Te纳米线/PEDOT:PSS复合薄膜的制备方法与流程

文档序号:16854097发布日期:2019-02-12 23:02阅读:816来源:国知局
Te纳米线/PEDOT:PSS复合薄膜的制备方法与流程

本发明涉及半导体热电材料领域,特别是指一种te纳米线/pedot:pss复合薄膜的制备方法。



背景技术:

te纳米线(te-nws)材料因为具有较高的量子限域效应、特殊的能带结构和固有的内收敛性可以提供额外的电子通道实现电导率和seebeck系数的同时提高,在热电材料的研究中具有很好的应用潜能。已经有理论计算表明低维te纳米材料的热电优值(zt),可以在室温左右达到0.35,鼓舞了人们将te纳米材料应用于热电材料领域的研究。液相化学方法(水热法)是一种制备低维纳米材料的常用方法,这种方式不需要使用复杂的设备,价格低廉,产率高,并且可以很方便的进行掺杂和调节化学组成,具有良好的规模化生产前景。

聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐具有成膜性能好、透过率高,热稳定性好、热导率低等优点在热电材料领域具有广泛的应用价值。其原始水溶液浓度为13.6mg/ml,固有热电性能参数为:电导率(0.5scm-1),seebeck系数(15μvk-1),热导率(0.17~0.3wm-1k-1),气凝胶也称为干凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶。气凝胶最初是由s.kistler命名,由于他采用超临界干燥方法成功制备了二氧化硅气凝胶,故将气凝胶定义为:湿凝胶经超临界干燥所得到的材料,称之为气凝胶。在90年代中后期,随着常压干燥技术的出现和发展,目前普遍接受的气凝胶的定义是:不论采用何种干燥方法,只要是将湿凝胶中的液体被气体所取代,同时凝胶的网络结构基本保留不变,这样所得的材料都称为气凝胶。气凝胶的结构特征是拥有高通透性的圆筒形多分枝纳米多孔三位网络结构,拥有极高孔洞率、极低的密度、高比表面积、超高孔体积率,其体密度在0.003~0.500gcm-3范围内可调。

气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。这种新材料看似脆弱不堪,其实非常坚固耐用,最高能承受1400摄氏度的高温。气凝胶的这些特性在航天探测上有多种用途。俄罗斯“和平”号空间站和美国“火星探路者”探测器上,都用到了气凝胶材料。因气凝胶有易压缩的特点,可用较高的压力使其变成薄膜材料。



技术实现要素:

本发明要解决的技术问题是提供一种高电导率,柔性,形状可调控的te纳米线/pedot:pss复合薄膜的制备方法。

为解决上述技术问题,本发明提供技术方案如下:

一方面,提供一种te纳米线/pedot:pss复合薄膜的制备方法,包括:

步骤1:采用高温水热法在碱性环境下制备碲(te)纳米线分散液;

步骤2:将不同体积浓度的pedot:pss水溶液添加到te纳米分散液中;

步骤3:将步骤2所得溶液冷冻干燥即得凝胶复合薄膜。

进一步的,所述步骤1中,te纳米线分散液的制备方法包括:

步骤11:将亚碲酸钠及表面活性剂混合,完全溶于水溶液中;

步骤12:向上述水溶液中加入碱及还原剂,搅拌均匀得到混合溶液;

步骤13:向上述混合溶液置入高温反应釜中,反应一段时间,冷却至室温;

步骤14:向步骤13制备的反应液中加入有机溶剂,搅拌均匀,离心后,即得te纳米线分散液。

其中,所述步骤11中,表面活性剂为聚乙烯吡咯烷酮;亚碲酸钠及表面活性剂的浓度比为1:5-6。

其中,所述步骤12中,碱为氨水,还原剂为水合肼,碱与水溶液的体积比为1:15-20;还原剂与水溶液的体积比为1:25-30。

其中,所述步骤13中,高温为120℃-200℃,反应时间为3-24h。

其中,所述步骤14中,有机溶剂为丙酮,te纳米线分散液的质量浓度为1.5-10mg/ml。

进一步的,所述te纳米线的直径为30-50nm。

进一步的,所述步骤2中,pedot:pss水溶液的体积浓度为5%-50%。

进一步的,所述步骤3中,冷冻干燥的条件为液氮冷冻5min后置于真空冷冻干燥机干燥。

进一步的,所述干燥时间为24-48小时。

本发明具有以下有益效果:

本发明利用单向冷冻技术在聚合物同时作为交联剂和复合材料的情况下,成功地将一维te纳米线组装成了具有三维有序多级结构的可自支撑高热电性能凝胶复合薄膜,并提升了其热电性能;通过优化te纳米线制备条件及pedot:pss含量,得到导电性能最佳的te纳米线/pedot:pss复合薄膜。

附图说明

图1为本发明的实施例1制备的te-nws扫描电子显微镜图片;

图2为本发明的实施例2制备的te-nws扫描电子显微镜图片;

图3为本发明的实施例3制备的te-nws扫描电子显微镜图片;

图4为本发明的实施例4制备的te-nws扫描电子显微镜图片;

图5为本发明的实施例5制备的te-nws扫描电子显微镜图片;

图6为本发明的实施例6制备的te-nws扫描电子显微镜图片;

图7为本发明的实施例7制备的te-nws扫描电子显微镜图片;

图8为本发明的实施例8制备的te-nws扫描电子显微镜图片;

图9为本发明的实施例9制备的te-nws扫描电子显微镜图片;

图10为本发明的实施例10制备的te-nws扫描电子显微镜图片;

图11为本发明的实施例3制备的te-nws水溶液透射电子显微镜图片;

图12为本发明的实施例11制备的te-nws/pedot:pss凝胶复合薄膜扫描电子显微镜图片。

具体实施方式

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。

本发明针对现有技术中薄膜材料导电性能差的问题,提供一种te纳米线/pedot:pss复合薄膜的制备方法。

需要说明的是本发明中实施例及对比例中使用试剂及材料,如无特殊说明,均可通过商业途径得到。本发明中采用的pedot:pss水溶液购买于德国拜尔公司(质量浓度为13.6mg/ml)。应当指出,对于本领域技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

实施例1-10

te纳米分散液的制备方法,包括:

步骤11:称取0.1948g亚碲酸钠和1.2g聚乙烯吡咯烷酮,加入到装有86ml去离子水的烧杯中,充分搅拌使其完全溶解;

步骤12:用移液管量取7.5ml氨水和4.5ml水合肼加入到上述溶液中,并充分搅拌使其混合均匀;

步骤13:将烧杯中的溶液转移到高温反应釜中反应(反应条件如下表1所示),反应完毕后取出,缓慢冷却至室温;

步骤14:取出反应釜中的溶液,加入到含有180ml的丙酮中,充分搅拌后离心,并配成10mg/ml的分散液。

表1

发明人为了证明高温反应条件对te纳米线的性能影响,取上述实施例1-10制备的2mlte纳米分散液(te-nws)加入到冷冻干燥容器中,用液氮冷冻5分钟后放入真空冷冻干燥机中,干燥24小时,对其进行电子显微镜扫描,结果如图1-11所示,从图1到图4可以看出,当水热反应温度较低时,不利于其形成te纳米线结构,随着温度的增加,te纳米线至直径变小,且结构趋于均一。通过对比其sem结构及其性能发现180℃为最适温度;当固定反应温度为180℃时,反应时间不同,合成的te纳米线结构略有不同,图5为反应3小时的sem图,可以看出其te纳米线直径较细,但由于时间较短,有大量pvp残留;图6到图9是延长反应时间到7小时至24小时,可以看出随着反应时间的延长,te纳米线的直接逐渐变大,趋向于纳米片状结构生长;图10是反应条件为150℃,10小时的条件下,制备得到的te纳米线sem结构图,可以看出,反应温度降低导致制备的te纳米线结构不均,尺寸差异较大,不利于得到均匀结构的te纳米线材料;图11是条件为180℃,5小时制备的te纳米线的tem图,从图中可以看到所制备的te纳米线具有结构均一,直径小于20nm的特点;本发明中在高温条件(180℃、5h)制备出的te纳米线性能最佳。

实施例11

te纳米线/pedot:pss复合薄膜的制备方法,包括:

步骤1:称取0.1948g亚碲酸钠和1.2g聚乙烯吡咯烷酮,加入到装有86ml去离子水的烧杯中,充分搅拌使其完全溶解;

步骤2:用移液管量取7.5ml氨水和4.5ml水合肼加入到上述溶液中,并充分搅拌使其混合均匀;

步骤3:将烧杯中的溶液转移到高温反应釜中,在180℃下反应5小时,反应完毕后取出,缓慢冷却至室温;

步骤4:取出反应釜中的溶液,加入到含有180ml的丙酮中,充分搅拌后离心,并配成10mg/ml的分散液;

步骤5:向te纳米线分散液中加入体积浓度为5%的pedot:pss水溶液,得到te-nws/pedot:pss混合溶液;

步骤6:取2mlte-nws/pedot:pss混合溶液加入到冷冻干燥容器中,用液氮冷冻5分钟后放入真空冷冻干燥机中,干燥24小时。

如图12所示,从sem形貌结构中可以明显看到属于te纳米线的线性网络结构。一方面,可能是由于当te纳米线含量较少时,主要存在pedot:pss包裹te纳米线的结构,因此宏观上会出现线性条纹。另一方面,线状结构的出现还可能是水热法制备的te纳米线过程中会大量pvp残留,在形成凝胶过程中导致部分te纳米线团聚造成的。

实施例12

该实施例中,pedot:pss水溶液的体积浓度为10%,其余试剂及制备步骤均与实施例11相同。

实施例13

该实施例中,pedot:pss水溶液的体积浓度为20%,其余试剂及制备步骤均与实施例11相同。

实施例14

该实施例中,pedot:pss水溶液的体积浓度为30%,其余试剂及制备步骤均与实施例11相同。

实施例15

该实施例中,pedot:pss水溶液的体积浓度为40%,其余试剂及制备步骤均与实施例11相同。

实施例16

该实施例中,pedot:pss水溶液的体积浓度为50%,其余试剂及制备步骤均与实施例11相同。

由于篇幅所限,为了进一步说明本发明制备的te纳米线/pedot:pss复合薄膜的有益效果,仅以最优实施例11为例,设置相关的对比例,并进行性能验证。

对比例1

te纳米线/pedot:pss复合薄膜的制备方法,包括:

步骤1:称取0.1948g亚碲酸钠和1.2g聚乙烯吡咯烷酮,加入到装有86ml去离子水的烧杯中,充分搅拌使其完全溶解;

步骤2:用移液管量取7.5ml氨水和4.5ml水合肼加入到上述溶液中,并充分搅拌使其混合均匀;

步骤3:将烧杯中的溶液转移到高温反应釜中,在180℃下反应5小时,反应完毕后取出,缓慢冷却至室温;

步骤4:取出反应釜中的溶液,加入到含有180ml的丙酮中,充分搅拌后离心,并配成10mg/ml的分散液;

步骤5:将te纳米线分散溶液加入到冷冻干燥容器中,用液氮冷冻5分钟后放入真空冷冻干燥机中,干燥24小时;

步骤6:将步骤5制备出的te纳米线浸泡到体积浓度为5%的pedot:pss水溶液,得到te-nws/pedot:pss混合溶液;

步骤7:取2mlte-nws/pedot:pss混合溶液加入到冷冻干燥容器中,用液氮冷冻5分钟后放入真空冷冻干燥机中,干燥24小时。

对比例2

本对比例中,仅将步骤2中氨水替换为氢氧化钠(质量浓度为20%)。其他组分及含量均与实施例11相同。

对比例3

本对比例中,仅将步骤4中丙酮替换为乙醇。其他组分及含量均与实施例11相同。

为了说明本发明制备的te纳米线/pedot:pss复合薄膜的有益效果,将上述实施例11-16及对比例1-3制备出的凝胶材料,经20兆帕的压力制备成凝胶薄膜材料,测定其电导率、seebeck系数、功率因子,具体数据见表2。

表2

由表2可知,本发明制备的te纳米线/pedot:pss复合薄膜在实施例11的条件下制备出性能最佳。其中,对比例1采用后复合方式(先将te纳米线凝胶材料通过冷冻干燥的方法制备出,再将相应含量的pedot:pss溶液浸泡处理),后复合具有明显的不足:1,凝胶材料具有疏松多孔结构特点,且具有较强的吸水性,这种后处理的方式不利于其薄膜的形成;2,凝胶材料孔隙较小,因此很难实现对其复合薄膜的干燥过程;3,后处理的方式会导致其大量吸水,破坏原有te纳米线的凝胶网络。4,后处理的方式复合会导致大量pedot:pss残留在其表面,不利于其薄膜性能的提高。与对比例2和3相比,氨水的碱性适中,并且利用丙酮能够得到溶液均一稳定的te纳米线,而乙醇会导致大量te纳米线聚集,不利于其复合以及凝胶成膜过程,尽管氢氧化钠对pedot:pss具有提高其seebeck系数的作用,但其较低的电导率,以及对te纳米线溶液均匀性的不利影响,不适合应用于本专利中。

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1