一种苯-三联噻吩-苯衍生物及其制备方法与应用与流程

文档序号:16013394发布日期:2018-11-20 21:06阅读:695来源:国知局
一种苯-三联噻吩-苯衍生物及其制备方法与应用与流程

本发明涉及一种苯-三联噻吩-苯衍生物及其制备方法与应用。

(二)背景技术

能源危机、环境污染使得我们的生存环境接受空前的挑战,因此如何有效利用风能、太阳能等可再生能源是目前的研究热点。太阳能材料按功能来说主要分为光化学能转变材料、光热转变材料、光电转变材料和光能调控变色材料。其中,光能调控变色材料又包括热致变色材料、光致变色材料和电致变色材料。而电致变色因其广阔的应用前景,研究的最为广泛。ec材料可应用于智能窗、生物传感器、显示屏、汽车无眩光反光镜以及国防军事伪装等方面。在众多的电致变色材料中,聚噻吩类电致变色材料具有诸多明显的优势,如稳定的电致变色性能,较高的色彩对比度,快速的响应时间,较高的导电率,合成与改性方法简单,可通过分子优化得到多色彩显示等。因而聚噻吩类电致变色共轭聚合物是研究最为广泛的电致变色共轭聚合物之一。但无取代的聚噻吩由于主链的刚性较大,在有机溶剂中的溶解性很差,因此限制了它的实际应用。此后,研究者们采用了多种方式对噻吩分子进行修饰,如在单个噻吩环上引入不同的取代基,将噻吩环与其他杂环结合或将噻吩与其他单体共聚等,通过以上方法所得到的聚噻吩类衍生物在改善聚噻吩的溶解性和电致变色性质方面都取得了显著成效。通过分子结构的设计得到聚合物具有共轭结构,引起了电致变色领域研究者的兴趣。此外,共轭结构的导电聚合物薄膜可能具有孔隙结构,这有利于电致变色过程中离子嵌入与脱出,从而有望加快电致变色的响应速度。本发明中,我们引入苯、三联噻吩、苯单元,得到的小分子具有四个位点进行电化学聚合,致使形成的导电聚合物薄膜具有共轭结构,此类聚合物薄膜的合成及电致变色性质研究如下进行详细的阐述。



技术实现要素:

为解决现有技术存在的不足,本发明的目的之一在于提供了一种苯-三联噻吩-苯衍生物及其制备方法。

下面对本发明的技术方案做具体说明。

一种如式1所示的苯-三联噻吩-苯衍生物tptt:

本发明所述的苯-三联噻吩-苯衍生物tptt具体按照如下方法进行制备:

(1)将式ⅰ所示的1-(2-(5-溴噻吩))-3,5-二(2-噻吩)苯与双(频哪醇合)二硼、醋酸钾溶于二氧六环中,在双三苯基二氯化钯的催化下,在回流温度下(优选为130℃)进行反应(优选为24h),反应完全后得到反应混合液a,经后处理得到式ⅱ所示的中间产物2-(1,3,5-三(2-噻吩)苯)[4,4,5,5-四甲基-1,3,2-二恶硼烷];所述式ⅰ所示的1-(2-(5-溴噻吩))-3,5-二(2-噻吩)苯与双(频哪醇合)二硼、双三苯基二氯化钯及醋酸钾的物质的量之比为1:2:0.007:3;所述的二氯六环的加入量以恰好溶解所加入的固体物质为准;

(2)将式ⅲ所示的2,5-二溴噻吩与式ⅱ所示的2-(1,3,5-三(2-噻吩)苯)[4,4,5,5-四甲基-1,3,2-二恶硼烷]、碳酸钾溶于甲苯中,在四三苯基膦钯催化条件下,在回流温度下反应完全,得到反应混合液b,经后处理得到目标产物式1所示的苯-三联噻吩-苯衍生物;所述的式ⅲ所示的2,5-二溴噻吩与式ⅱ所示的2-(1,3,5-三(2-噻吩)苯)[4,4,5,5-四甲基-1,3,2-二恶硼烷]、四三苯基膦钯的物质的量之比为1:2:0.007;所述的碱性物质以水溶液的形式加入,所述的碱性物质的浓度为2mol/l,所述的碱性物质为碳酸钾或碳酸钠;所述的甲苯的加入量以恰好溶解所加入的固体为准,所述的碱性物质水溶液与所述的甲苯的体积比为2:3;

进一步,步骤(1)中,所述的反应混合液a的后处理方法为:将所述的反应混合液a用二氯甲烷和水萃取,合并有机相,加入无水硫酸镁干燥,抽滤除去干燥剂,旋蒸除去溶剂,重新加入二氯甲烷溶解拌样过柱,以层析法分离,以体积比3:1的石油醚与二氯甲烷混合液为展开剂,分离得到式ⅱ所示的中间产物2-(1,3,5-三(2-噻吩)苯)[4,4,5,5-四甲基-1,3,2-二恶硼烷]。

进一步,步骤(2)中,所述的反应混合液b的后处理方法为:待反应结束冷却后,将所述的反应混合液b用二氯甲烷萃取,合并有机相,加入无水硫酸镁干燥,抽滤除去干燥剂,旋蒸除去溶剂,重新加入二氯甲烷溶解拌样过柱,以层析法分离,以体积比5:1的石油醚与二氯甲烷混合液为展开剂,得到目标产物苯-三联噻吩-苯衍生物tptt。

本发明的另一个目的在于所述的苯-三联噻吩-苯衍生物tptt可用于制备电致变色材料薄膜。

进一步,所述的应用为:将所述的苯-三联噻吩-苯衍生物tptt溶解于体积比为7:3的二氯甲烷与乙腈的混合溶剂中置于三电极体系中,采用循环伏安法,在聚合电压为0-1.6v条件下,电化学聚合成电致变色材料薄膜;所述的三电极体系由对电极、参比电极、工作电极及电解质构成,所述的对电极为铂电极,所述的参比电极为ag/agcl电极,所述的工作电极为ito导电玻璃,所述的电解质为四丁基六氟磷酸铵。

本发明所述的应用聚合得到的薄膜表现出较好的氧化还原能力以及电致变色性能,上述所合成的单体响应时间为3s-4s之间,光学对比度为25%,同时具有一定的电化学稳定性。

与现有技术相比,本发明的有益效果在于:

本发明所述的苯-三联噻吩-苯衍生物结构中的三个噻吩基增加了单体在聚合成膜的反应中的聚合位点,增加了聚合膜的共轭程度,提高了聚合膜的电化学活性,提高了聚合物膜的稳定性,薄膜表现出快速的响应速度,合理的光学对比度,良好的电化学稳定性,在电致变色领域有潜在的应用价值。

(四)附图说明

图1是本发明实施例3中薄膜ptptt的cv曲线;

图2是本发明实施例3中薄膜ptptt不同电压下的紫外-可见吸收光谱;

图3是本发明实施例3中薄膜ptptt的光学对比度;

图4是本发明实施例3中薄膜ptptt的响应时间。

(五)具体实施方式

下面以具体实施例对本发明的技术方案做进一步说明,但本发明的保护范围不限于此:

实施例1

2-(1,3,5-三(2-噻吩)苯)[4,4,5,5-四甲基-1,3,2-二恶硼烷]化合物的具体合成

1-(2-(5-溴噻吩))-3,5-二(2-噻吩)苯(1.62g,4.0mmol),双(频哪醇合)二硼(2.03g,8.0mmol),koac(0.79g,8.8mmol)和pd(pph3)cl2(10.0mg,0.007mmol)在氮气保护下溶解在60ml的二氧六环中,快速升温到130℃,体系回流24h,关停反映,冷却到室温,用去离子水和二氯甲烷萃取,所得有机相加入无水mgso4干燥后,再用柱层析分离提纯,固定相为300目硅胶,流动相为二氯甲烷/石油醚(1:3),最后得到绿色的固体2-(1,3,5-三(2-噻吩)苯)[4,4,5,5-四甲基-1,3,2-二恶硼烷]1.64g,产率为91%.1hnmr(500mhz,cdcl3)δ7.74(dd,j=6.0,1.5hz,3h),7.36(d,j=3.7hz,2h),7.27–7.25(d,j=3.8hz,2h),7.21(d,j=3.8hz,2h),7.07(t,j=5.0,3.7hz,2h),1.27(s,12h).

实施例2

苯-三联噻吩-苯衍生物的制备

1-(2-(5-溴噻吩))-3,5-二(2-噻吩)苯(0.24g,1.0mmol),2-(1,3,5-三(2-噻吩)苯)[4,4,5,5-四甲基-1,3,2-二恶硼烷](0.90g,2.0mmol),k2co3(1.1g,8mmol),4ml水,pd(pph3)4(10.0mg,0.007mmol)在氮气环境下依次加入,加入甲苯6ml,快速升温到130℃,体系回流24h,关停反映,冷却到室温,用去离子水和二氯甲烷萃取,所得有机相加入无水mgso4干燥后,再用柱层析分离提纯,固定相为300目硅胶,流动相为二氯甲烷/石油醚(1:5),最后得到黄色的固体苯-三联噻吩-苯衍生物1.15g,产率为75%.maldi-tof-ms(m)(m/z):647.5[m+h]+.1hnmr(400mhz,cdcl3)δ7.77(s,6h),7.47–7.45(dd,4h),7.39(t,j=4.4hz,6h),7.27(s,2h),7.17(dd,j=5.1,3.6hz,4h).

实施例3

将苯-三联噻吩-苯衍生物溶解于二氯甲烷/乙腈溶液(体积比7:3)中,四丁基六氟磷酸铵(tpapf6)为电解质,定容,超声3min,直至完全溶解,电极为铂丝作为对电极,ag/agcl电极作为参比电极,以及ito导电玻璃作为工作电极的三电极体系,采用循环伏安法0-1.6v电化学聚合成膜,聚合条件为:电压范围是0-1.6v,扫速为0.1v/s,扫描圈数为20圈。在tpapf6/二氯甲烷/乙腈(v:v,7:3)中脱掺杂1min用于性能测试,所有电化学测试均在tpapf6/二氯甲烷/乙腈(v:v,7:3)中进行测试。循环伏安、光谱电化学及电致变色测试阶跃电压为0v-1.6v,附图1、2、3、4为ptptt膜的cv曲线、不同电压下的紫外可见吸收光谱、光学对比度及响应时间。测试结果表明,苯-三联噻吩-苯衍生物的聚合物膜均具有的氧化还原性能,氧化峰和还原峰的位置分别为1.1v和0.9v,在1100nm处的光学对比度为25%,响应时间为3s-4s,苯-三联噻吩-苯薄膜的uv-vis吸收曲线也表现出两处能量转移变化。其在中性态下的最大吸收峰位于394nm。这一吸收也主要归属于聚合物链上的π-π*电子跃迁,相应的,其在中性态下的颜色为黄绿色。随着掺杂程度逐渐加深,聚合物主链中逐渐形成单极子和双极子,使其在中性态下的吸收峰强度逐渐降低并在近红外区产生新的吸收峰(分别位于673nm和1100nm)。同时,聚合物薄膜的颜色也随之变化,由中性态下的黄绿色变为蓝色。文献中对于二联噻吩,氧化还原电位约为1.2v,增加噻吩个数调控共轭程度,可有效降低聚合物的氧化还原电位。降低了聚合物的氧化电位,增加了聚合物的电化学活性,使共聚物在较低电压下即能被氧化并发生电致变色行为。以上结论进一步说明了聚合物氧化电位的高低是决定其电致变色性质的重要因素之一。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1