中空型制品的制造方法

文档序号:3731036阅读:150来源:国知局
专利名称:中空型制品的制造方法
发明的
背景技术
1.发明领域本申请涉及制造如装汽油等燃料的燃料容器的中空型制品的方法。
2.现有技术描述作为汽车燃料箱,如果非常重视机械强度,则会使用通过对铁板等类似物进行冲压和焊接而制成的金属燃料箱,而如果加工性能很重要的话,则会使用吹塑的合成树脂燃料箱。特别的,为了减少汽车的重量并且拓展设计空间,由热塑性树脂材料制成的燃料箱目前已投入了使用。
在制造大型吹制燃料箱时,当被加热的型坯以可流动态从模塑设备的上部注入到模具中时,型坯上部的厚度会变得比其下部的厚度薄。其结果是,由此制造的成型制品在某些情况下厚度不均匀。如果燃料箱的形状非常不规则或者复杂,那么型坯在模具中的延展度就很可能各部分之间会不相同,从而使得厚度不均匀。因此,难于控制产品的厚度。为了获得令人满意的机械强度等,产品的厚度就需要整体上加厚。然而这样就增加了燃料箱的重量。在吹塑过程中,型坯是通过将其外周夹紧在模具的两个分离面之间进行模塑的。因此,形成了相对大尺寸的毛刺,从而增加了废料量,降低了产值。
由于型坯在吹塑过程中是在模具中伸展的,因此在正制造的燃料箱中配置燃料泵单元及浮球等就受到了限制。为了弥补这一不足,曾建议将燃料箱的上部和下部分别成型,然后将两者粘合成整体燃料箱(JP 10-157738A)。
为了保护环境,要求燃料箱具有燃料隔离性能,以防止燃料等通过罐壁泄漏进周围环境中。为了确保这一点,通常以这样的工艺制造燃料箱,在这种制造工艺中,首先在模具中将燃料隔离膜真空形成为具有燃料箱形状的隔离层,然后再在上述隔离层上注射成型热塑性树脂的衬底层,以使得隔离层能够朝向燃料箱的内侧。然而,由于隔离层在注射模塑的过程中有时会受到抻拉,由此而制造出的燃料箱其隔离性能可能不足够好。同时,有些情况下隔离层和由热塑性树脂制成的衬底层之间的粘结性或者粘结力不足。此外,有时候使得隔离层完全地延伸至周边端也很困难,这也降低了燃料隔离性能。
在JP2001-129851A中,提出了两部分燃料箱的生产过程,其中每一部分在各自的模具中注射成型,通过滑动模具实现两模塑部分的对接,然后将熔融树脂注射到对接面四周以将两部分熔接为一个整体。然而,上述过程需要一个复杂的设备来滑动模具,这就提高了生产成本。
JP2004-98886A中公开了燃料箱的生产过程,它将两个组成部分沿其开口端周边粘结在一起,其中每个组成部分通过对具有低燃料渗透性的热塑性树脂进行注射模塑或者注压模塑来制造。
发明综述基于上述现有技术中存在的问题,本发明的目的是提供一种通过使用简单的装置以简单的方式制造中空型制品如燃料容器的方法,这种中空型制品具有卓越的燃料隔离性能。另一个发明目的是制造如燃料箱等的中空型制品,其重量得到减轻。
为达到上述目标,在广泛的研究基础之上,发现通过以下方法可以容易地制造出具有优越的燃料阻隔性能的中空型制品例如燃料箱即使用由形成热塑性树脂片材而生产的至少一个组件,该片材具有由燃料阻隔涂层组合物制成的燃料阻隔层。本申请即是建立在上述发现的基础之上。
因而,本发明提供中空型制品的制造方法,所述制品的内表层将和燃料接触,所述制造方法包括将两个或者更多的组件沿其边沿粘结成一个整体,其中至少一个所述组件是通过将燃料阻隔涂层组合物涂覆在热塑性树脂片材的单面或者双面以得到具有燃料阻隔层的片材,并且通过压力成型、真空成型或者压力/真空成型使所述片材形成所述组件。
本发明的详细介绍这里所说的中空型制品包括具有和燃料相接触的内表面的任何形状的制品,如用于供燃料的燃料容器,用于储燃料的燃料容器,以及在使用中与上述容器相关的各种形状的部件,如,软管,管子,通道,龙头,接头等。所述中空型制品用于汽车、摩托车、轮船、飞机、发电机、工业或者农业机械的燃料供应系统,并且也用于其他使用燃料的应用中。
这里所说的燃料包括汽油,与甲醇、乙醇或者甲基叔丁基醚混合的含氧汽油,重油,轻油,煤油等等。
在本发明中,热塑性树脂片材所使用的热塑性树脂的类型并不是关键的,并且所述热塑性树脂片材可以由两种或者两种以上的热塑性树脂混合物制成。所述热塑性树脂片材可以是单层的或者多层的,每一层可以由单一热塑性树脂或树脂混合物制成。所述热塑性树脂片材的厚度优选从0.1至50mm,更优选从0.5至40mm,以1-30mm为最佳。
热塑性树脂的例子包括聚烯烃树脂,例如聚乙烯和聚丙烯;聚酯树脂,如聚对苯二酸乙二酯和聚对苯二酸丁二酯;聚酰胺树脂,如尼龙6,尼龙6,6,聚(间亚二甲苯基己二酰二胺)(N-MXD6);聚丙烯腈树脂;聚(甲基)丙烯酸树脂;聚苯乙烯树脂;聚碳酸酯树脂;皂化的乙烯-醋酸乙烯酯共聚物(EVOH);和聚(乙烯醇)树脂。同样可以使用的是用马来酸酐等改性聚乙烯或聚丙烯而得到的粘合性聚酰胺树脂。考虑到生产的经济性,加工性和机械强度等,热塑性树脂片材优选由聚乙烯制成,由单层聚乙烯制成的热塑性树脂片材则更好。
在60℃时燃料阻隔层的燃料传输系数优选是2g·mm/m2·天或更低,更优选是1g·mm/m2·天或更低,最优选是0.5g·mm/m2·天或更低。如果是2g·mm/m2·天或更低,那么燃料阻隔层的厚度就可以更薄以减少涂覆量,这使得控制燃料阻隔层厚度的均匀容易,并且也更加经济。
燃料阻隔层包含下式1所表示的结构单元 其含量优选为40%至98%重量,更优选为50%至90%重量,最优选为55%至80%重量。
燃料阻隔涂层组合物优选包含环氧树脂和环氧树脂固化剂,因为燃料阻隔层于相对较低的温度形成。
环氧树脂可以是脂肪族、环脂族、芳族及杂环族的任意一种。为了获得高的燃料阻隔性,优选分子中具有芳族单元的环氧树脂,更优选分子中具有式1所示结构单元的环氧树脂。其中具体的例子包括具有衍生自间苯二甲胺的缩水甘油基胺单元的环氧树脂,具有衍生自1,3-双(氨甲基)环己烷的缩水甘油基胺单元的环氧树脂,具有衍生自二氨基二苯甲烷的缩水甘油基胺单元的环氧树脂,具有衍生自对氨基苯酚的缩水甘油基胺单元和/或具有缩水甘油基醚单元的环氧树脂,具有衍生自双酚F的缩水甘油基胺单元的环氧树脂,具有衍生自苯酚的线型酚醛树脂的缩水甘油基胺单元的环氧树脂,和具有衍生自间苯二酚的缩水甘油基胺单元的环氧树脂。其中优选具有衍生自间苯二甲胺的缩水甘油基胺单元的环氧树脂,具有衍生自1,3-双(氨甲基)环己烷的缩水甘油基胺单元的环氧树脂,具有衍生自双酚F的缩水甘油基胺单元的环氧树脂,和具有衍生自间苯二酚的缩水甘油基胺单元的环氧树脂。
燃料阻隔涂层组合物的环氧树脂组分优选包含具有衍生自双酚F的缩水甘油醚单元的环氧树脂或者具有衍生自间苯二甲胺的缩水甘油基胺单元的环氧树脂作为主要成分,更优选包含具有衍生自间苯二甲胺的缩水甘油基胺单元的环氧树脂作为主要组分。
为了提高诸如柔韧性,抗冲击性,防潮性及耐热性等性能,环氧树脂可以用所希望的混合比率结合使用。
通过表卤代醇与醇、酚和胺中至少一种反应制得环氧树脂。例如,具有衍生自间苯二甲胺的缩水甘油基胺单元的环氧树脂是通过表氯醇与间苯二甲胺加成反应而制得的。根据间苯二甲胺中四个氨上氢的取代程度,衍生自间苯二甲胺的缩水甘油基胺单元包括单-,二-,三-和四缩水甘油基胺单元。通过改变表氯醇与间苯二甲胺的反应摩尔比,每一个缩水甘油基胺单元的比例是可控的。例如,主要包含四缩水甘油基胺单元的环氧树脂是通过约4倍摩尔的表氯醇与间苯二甲胺进行加成反应制得。
表氯醇与醇、酚和胺中至少一种在碱,如氢氧化钠的存在下进行反应,反应温度是20至140℃,如果使用醇和酚则优选50至120℃,如果使用胺则优选20至70℃,然后分离所产生的卤化碱(alkali halide)。环氧树脂的数均分子量取决于表氯醇相对于所使用的醇、酚和胺的反应摩尔比,其值为约80到约4000,优选为约200到约1000,更优选为约200至约500。
用于环氧树脂的固化剂可以是脂肪族化合物,环脂族化合物,芳族化合物及杂环化合物中任意一种,也可以选自环氧树脂的常见固化剂如,多元胺,苯酚,酸酐及羧酸。固化剂根据所需要的燃料阻隔性能的程度进行选取。
多元胺的例子包括脂肪族胺,如乙二胺,二亚乙基三胺,三亚乙基四胺和四亚乙基五胺;包含芳香环的脂肪族胺,如间苯二甲胺和对苯二甲胺;环脂族胺,如1,3-双(氨甲基)环己烷,异佛尔酮二胺和降冰片烷二胺;和芳族二胺,如二氨基二苯基甲烷和间亚苯基二胺。
同样可以用作固化剂的是衍生自这些多元胺的环氧树脂,多元胺与单缩水甘油基化合物的反应产物,多元胺与有2至4个碳原子的环氧烷的反应产物,多元胺与表氯醇的反应产物,多元胺与具有至少一个酰基的可低聚多官能化合物的反应产物,该化合物的酰基能与多元胺反应形成酰胺单元,以及多元胺与具有至少一个酰基的可低聚多官能化合物和/或一元羧酸及其衍生物中的至少一种的反应产物,该化合物的酰基能与多元胺反应形成酰胺单元。
苯酚的例子包括多羟基苯酚,例如邻苯二酚,间苯二酚和对苯二酚;和可熔型酚醛树脂。酸酐和羧酸的例子包括脂肪酸酐,例如十二碳烯琥珀酸酐和多己二酸酐;环脂族酸酐,如(甲基)四氢化邻苯二甲酸酐和(甲基)六氢化邻苯二甲酸酐;芳族酸酐,如邻苯二甲酸酐,1,2,4-苯三酸酐和1,2,4,5-苯四酸酐;以及构成前述酸酐的羧酸。
为了获得高燃料阻隔性能,优选在其分子中有芳族单元的固化剂,更优选的是在其分子中有式1所示结构单元的固化剂。其具体的例子包括间苯二甲胺和对苯二甲胺,衍生自间-和/或对-苯二甲胺的环氧树脂,间-和/或对-苯二甲胺与单缩水甘油基化合物的反应产物,间-和/或对-苯二甲胺与具有2至4个碳原子的环氧烷的反应产物,间-和/或对-苯二甲胺与表氯醇的反应产物,间-和/或对-苯二甲胺与具有至少一个酰基的可低聚多官能化合物的反应产物,间-和/或对-苯二甲胺与具有至少一个酰基的可低聚多官能化合物以及一元羧酸及其衍生物中的至少一种的反应产物,上述酰基可与间-和/或对-苯二甲胺反应形成酰胺单元。
为了获得高燃料阻隔性能和与热塑性树脂片材的良好的粘结性,特别优选下述组分A与组分B的反应产物或组分A,B及C的反应产物作为环氧树脂的固化剂。
组分A间苯二甲胺或对苯二甲胺组分B具有至少一个酰基的可低聚多官能化合物,该酰基能够与间-或对-苯二甲胺反应形成酰胺单元。
组分C具有1-8个碳原子的一元羧酸和/或其衍生物。
组分B的例子包括羧酸,如丙烯酸,甲基丙烯烯酸,马来酸,富马酸,琥珀酸,苹果酸,酒石酸,己二酸,间苯二甲酸,对苯二甲酸,1,2,4,5-苯四酸和1,2,4-苯三酸;前述羧酸的衍生物,如酯,酰胺,酸酐和酰氯,其中优选丙烯酸和甲基丙烯酸。
组分C的例子包括甲酸,醋酸,丙酸,丁酸,乳酸,乙醇酸,苯甲酸,以及前述羧酸的衍生物,如酯,酰胺,酸酐和酰氯。
由于酰胺单元有高的粘附性,因此如果固化剂中含有大量的酰胺单元,那么燃料阻隔层的燃料阻隔性和燃料阻隔层与热塑性树脂片材之间的粘结强度会进一步增强。
按照以下摩尔比例,即(组分B的反应官能团)/(组分A的氨基)或者(组分B和组分C的总反应官能团)/(组分A的氨基),组分A与组分B或者组分A、组分B与组分C之间的反应摩尔比例优选从0.3至0.97。如果小于0.3,则没有足够的酰胺单元被引入环氧树脂的固化剂,从而不能够获得高的燃料阻隔性能以及与热塑性树脂片材之间良好的粘结性。此外,残留在固化剂中挥发性组分的含量的增加会导致固化产品中气味的产生。更进一步,由于环氧基与氨基反应所产生的羟基在固化产品中含量的提高,在高湿度环境下燃料阻隔性能极大的降低了。如果高于0.97,那么与环氧树脂反应的氨基量就会不足,从而不能获得高的抗冲击强度和耐热性,并且对有机溶剂和水的溶解性降低。为了获得显示出高燃料阻隔性、高粘结强度和甚至在高湿环境下的高燃料阻隔性而且不产生气味的固化产品,优选反应摩尔比例为0.6-0.97。如果还需要与热塑性树脂片材之间更高的粘结性,酰胺单元的含量优选占固化剂总重量的至少6%,更优选为6-30%。特别优选的环氧树脂的固化剂是间苯二甲胺和丙烯酸、甲基丙烯酸以及它们的衍生物中至少一种进行反应的产物。
燃料阻隔涂层组合物通过任何一种常用的方法施用在热塑性树脂片材上,如浸涂,喷涂,刷涂,辊涂和浇涂。
通过调整燃料阻隔涂层组合物的浓度和温度,对热塑性树脂片材进行涂覆,这样就得到了具有高燃料阻隔性能的环氧树脂固化产品,虽然这取决于环氧树脂和固化剂的种类以及涂覆方法。根据环氧树脂和固化剂的种类、其重量比例和涂覆方法,燃料阻隔涂层组合物可以是无溶剂的或者可以是用适当的有机溶剂和/或水稀释的,以环氧树脂和环氧树脂固化剂的总浓度计,稀释至最低达约5%重量。在燃料阻隔涂层组合物中固化剂和环氧树脂的混合比例优选为0.3∶1至20∶1,更优选为0.5∶1至10∶1,以0.8∶1至5∶1为更优选,所述比例是固化剂中活性氢和环氧树脂中环氧基的比例。有机溶剂的例子包括甲苯,二甲苯,乙酸乙酯,醋酸丁酯,丙酮,甲乙酮,二醇醚如2-甲氧基乙醇,2-乙氧基乙醇,2-丙氧基乙醇,2-丁氧基乙醇,1-甲氧基-2-丙醇和1-乙氧基-2-丙醇,1-丙氧基-2-丙醇;醇如甲醇,乙醇,1-丙醇,2-丙醇,1-丁醇和2-丁醇,以及无质子极性溶剂如N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,二甲基亚砜和N-甲基吡咯烷酮。上述物质可以单独使用也可以两个或者多个组合使用。
施用的燃料阻隔涂层组合物可以由气刀或者滚子挤压,以调整涂覆量或者使其外观及厚度均匀。
为了使得热塑性树脂片材的表面更加易湿,燃料阻隔涂层组合物可以包含湿润剂,如硅酮化合物和丙烯酸系化合物。合适的湿润剂有,BYK331,BYK333,BYK348,BYK381等,每一种都可以从BYK-Chemie GmbH得到。如果使用湿润剂,其含量优选为燃料阻隔涂层组合物的固体含量的0.01%至2%重量。
为进一步提高燃料阻隔层的燃料阻隔性能,抗冲击强度,耐热性等,燃料阻隔涂层组合物可以包括无机填料,如硅石,矾土,云母,滑石,铝片和玻璃片。为了获得更高的燃料阻隔性,无机填料的形状优选是扁平片状的。如果使用无机填料,则其含量优选为燃料阻隔涂层组合物固体含量的0.01%至10%重量。
为了进一步提高燃料阻隔层与热塑性树脂片材的粘结性,燃料阻隔涂层组合物可以包含偶联剂,如硅烷偶联剂和钛偶联剂。如果使用偶联剂,则其含量优选为燃料阻隔涂层组合物固体含量的0.01%至5%重量。
必要时,燃料阻隔涂层组合物可以进一步包括促进固化的催化剂,如N-乙基吗啉,二月桂酸二丁基锡,环烷酸钴和氯化锡(II);有机溶剂如苯甲醇;腐蚀抑制剂如磷酸锌,磷酸铁,钼酸钙,氧化钒,水分散的硅石和煅制硅石;有机染料如酞菁有机染料和稠合的多环有机染料;和无机染料如氧化钛,氧化锌,碳酸钙,硫酸钡,矾土和炭黑,每种物质以有效量添加。
由燃料阻隔涂层组合物形成的燃料阻隔层的厚度优选为1至500μm,更优选为3至300μm,再优选为5至200μm。如果小于1μm,在燃料阻隔层上会导致缺陷。如果超过500μm,则难以使厚度均匀。
在将燃料阻隔涂层组合物施用在热塑性树脂片材表面之后,通过真空成型、压力成型或者压力/真空成型,使片材成型为构成中空型制品一部分的组件。施用的燃料阻隔涂层组合物在成型过程之前可以固化或不固化。
固化所施用的燃料阻隔涂层组合物的温度优选为0-150℃,更优选为10-100℃,再优选为20-80℃。如果高于150℃,热塑性树脂片材会不利地变形。
从施用到所施用的燃料阻隔涂层组合物固化至足以防止周围空气中的悬浮灰尘附着在其表面所用的固化时间优选是1至60分钟,更优选是3到20分钟,再优选是5到10分钟。如果超过60分钟,产量会下降。
所施用的燃料阻隔涂层组合物可以用任意已知方法进行固化,如干燥机加热,感应加热,远红外加热和气体加热。
为了提高燃料阻隔层与热塑性树脂片材之间的粘结性,热塑性树脂片材的表面可以进行表面处理。只要能够提高粘结性,表面处理的方法并不加以限制,优选电晕处理,火焰处理,等离子处理,紫外线处理,化学溶液处理,底漆处理或者是上述方法的组合,因为上述方法简单而且很有效。
在燃料阻隔层上可以至少形成一个保护层。只要燃料阻隔层能够得到保护,保护层也并不加以限制,它可以由任何已知方法或者是任何已知方法的组合而形成。
如果通过施涂来形成保护层,保护层可以由例如环氧树脂涂层组合物,聚氨酯树脂涂层组合物,聚酯树脂涂层组合物,丙烯酸系树脂涂层组合物等形成。如果通过层压薄膜或者层压片材来形成保护层,例如形成以下物质的薄膜或片材,聚烯烃树脂如低密度聚乙烯,高密度聚乙烯,线性低密度聚乙烯和聚丙烯;聚酯树脂,如聚(对苯二甲酸乙二酯)和聚(对苯二甲酸丁二酯);聚酰胺树脂,如尼龙6,尼龙6,6和聚(间亚二甲苯基已二酰二胺)(N-MXD6);聚丙烯腈树脂;聚(甲基)丙烯酸系树脂;聚苯乙烯系树脂;聚碳酸酯树脂;皂化乙烯-乙酸乙基酯共聚物(EV0H);或者聚(乙烯醇)树脂。保护层也可以由如卡片纸的纸材料或者铝或铜的金属箔片制成。
通过将两个或者两个以上的组件沿其边沿结合成一个整体来制造中空型制品。至少有一个组件通过用燃料阻隔涂层组合物在热塑性树脂的单面或者双面形成燃料阻隔层而制造,然后,通过压力成型、真空成型或者压力/真空成型将具有燃料阻隔层的片材成型为组件。各组件被结合使得燃料阻隔层朝向中空型制品的内部。为获得有效的燃料阻隔性能,燃料阻隔涂层组合物要尽可能施用在热塑性树脂片材的整个表面。所述组件可以由金属制成。
组件可以由任何方式进行结合,只要燃料不会通过接缝泄漏,例如,通过热熔接结合,通过熔融树脂结合,通过螺丝进行机械结合,通过粘合剂结合,或者上述方法结合使用。待结合的边沿可以形成舌套式接头,当然也不限于这个形状。结合之后,通过施用燃料阻隔涂层组合物,还可以在所得中空型制品的内和/或外表面进一步形成燃料阻隔层。
将结合下面的实施例对本发明做进一步讲解,而这些实施例不应当理解为对本申请保护范围的限制。
燃料阻隔层用下述方法评价。
燃料阻隔层的燃料传输系数在一个25-mL装有法兰的铝杯内(开口直径38mm),装有20mL的燃料(90vol%的燃料C(ASTM D 471)+10vol%的乙醇),置入由染料阻隔涂层组合物形成的燃料阻隔层的热塑性树脂片材,使燃料阻隔层朝向燃料。热塑性树脂片材通过开口直径为38mm的装有法兰的铝环压紧固定在装有法兰的铝杯上。上述杯子在60℃恒温室里放置1000h之后,测量燃料传输损失总量(传输的燃料量)。根据测量值、传输区域和传输时间,计算出每1mm厚度的带有燃料阻隔层的热塑性树脂片材在1m2面积上一天的燃料损失量(g)。用同样的方法,计算出没有燃料阻隔层的热塑性树脂片材的燃料损失量。根据上述结果,用下述公式计算出燃料阻隔层燃料传输系数K1(g·mm/m2·天)K1=a/((a+b)/K-b/K2)其中“a”是燃料阻隔层的厚度(mm),“b”是热塑性树脂层的厚度(mm);“K”是每1mm厚度的带有燃料阻隔层的热塑性树脂片材在1m2面积上一天的燃料损耗量(g)(带有燃料阻隔层的热塑性树脂片材的燃料传输系数,g·mm/m2·天,);K2是单独的每1mm厚度的热塑性树脂片材在1m2面积上一天的燃料损耗量(g)(仅有热塑性树脂片材的燃料传输系数,g·mm/m2·天)。
燃料阻隔层的粘结性燃料阻隔层与热塑性树脂片材之间的粘结性通过划格附着力试验JIS K5600-5-6进行测试。结果用X/Y显示,其中X是没有剥离的划格数,而Y是最初形成的划格数。
实施例1使用UV表面处理器(“PL 16-110”,Kasuga Electric Works,Ltd),2mm厚的聚乙烯片材(燃料传输系数250g·mm/m2·天)经过30s的表面处理,将其湿表面张力调整为45mN/m。用喷涂法,向处理过的聚乙烯片材表面施用燃料阻隔涂层组合物。燃料阻隔涂层组合物包含具有衍生自间苯二甲胺的缩水甘油基胺的环氧树脂(“Tetrad-X”of MitsubishiGas Chemical Company,Inc),和一摩尔间苯二甲胺与0.93摩尔丙烯酸甲酯的反应产物(固化剂)。固化剂与环氧树脂的混合比例按上面所定义的比例为1.0。
由此得到的片材通过压力/真空成型形成组件(100mm×200mm×50mm),其涂覆表面朝向内部。施用的燃料阻隔涂层组合物在60℃的温度下固化10min就形成了约20μm厚的燃料阻隔层。接下来,在边沿部位形成法兰。燃料阻隔层的燃料传输系数为0.1g·mm/m2·天并且其包含58%重量的式1所示结构单元。燃料阻隔层与聚乙烯片材之间的粘结性见表1。
用上述同样的方法,制造两个分别具有燃料阻隔层的组件。在其中一个组件中放入150g燃料(90vol%的燃料C(ASTM D 471)+10vol%的乙醇)。接下来,两个组件通过螺丝密封结合,从而制得装着燃料的燃料箱。通过测量该燃料箱在60℃时的燃料损失量来评估其燃料阻隔性能。其结果见表1。
实施例2用实施例1中相同的方法制造组件和燃料箱,不同之处在于用等离子表面处理器(“PS-601S”of Kasuga Electric Works,Ltd)以10m/min的移动速度进行表面处理,将聚乙烯片材的湿表面张力调整至76mN/m。对粘结性和燃料阻隔性的评价结果见表1。
实施例3用实施例1中相同的方法制造组件和燃料箱,不同之处在于用火焰表面处理器(Arcogas GmbH)以50m/min的移动速度进行表面处理,将聚乙烯片材的湿表面张力调整至50mN/m。对粘结性和燃料阻隔性的评价结果见表1。
实施例4用实施例1中相同的方法制造组件和燃料箱,不同之处在于施用的燃料阻隔涂层组合物在100℃的温度下固化10min。对粘结性和燃料阻隔性的评价结果见表1。
实施例5用实施例1中相同的方法制造组件和燃料箱,不同之处在于使用未经过表面处理的尼龙6,6片材(湿表面张力为41mN/m)。对粘结性和燃料阻隔性的评价结果见表1。
实施例6用实施例1中相同的方法制造组件和燃料箱,不同之处在于燃料阻隔层由包含环氧树脂(“Epikote 828”of Japan Epoxy Resins Co.,Ltd)的燃料阻隔涂层组合物形成,该环氧树脂具有衍生自双酚A的缩水甘油醚单元,其取代了环氧树脂(“Tetrad-X”of Mitsubishi Gas ChemicalCompany,Inc)。燃料阻隔层的燃料传输系数为1.2g·mm/m2·天,并且包含有37%重量的式1所示的结构单元。对粘结性和燃料阻隔性的评价结果见表1。
表1

根据本发明的工艺方法,内表面将与燃料相接触的高燃料隔离性的中空型制品如燃料箱易于以低成本制造。
权利要求
1.一种内表面将与燃料相接触的中空型制品的制造方法,所述方法包括下述步骤将两个或者多个组件沿其边沿结合为一个整体,其中至少一个组件通过下述方法制造将燃料阻隔涂层组合物施用在热塑性树脂片材的单面或者双面,从而形成具有燃料阻隔层的片材,并将所述片材通过压力成型、真空成型或者压力/真空成型而成型为所述组件。
2.根据权利要求1所述的方法,其中所述燃料阻隔层的燃料传输系数在60℃时为2g·mm/m2·天或更低。
3.根据权利要求1或2所述的方法,其中所述燃料阻隔层包含下式1所示的结构单元,所述结构单元占总重的40%-98%
4.根据权利要求1-3中任意一项所述的方法,其中燃料阻隔涂层组合物包含环氧树脂和环氧树脂的固化剂。
5.根据权利要求4所述的方法,其中所述环氧树脂主要包括衍生自间苯二甲胺的缩水甘油基胺单元。
6.根据权利要求4或5所述的方法,其中所述环氧树脂的固化剂是间苯二甲胺与丙烯酸,甲基丙烯酸及其衍生物中至少一种的反应产物。
7.根据权利要求1-6中任一项所述的方法,其中所述热塑性树脂是聚乙烯。
8.根据权利要求1-7中任一项所述的方法,其中所述燃料阻隔涂层组合物通过浸涂、喷涂、刷涂、辊涂或浇涂的方法施用。
9.根据权利要求1-8中任一项所述的方法,其中所述燃料阻隔涂层组合物在150℃或更低温度下固化,并且其固化时间为1小时或更短。
10.根据权利要求1-9中任一项所述的方法,其中所述热塑性树脂片材的表面在施用燃料阻隔涂层组合物之前预先进行了表面处理。
11.根据权利要求10所述的方法,其中所述表面处理通过电晕处理、火焰处理、等离子处理、紫外线处理、化学溶液处理或底漆处理完成。
12.根据权利要求1-11中任一项所述的方法,其中在燃料阻隔层上形成至少一个保护层。
全文摘要
一种制造内表面将与燃料相接触的中空型制品的方法。通过将两个或者多个组件沿其边沿结合为一个整体来制造中空型制品。其中至少一个组件通过将燃料阻隔涂层组合物施用在热塑性树脂片材的单面或者双面以形成具有燃料阻隔层的片材,并将所述片材通过压力成型、真空成型或者压力/真空成型为组件而制造。
文档编号C09D163/00GK1769035SQ20051013154
公开日2006年5月10日 申请日期2005年8月26日 优先权日2004年8月27日
发明者井出野隆次, 小野濑芳则, 小山刚司 申请人:三菱瓦斯化学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1