一种高性能聚乳酸基复合材料的制备方法与流程

文档序号:14239941阅读:275来源:国知局

本发明属于聚合物材料领域,具体涉及一种高性能聚乳酸基复合材料的制备方法。



背景技术:

聚乳酸是一类环境友好型生物降解材料,它被称为绿色环保型可降解材料。由于乳酸单体可以从无毒的可再生原料和天然存在的有机酸中提取,由此聚乳酸成为最有前途的生物聚合物之一。聚乳酸是一种脂肪族聚酯类化合物,具有良好的可生物降解性和生物相容性。这类塑料具有与通用塑料十分相似的物理机械性能,同时具有良好的加工性能。

聚乳酸可用于工农业生产领域、生活领域、电子领域、医用领域等多个方面。在工农业生产中可用于水产用材,农用薄膜,建筑用薄膜绳索,林业用材,沙漠绿化的保水材料等。在生活领域可用于一次性餐具,食品包装材料,微波炉用具材料等。在电子领域可用于笔记本电脑部件材料、手机部件及机壳材料、光盘盘片等。医用材料领域可用于一次性输液工具、免拆型手术缝合线、药物缓解包装剂、人造骨折内固定材料、组织修复材料、人造皮肤等;高强度的聚乳酸可用于骨修复及骨折固定针。

但聚乳酸材料也存在相当多的缺点,比如聚乳酸的强度不能满足要求,而且发生热变形时温度会比较低,并且还会存在抗冲性能比较差等缺点。这些缺点严重阻碍了聚乳酸材料的应用。因此,当今对于可降解聚乳酸基复合材料的研究会有很重要意义。纳米氧化物具有较高的比表面积、较高的流动性、较好的尺寸稳定性、较高的刚性等特点,与聚乳酸复合后可以提高聚乳酸的结晶性以及力学性能。另外,碳化硅(钛酸钾)晶须具有优良的机械性能、耐热性、耐用腐蚀性以及抗高温氧化性能,该晶须与基质材料具有良好的相容性,已成为各类高性能复合材料的主要增强、增韧剂之一。

因此,为了更好地满足聚乳酸在电子、医学、工业等领域的应用,本发明拟以纳米氧化物和sic晶须协同增强聚乳酸,以便制备一种低成本、高性能聚乳酸基复合材料。



技术实现要素:

本发明的目的在于提供一种低成本、高性能聚乳酸基复合材料的制备方法。

为实现上述目的,本发明采用如下技术方案:

a、将一定重量百分比的聚乳酸、纳米氧化物和陶瓷质晶须在真空干燥箱中,60℃~120℃温度条件下干燥20分钟~12小时;b、采用改性剂对干燥后的纳米氧化物和陶瓷质晶须进行表面改性;c、将聚乳酸、改性后的纳米氧化物和陶瓷质晶须加入高速混合机中,并混合均匀;d、将混合后的原材料加入至双螺杆挤出机中在160℃~210℃熔融共混、冷却、造粒后得到本发明材料。

所述一定重量百分比为:聚乳酸占87%~98.5%,纳米氧化物占1%~8%,陶瓷质晶须占0.5%~5%。

所述纳米氧化物为纳米二氧化钛、纳米二氧化硅、纳米氧化锌、纳米二氧化钙、纳米氧化铝中的任意一种或其混合物。

所述纳米氧化物的平均颗粒尺寸为10纳米~100纳米。

所述陶瓷质晶须为碳化硅晶须、钛酸钾晶须中的任意一种或其混合物。

所述陶瓷质晶须的直径为0.1微米~1.5微米,长为5微米~50微米。

所述改性剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、硬脂酸中的任意一种。

所述高速混合机的均匀混合时间为30分钟~60分钟。

与现有聚乳酸基复合材料的制备方法相比,本发明具有如下优点:采用纳米氧化物与陶瓷质晶须协同增强聚乳酸,显著提高了聚乳酸基复合材料的综合性能(拉伸强度、耐磨性、抗冲击性等)。另外,本发明制备工艺简单,操作方便,生产成本较低,易于工业化生产。

具体实施方式

下面通过实施例对本发明进行具体的描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容对本发明做出一些非本质的改进和调整。

实施例1:

将重量百分比分别为98.5%、1%和0.5%的聚乳酸、纳米二氧化钛(平均颗粒尺寸为10纳米)和碳化硅晶须(直径为0.1微米,长为5微米)置于真空干燥箱中,在60℃条件下干燥12小时。采用硅烷偶联剂对干燥后的纳米二氧化钛和碳化硅晶须进行表面改性。将聚乳酸、改性后的纳米二氧化钛和碳化硅晶须加入高速混合机中,并均匀混合30分钟。将混合后的原材料加入至双螺杆挤出机中在160℃温度下熔融共混、冷却、造粒后得到具有较高综合性能的聚乳酸基复合材料。与纯聚乳酸相比,本聚乳酸基复合材料的拉伸强度提高17%,抗冲击性提高21%,耐磨性提高20%。

实施例2:

将重量百分比分别为87%、8%和5%的聚乳酸、纳米二氧化硅(平均颗粒尺寸为100纳米)和钛酸钾晶须(直径为1.5微米,长为50微米)置于真空干燥箱中,在120℃条件下干燥20分钟。采用钛酸酯偶联剂对干燥后的纳米二氧化钛和钛酸钾晶须进行表面改性。将聚乳酸、改性后的纳米二氧化硅和钛酸钾晶须加入高速混合机中,并均匀混合60分钟。将混合后的原材料加入至双螺杆挤出机中在210℃温度下熔融共混、冷却、造粒后得到具有较高综合性能的聚乳酸基复合材料。与纯聚乳酸相比,本聚乳酸基复合材料的拉伸强度提高23%,抗冲击性提高25%,耐磨性提高22%。

实施例3:

将重量百分比分别为93%、4%和3%的聚乳酸、纳米氧化锌(平均颗粒尺寸为50纳米)和碳化硅晶须(直径为1微米,长为25微米)置于真空干燥箱中,在100℃条件下干燥2小时。采用铝酸酯偶联剂对干燥后的纳米氧化锌和碳化硅晶须进行表面改性。将聚乳酸、改性后的纳米氧化锌和碳化硅晶须加入高速混合机中,并均匀混合40分钟。将混合后的原材料加入至双螺杆挤出机中在190℃温度下熔融共混、冷却、造粒后得到具有较高综合性能的聚乳酸基复合材料。与纯聚乳酸相比,本聚乳酸基复合材料的拉伸强度提高35%,抗冲击性提高32%,耐磨性提高29%。

实施例4:

将重量百分比分别为97%、2%和1%的聚乳酸、纳米二氧化钙(平均颗粒尺寸为30纳米)和钛酸钾晶须(直径为0.5微米,长为15微米)置于真空干燥箱中,在80℃条件下干燥6小时。采用硬脂酸对干燥后的纳米二氧化钙和钛酸钾晶须进行表面改性。将聚乳酸、改性后的纳米二氧化钙和钛酸钾晶须加入高速混合机中,并均匀混合50分钟。将混合后的原材料加入至双螺杆挤出机中在170℃温度下熔融共混、冷却、造粒后得到具有较高综合性能的聚乳酸基复合材料。与纯聚乳酸相比,本聚乳酸基复合材料的拉伸强度提高25%,抗冲击性提高28%,耐磨性提高24%。

实施例5:

将重量百分比分别为90%、6%和4%的聚乳酸、纳米氧化铝(平均颗粒尺寸为70纳米)和碳化硅晶须(直径为1.0微米,长为20微米)置于真空干燥箱中,在90℃条件下干燥4小时。采用硅烷偶联剂对干燥后的纳米氧化铝和碳化硅晶须进行表面改性。将聚乳酸、改性后的纳米氧化铝和钛碳化硅晶须加入高速混合机中,并均匀混合45分钟。将混合后的原材料加入至双螺杆挤出机中在180℃温度下熔融共混、冷却、造粒后得到具有较高综合性能的聚乳酸基复合材料。与纯聚乳酸相比,本聚乳酸基复合材料的拉伸强度提高27%,抗冲击性提高30%,耐磨性提高26%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1