过keithley4200scs半导体测试仪测量了所制备的场效应器件的电学性能。决定ofet的性能的两个关键参数是:载流子的迁移率(μ)和器件的开关比(ion/ioff)。迁移率是指在单位电场作用下,载流子的平均漂移速度(单位是cm2v-1s-1),它反映了在电场下空穴或电子在半导体中的迁移能力。开关比定义为:晶体管在“开”状态和“关”状态下的电流之比,它反映了器件开关性能的优劣。对于一个高性能的场效应晶体管,其迁移率和开关比应尽可能的高。

图4为基于两种聚合物所制备的场效应晶体管的转移特性曲线和输出特性曲线。其中pivi-bt展现出单极性传输特性,而pf4ivi-bt展现出明显的双极性传输特性。说明氟原子的引入有利于增加电子的传输。

载流子迁移率可由方程计算得出:ids=(w/2l)ciμ(vg–vt)2(饱和区)

其中,ids为漏极电流,μ为载流子迁移率,vg为栅极电压,vt为阈值电压,w为沟道宽度,l为沟道长度,ci为绝缘体电容。利用(ids,sat)1/2对vg作图,并作线性回归,可由此回归线的斜率推算出载流子迁移率(μ),由回归线与x轴的截点求得vt。

迁移率可以根据公式从转移曲线的斜率计算得出,上述各例中制备的聚合物场效应晶体管的器件性能如表1所示。开关比可由图4侧源漏电流的最大值与最小值之比得出。

表1聚合物场效应晶体管的器件性能

实验结果如表1所示,以本发明提供的pivi类聚合物为有机半导体层制备的有机场效应晶体管的空穴迁移率最高为0.32cm2v-1s-1,而pf4ivi类聚合物为有机半导体层制备的有机场效应晶体管的空穴迁移率最高为1.03cm2v-1s-1,电子迁移率最高为1.82cm2v-1s-1可见,本发明提供的pivi是一类优异的新型的p型材料,而pf4ivi是一类优异的双极性材料。本发明并不限于所报道的这个材料,改变不同的侧链取代基可以得到一系列的聚合物,且本发明给出的合成方法简单、有效,对于合成新的有机场效应晶体管材料有很大的指导意义。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1