一种水性聚氨酯乳液的制备方法及其制得的水性聚氨酯乳液和其应用与流程

文档序号:17154276发布日期:2019-03-19 23:47阅读:436来源:国知局

本发明属于聚氨酯制备领域,涉及一种无丙酮、自催化的环保水性聚氨酯乳液的制备方法及其制得的水性聚氨酯乳液和其应用。



背景技术:

纺织品数码印花是一种无需制版的印花技术,其工序简单,生产周期短,可以缩短打样时间并且降低打样成本。纺织品数码印花可以实现全程数字化,同时印花的色彩丰富,不受传统印花的套色限制,印花精度高。由于按需喷印,数码印花浮色较少,后处理过程较短,较之传统印花废水废墨排放量,数码印花可降低80~90%,能耗大幅度降低。因而数码印花适应当前按需设计、小批量、高质量的市场发展趋势以及绿色环保的生产要求。

由于聚氨酯的弹性好、成膜耐磨性高、具有良好的粘结性并且抗拉强度高,被广泛应用于皮革涂饰和纺织品涂料印花等方面。过去常用的溶剂型聚氨酯不可避免的会排放出大量挥发性有机化合物(voc)。随着环境的进一步恶劣以及社会环保意识的提高,采用环保型无溶剂水性聚氨酯(wpu)已经成为了主要趋势。目前工业生产水性聚氨酯乳液常用丙酮法,该法生产过程中耗用大量有机溶剂丙酮,成本高,效率低,安全性差,在生产后期需增加抽真空减压蒸馏丙酮的工序,且难以脱除干净,不利于工业生产。而采用预聚体无丙酮法合成水性聚氨酯乳液,工艺简单,生产步骤少,便于连续生产。目前常见的无丙酮wpu合成中,一般使用2,2-二羟甲基丙酸(dmpa)作为亲水性二羟基化合物,但dmpa熔点高达170~180℃,溶解能力较低,在无溶剂条件下,预聚反应是非均质的,聚合时间长,所得乳液粒径大,这会造成无溶剂wpu乳液的不稳定性,影响wpu膜的机械强度和抗拉强度。采用熔点更低、溶解能力更好的亲水性功能单体并结合在聚氨酯软段中引入亲水基团能够有效解决这一问题。

在工业生产中,水性聚氨酯(wpu)的合成常用到有毒有机催化剂,该催化剂保留在干燥后的wpu膜中,当水性聚氨酯被用于皮革涂饰和纺织品涂料印花等方面时,容易造成接触性中毒。在反应体系中引入具有自催化能力的单体可以代替有毒催化剂的使用。



技术实现要素:

本发明旨在克服现有技术的不足,提供一种水性聚氨酯乳液的制备方法。

本发明的另一目的在于提供所述一种无丙酮、自催化的环保水性聚氨酯乳液。

本发明的另一目的在于提供所述无丙酮、自催化的环保水性聚氨酯乳液的应用。

本发明的上述目的通过如下技术方案予以实现:

一种水性聚氨酯乳液的制备方法,包括如下步骤:

s1.将85~95份多元醇、5~15份的环丁烷四甲酸二酐,加热搅拌,升温至80~120℃,恒温反应4~5h,得到软段羧酸型多元醇;

s2.将30~50份多元醇、40~20份s1所述软段羧酸型多元醇、3~5份亲水性功能单体加入反应容器中,加热至110~130℃,在700±20mmhg的真空度下搅拌1~2h,停真空后立即通入氮气;

s3.往s2.处理完毕的体系中加入18~25份二异氰酸酯,并在80~90℃下反应4~5h,冷却至60~70℃,停止通氮气,加入1.5~2.5份中和剂并搅拌20~30分钟,加入去离子水并进行分散,得到水性预聚物分散体;

s4.待s3.所述水性预聚物分散体冷却至室温后,将2~5份扩链剂在搅拌下缓慢加入其中,在室温下搅拌0.5~1.5小时,得到所述水性聚氨酯乳液;

所述亲水性功能单体为二羟甲基丁酸。

通过本发明s1步骤的反应温度、时间、投料比例的控制,制备得到的软段羧酸型多元醇,具有合适的羧基值。

优选地,所述软段羧酸型多元醇的羧基值优选为0.9~1mmol/g。此时乳液反应体系稳定。当羧基值过高时,wpu耐水性显著降低;羧基值过低时在链延伸过程中可能出现破乳现象,影响wpu储存稳定性。

优选地,所述软段羧酸型多元醇数均分子量优选为1000~3000。

优选地,所述多元醇优选为聚醚二醇、聚四氢呋喃醚二醇、聚酯二醇、聚乙二醇的任意一种或几种的混合物,所述多元醇的分子量为1000~3000。

优选地,所述亲水性功能单体优选为二羟甲基丁酸(dmba)。

优选地,所述二异氰酸酯优选为异氟尔酮二异氰酸酯、六亚甲基二异氰酸酯、甲苯二异氰酸酯、二苯基甲烷二异氰酸酯中的任意一种或几种的混合物。

优选地,所述中和剂优选为三乙胺、三乙醇胺、二乙醇胺、n,n-二甲基乙醇胺中的任意一种或几种的混合物。

优选地,所述扩链剂优选为乙二胺、1,4-丁二醇、甲基二乙醇胺中的任意一种或几种的混合物。

优选地,s1.中,所述多元醇在参加反应前先进行真空干燥处理。

优选地,s3.中,所述分散为在1500rpm的搅拌速度下进行分散。

为了更好地使反应进行,优选地,s4.中,将所述扩链剂先溶于适量去离子水中,形成溶液,再将其添加至反应中。

本发明选用的多元醇的分子量为1000~3000,这是因为当多元醇的分子量小于1000时,会导致所制备的聚氨酯乳液柔韧性下降;当分子量大于3000时,作为硬段的异氰酸酯的相对含量降低,影响印花涂层的抗拉伸能力。

本发明选用的亲水单体为dmba,目前聚氨酯合成常采用dmpa作为亲水单体,但dmpa熔点高达170~180℃,溶解能力较低,在无溶剂条件下,预聚反应是非均质的,聚合时间长,所得乳液粒径大,黏度高,这会造成无溶剂wpu乳液的不稳定性,影响wpu膜的机械强度和抗拉强度。采用熔点更低、溶解能力更好的亲水性功能单体dmba并结合在聚氨酯软段中引入亲水基团能够有效解决这一问题。

本发明通过采用环丁烷四甲酸二酐和多元醇经酯化法合成了羧基分布在软段的多元醇即软段羧酸型多元醇,该多元醇分子链柔性大,熔点低,且长链二醇上的羧基经过改性,亲水性高。同时以dmba作为亲水单体,在聚氨酯硬段引入羧基,由于dmba分子量小,其与异氰酸酯反应速率大于软段羧酸型多元醇,反应速率的差异导致不同聚氨酯分子上亲水基团分布不均匀,造成wpu粒径呈二元分布,一般来说,多元粒径分布有利于制得高固含量的wpu。本发明通过采用环丁烷四甲酸二酐和多元醇酯化法合成软段羧酸型多元醇,在pu剪切乳化时,有羧基位于软段上,软段的链段运动更自由,使其在乳胶例子外围均匀分布,为聚氨酯提高分散稳定性的效率更高。

本发明通过采用环丁烷四甲酸二酐和多元醇酯化法合成软段羧酸型多元醇并以dmba作为亲水单体合成了wpu,聚氨酯软段上的羧基形成的氢键,可以起到弹性交联点的作用而提高聚氨酯力学性能。硬段上的dmba与氨基甲酸酯基以及脲键间有强氢键作用,氢键作用可以导致硬段的自缔合,从而作为一种重要的微相分离驱动力,由微相分离而生成的周期性的微相结构在热力学上是稳定的,使聚氨酯具有良好的力学性能和机械性能,用于数码印花时提高耐摩擦和水洗牢度。

同时,本发明的软段羧酸型多元醇的羧基可以通过氢键产生亲核醇活化和亲电子异氰酸酯活化。其自催化能力可加快聚合反应速度,避免使用有机锡等有毒催化剂,可实现单体的完全转化并且催化效率高于有机铋等环境较友好的金属有机催化剂。

一种所述制备方法制得的水性聚氨酯。

所述水性聚氨酯在制备纺织数码印花颜料墨水中的应用。

一种纺织数码印花颜料墨水的制备方法,由如下方法制备得到:

将25~35份去离子水,10~40份保湿剂,0.1~1份表面活性剂混合搅拌,然后加入所述水性聚氨酯混合搅拌,再加入15~25份纳米色浆搅拌后过滤,即得所述纺织数码印花颜料墨水。

作为一种优选方案,所述保湿剂优选为甘油、乙二醇、异丙醇、1,2-己二醇、山梨醇、二乙二醇丁醚中的一种或几种。

作为一种优选方案,所述表面活性剂优选为十二烷基硫酸钠、十二烷基苯磺酸钠、脂肪醇聚氧乙烯醚或烷基酚聚氧乙烯醚的一种或几种。

作为一种优选方案,所述纳米色浆优选为黄色纳米色浆,具体可以是三洋公司的纳米色浆。

与现有技术相比,本发明具有如下有益效果:

本发明采用无丙酮法制备的水性聚氨酯乳液,其具有更好的分散稳定性、储存稳定性。本发明通过合成软段羧酸型多元醇并以此与特选的亲水单体合成的聚氨酯乳液具有良好的力学性能和机械性能,将其制备成数码印花墨水,该墨水用于数码印花时具有良好的耐摩擦牢度和水洗牢度。

具体实施方式

下面结合具体实施例对本发明作进一步的解释说明,但具体实施例并不对本发明作任何限定。除非特别说明,实施例中所涉及的试剂、方法均为本领域常用的试剂和方法。实施例中,所用试剂均为市售得到。黄色纳米色浆购自三洋公司的颜料纳米色浆。

乳液及墨水性能测试:gb/t19077.1-2008测定喷墨的d90粒度;参照gb/t10247-2008中的旋转法测定喷墨粘度;参照gb/t528-1998测定聚氨酯薄膜的拉伸性能;参照gb/t3920-2008纺织品耐摩擦色牢度测试方法,利用耐摩擦色牢度测试仪进行干/湿摩擦色牢度检测;参照gb/t23985-2009所列气相色谱法检测得溶剂型聚氨酯乳液中的丙酮含量。

实施例1:

本实施例的水性聚氨酯乳液,其具体制备过程如下:

s1.将18.55g的真空干燥处理后的ptmg1000、1.45g的环丁烷四甲酸二酐,加热搅拌,升温至110℃,恒温反应5h,得到软段羧酸型多元醇,其羧基值为0.92mmol/g。

s2.将43.65gptmg2000、23.64gs1得到的软段羧酸型多元醇、4.00gdmba加入装有搅拌棒及与真空泵连接的250ml三口瓶中,加热至120℃,在700mmhg左右的真空度下搅拌反应2h,停真空后立即通氮气。

s3.将烧瓶转移到90℃的水浴锅中,加入16.64gipdi、6.30ghdi,反应5h;冷却至60℃,停止通氮气,加入2.32g中和剂tea并搅拌30分钟,1500rpm搅拌下加入90.00g去离子水,得到水性预聚物分散体。

s4.冷却至室温,将3.62geda溶解在10.00g去离子水中在搅拌下缓慢加入s3.所得水性预聚物分散体,在室温搅拌1小时后得到水性聚氨酯乳液。

所得的水性聚氨酯乳液呈半透明乳白色,固含量为50.0%,粒径(d90,下同)为132nm。拉伸强度(σm)为33.8mpa,断裂伸长率(εb)为1108.4%,在3500rpm转速下离心半小时后无沉淀,放置6个月乳液无沉淀。

将所得水性聚氨酯乳液应用于制备纺织数码印花颜料墨水,其具体制备过程如下:

将7.0份甘油、5.0份乙二醇、5.0份异丙醇、0.5份十二烷基硫酸钠、28.0份去离子水混合搅拌,然后加入上述制备的24.5份水性聚氨酯乳液混合搅拌,再加入30.0份黄色纳米色浆进行搅拌分散后过滤,即得纺织数码印花颜料墨水。

所得的纺织数码印花颜料墨水粘度为3.85cp(100rpm,25℃),老化(60℃,14天)后粘度变化率为3.7%,粒径为212nm。

试验表明,使用epson喷头的打印机将该喷墨喷印在棉布上,经150℃烘培3min,所得的印花图案颜色鲜艳,干擦牢度4级,湿擦牢度4级。

实施例2:

本实施例的水性聚氨酯乳液,其具体制备过程如下:

s1.将18.21g的真空干燥处理后的pea1000、1.78g的环丁烷四甲酸二酐,加热搅拌,升温至110℃,恒温反应4h,得到软段羧酸型多元醇,羧基值为0.91mmol/g。

s2.将48.03gpea2000、25.82gs1.得到的软段羧酸型多元醇、3.00gdmba加入装有搅拌棒及跟真空泵连接的250ml三口瓶中,加热至120℃,在700mmhg左右的真空度下搅拌2h,停真空后立即通氮气。

s3.将烧瓶转移到80℃的水浴锅中,加入15.01gipdi、3.78ghdi,反应5h;冷却至60℃,停止通氮气,加入1.74g中和剂tea并搅拌30分钟,1500rpm搅拌下加入140.00g去离子水,得到水性预聚物分散体。

s4.冷却至室温,将2.61geda溶解在10.00g去离子水中在搅拌下缓慢加入s3.所得水性预聚物分散体,在室温搅拌1小时后得到水性聚氨酯乳液。

所得的水性聚氨酯乳液呈半透明乳白色,固含量为40.0%,粒径为167nm。拉伸强度(σm)为59.8mpa,断裂伸长率(εb)为1210.0%,在3500rpm转速下离心半小时无沉淀,放置6个月乳液无沉淀。

将所得水性聚氨酯乳液应用于制备纺织数码印花颜料墨水,其具体制备过程如下:

将8.0份甘油、4.0份乙二醇、6.0份二乙二醇丁醚、0.5份脂肪醇聚氧乙烯醚、25.0份去离子水混合搅拌,然后加入上述制备的25.5份水性聚氨酯乳液混合搅拌,再加入31.0份黄色纳米色浆进行搅拌分散后过滤,即得纺织数码印花颜料墨水。

所得的纺织数码印花颜料墨水粘度为5.56cp(100rpm,25℃),老化(60℃,14天)后粘度变化率为3.8%,粒径为237nm。

试验表明,使用epson喷头的打印机将该喷墨喷印在棉布上,经150℃烘培3min,所得的印花图案颜色鲜艳,干擦牢度3~4级,湿擦牢度4级。

实施例3:

本实施例的水性聚氨酯乳液,其具体制备过程如下:

s1.将18.70g的真空干燥处理后的ptmg1000、1.31g的环丁烷四甲酸二酐,加热搅拌,升温至120℃,恒温反应5h,得到自合成的软段羧酸型多元醇,羧基值为0.95mmol/g。

s2.将41.07g多元醇ppg2000、22.07gs1.得到的软段羧酸型多元醇、5.00gdmba加入装有搅拌棒及跟真空泵连接的250ml三口瓶中,加热至130℃,在700mmhg左右的真空度下搅拌2h,停真空后立即通氮气。

s3.将烧瓶转移到80℃的水浴锅中,加入18.17gipdi、6.88ghdi,反应5h:冷却至60℃,停止通氮气,加入2.90g中和剂tea并搅拌30分钟,1500rpm搅拌下加入90.00g去离子水,得到水性预聚物分散体。

s4.冷却至室温,将3.90geda溶解在10.00g去离子水中在搅拌下缓慢加入s3.所得水性预聚物分散体,在室温搅拌1小时后得到水性聚氨酯乳液。

所得的水性聚氨酯乳液呈半透明乳白色,固含量为50.1.%,粒径为117nm。拉伸强度(σm)为63.5mpa,断裂伸长率(εb)为779.0%,在3500rpm转速下离心半小时无沉淀,放置6个月乳液无沉淀。

将所得水性聚氨酯乳液应用于制备纺织数码印花颜料墨水,其具体制备过程如下:

将7.5份甘油、4.5份异丙醇、6.0份二乙二醇丁醚、0.5份烷基酚聚氧乙烯醚、25.0份去离子水混合搅拌,然后加入上述制备的26.5份水性聚氨酯乳液混合搅拌,再加入30.0份黄色纳米色浆进行搅拌分散过滤,即得纺织数码印花颜料墨水。

所得的纺织数码印花颜料墨水粘度为4.02cp(100rpm,25℃),老化(60℃,14天)后粘度变化率为1.3%,粒径(d90)为207nm。

试验表明,使用epson喷头的打印机将该喷墨喷印在棉布上,经150℃烘培3min,所得的印花图案颜色鲜艳,干擦牢度4级,湿擦牢度3级。

对比例1:

本对比例采用传统丙酮法合成聚氨酯乳液,其具体制备过程如下:

s1.将73.52gpea2000在烘箱105℃烘2h,并在反应前120℃抽水1h;

s2.将14.17gipdi、5.36ghdi和催化剂(溶于丙酮)有机铋0.05g加入装有搅拌棒及跟真空泵连接的250ml三口瓶中,90℃反应2h;

s3.将4.00gdmba加入三口瓶中,在90℃恒温反应1.5h;

s4.将反应体系降温至60℃后,加入丙酮降黏,加入2.32gtea在搅拌下中和30min;

s5.将体系置于冰水浴中,1500rpm搅拌下向预聚体加入去离子水200.00g,分散15min;

s6.加入0.57geda扩链2h后,真空脱除丙酮,根据得到水性聚氨酯乳液。

所得的水性聚氨酯乳液呈半透明乳白色,固含量为33.3%,粒径为174nm。拉伸强度(σm)为11.9mpa,断裂伸长率(εb)为930.4%。在3500rpm转速下离心半小时无沉淀,放置6个月乳液无沉淀。

将所得水性聚氨酯根据gb/t23985-2009所列气相色谱法检测得丙酮含量为0.9%。

将所得水性聚氨酯乳液应用于制备纺织数码印花颜料墨水,其具体制备过程如下:

将7.0份甘油、5.0份乙二醇、5.0份异丙醇、0.5份十二烷基硫酸钠、28.0份去离子水混合搅拌,然后加入上述制备的24.5份水性聚氨酯乳液混合搅拌,再加入30.0份黄色纳米色浆进行搅拌分散后过滤,即得纺织数码印花颜料墨水。

所得的纺织数码印花颜料墨水粘度为8.85cp(100rpm,25℃),老化(60℃,14天)后粘度变化率为10.7%,粒径为252nm。

试验表明,使用epson喷头的打印机将该喷墨喷印在棉布上,经150℃烘培3min,所得的印花图案颜色鲜艳,干擦牢度3级,湿擦牢度2级。

总结对比例1与实施例1的分散过程发现,对比例1的聚氨酯分散性不如实施例1,并且其固含量较实施例1得到的聚氨酯要低。同时,本发明所得的实施例1水性聚氨酯老化粘度变化率更低,具有更好的储存稳定性和耐热性能。实施例1合成过程中无需有机溶剂,而对比例1所得聚氨酯乳液仍有丙酮残留,voc排放更高。并且对比例1所得聚氨酯乳液配制墨水印花后的干摩擦牢度、湿摩擦牢度均低于实施例1所得聚氨酯乳液所配制墨水。

对比例2:

无溶剂聚氨酯乳液,其具体制备过程如下:

s1.将74.11gpea2000、3.00gdmba加入装有搅拌棒及跟真空泵连接的250ml三口瓶中,加热至120℃,在700mmhg左右的真空度下搅拌3h,停真空后立即通氮气;

s2.将烧瓶转移到80℃的水浴锅中,加入15.28gipdi、3.86ghdi,反应5h;冷却至60℃,停止通氮气,加入1.74g中和剂tea并搅拌30分钟,1500rpm搅拌下加入140.00g去离子水,得到水性预聚物分散体;

s3.冷却至室温,将1.96geda溶解在10.00g去离子水中在搅拌下缓慢加入s2.所得水性预聚物分散体,在室温搅拌1小时后得到水性聚氨酯乳液。

所得的水性聚氨酯乳液呈半透明乳白色,固含量为40.0%,粒径为230nm。拉伸强度(σm)为17.4mpa,断裂伸长率(εb)为510.0%。在3500rpm转速下离心半小时有微量沉淀,放置6个月乳液底部有少量沉淀。

将所得水性聚氨酯乳液应用于制备纺织数码印花颜料墨水,其具体制备过程如下:

将8.0份甘油、4.0份乙二醇、6.0份二乙二醇丁醚、0.5份脂肪醇聚氧乙烯醚、25.0份去离子水混合搅拌,然后加入上述制备的25.5份水性聚氨酯乳液混合搅拌,再加入31.0份黄色纳米色浆进行搅拌分散后过滤,即得纺织数码印花颜料墨水。

所得的纺织数码印花颜料墨水粘度为15.73cp(100rpm,25℃),老化(60℃,14天)后粘度变化率为7.2%,粒径为301nm。

试验表明,使用epson喷头的打印机将该喷墨喷印在棉布上,经150℃烘培3min,所得的印花图案颜色鲜艳,干擦牢度3级,湿擦牢度3级。

从对比例2与实施例2的对比可以看出,采用本发明所述软段羧酸型多元醇作为聚氨酯的原料,可显著降低聚氨酯粒径和粘度。通过比较实施例2与对比例2聚氨酯薄膜的拉伸强度和断裂伸长率可知,由于实施例2得到的聚氨酯软段上的羧基形成的氢键,可以起到弹性交联点的作用而显著增强聚氨酯膜力学机械性能。

通过离心稳定性与储存稳定性的对比可见实施例2中由于聚氨酯软段引入了羧基,其乳液分散稳定性明显高于对比例2的乳液稳定性。

并且对比例2所得聚氨酯乳液做成墨水印花后的干摩擦牢度、湿摩擦牢度均低于实施例2所得聚氨酯乳液。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1