一种荧光粉涂覆厚度的控制方法

文档序号:3759237阅读:162来源:国知局
专利名称:一种荧光粉涂覆厚度的控制方法
技术领域
本发明涉及一种涂覆厚度控制方法,尤其涉及一种荧光粉涂覆厚度的控制方法。
背景技术
白光LED是一种新型半导体全固态照明光源。与传统照明技术相比,这种新型光源具有高效节能、长寿命、小体积、易维护、绿色环保、使用安全、耐候性好等领先优势,被公认为是未来照明光源之首选。白光LED封装是推动国际半导体照明和显示迅速发展的关键工艺,而荧光粉涂敷是目前国际上实现蓝光LED向白光LED转换的主流技术。而荧光粉涂覆的厚度不均是造成白光LED角向色温差异的主要原因。目前,大功率LED荧光粉涂覆工艺主要是用点胶法和喷涂法两种方法实现的,而这两种传统控制方法都无法保证在大规模的工业生产下,每一次荧光粉涂覆量的一致性,即荧光粉层的涂覆厚度每一次都有细微差别。从而使得生产出的大功率白光LED无法有效提高白光LED封装的热阻分散性、色品一致性、出光效率等封装质量。因此,人们希望有一种新荧光粉涂覆厚度的高精度控制方法问世,它能够克服上述缺点。

发明内容
本发明的目的在于提供一种荧光粉涂覆厚度的高精度控制方法,在传统涂覆厚度控制方法上加入使用激光三角测量法所得到的LED芯片荧光粉层的厚度分布反馈与荧光粉涂覆学习控制算法,精确控制所述的荧光粉喷头对大功率白光LED芯片模组荧光粉涂覆过程,从而达到所述大功率白光LED芯片模组中荧光粉层厚度的高精度控制。本发明能有效提高荧光粉涂覆量和涂覆厚度的一致性,提高白光LED的光源品质和成品率。本发明的目的通过如下技术方案实现:
一种荧光粉涂覆厚度控制方法,使用激光三角测量法所得到的LED芯片荧光粉层的厚度分布反馈与荧光粉涂覆迭代学习控制算法相结合,用于精确控制在各种LED芯片上涂覆的荧光粉层厚度,包括以下步骤:
1.1控制荧光粉喷头移动到待涂覆LED芯片的正上方;
1.2待步骤1.1完成后,如果是当前待涂敷LED支架类型的首次涂覆,则使用当前待涂敷LED支架类型相对应的初始涂覆控制参数进行当前待涂敷LED支架的首次荧光粉涂覆;如果不是当前待涂敷LED支架类型的首次涂覆,则使用步骤1.4所测得的上一次涂覆完成后LED支架荧光粉涂覆厚度分布参数与当前待涂敷LED支架类型相对应的初始控制参数,使用荧光粉涂覆迭代学习控制算法计算得出本次待涂敷LED支架的涂覆控制参数;
1.3使用步骤1.2所计算得到的当前涂覆控制参数,控制荧光粉喷头完成当前LED支架的荧光粉涂覆工作;
1.4待步骤1.3完成后,通过基于激光三角测量法得到荧光粉涂层厚度分布的方法检测出当前所涂覆的LED支架的荧光粉层的厚度分布,用于步骤1.2的荧光粉涂覆学习控制算法的迭代计算中,计算下一次的涂覆精度。进一步的,所述的荧光粉喷头使用点胶喷头、雾化喷头、压电喷头荧光粉喷头,用于涂覆荧光粉胶。进一步的,所述迭代学习控制算法包括以下步骤:
3.1根据待涂敷LED支架类型与设定涂覆厚度,选取当前待涂敷LED支架类型的初始控制参数,包括:荧光粉喷涂时间初始控制参数、荧光粉胶雾化初始控制参数、荧光粉胶流速初始控制参数;
3.2根据步骤1.4中测出的上一次荧光粉层的厚度分布与步骤3.1中的设定涂覆厚度,计算出上一次荧光粉涂覆的涂覆误差;
3.3根据步骤3.2所得到的涂覆误差,使用迭代学习控制算法,计算出当前涂覆控制器的各个控制参数的修正量,包括:荧光粉喷涂时间控制参数修正量、荧光粉胶雾化控制参数修正量、荧光粉胶流速参数修正量;
3.4由步骤3.1与步骤3.3所得到的当前理论控制参数与控制参数修正量,计算得出当前涂覆控制器的真实控制量。所述基于激光三角测量法得到荧光粉涂层厚度分布的方法包括以下步骤:
4.1开启用于发射测量荧光粉涂覆厚度分布的激光光线的激光测距传感器,照射被测表面,被测表面分别为荧光粉涂覆前的大功率LED芯片表面和荧光粉涂覆后的荧光粉涂覆面;
4.2对步骤4.1所采集的两幅激光光斑图像用平滑滤波器进行滤波;
4.3对步骤4.2滤波后得到的光斑图像进行二值分割;基于图像的灰度直方图,通过迭代计算得到分割阈值;
4.4求取激光光斑各处的质心位置;
4.5采用激光三角法计算荧光粉涂层厚度分布。实施本发明的荧光粉涂覆厚度精确控制方法,具有以下有益效果:当前,工业上使用的LED荧光粉涂覆方法都存在涂层厚度不均匀的问题,严重影响白光LED的热阻分散性、色品一致性、出光效率等封装质量。本发明的所提出的方法,可以应用于大功率白光LED或LED芯片模组的荧光粉涂覆封装过程中,而且还可以应用在wafer级芯片涂覆中,可以精确控制各种粘度的涂覆用胶的涂覆量以及涂层厚度,并保证涂层厚度的一致性。


图1是本发明提供的荧光粉涂覆厚度的高精度控制方法流程图。图2是本发明提供的涂覆厚度控制系统算法框图。图3是本发明提供的激光测量厚度分布检测的光路原理图
具体实施例方式为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式
。一种使用荧光粉涂覆装置进行荧光粉涂覆厚度高精度控制的方法,如图1所示,包括以下步骤:(I)控制荧光粉喷头精确移动到待涂覆LED芯片的正上方11 ; (2)待步骤(I)完成后,通过步骤(4)所测得的上一次LED芯片荧光粉涂覆厚度参数与根据设定涂覆厚度参数,使用荧光粉涂覆学习控制算法计算得出当前涂覆控制器对荧光粉喷头的控制参数13,用于提高荧光粉涂覆厚度的精度。(3)使用步骤(2)所计算得到的当前涂覆控制器对荧光粉喷头的控制参数,通过涂覆控制器完成当前LED芯片的高精度荧光粉涂覆工作15 ;
(4)待步骤(3)完成后,通过激光测厚装置检测出当前所涂覆的LED芯片的荧光粉层的厚度分布17,并把所测得的厚度分布参数返回到上位机中。用于步骤(2)的荧光粉涂覆学习控制算法的迭代计算中,以下一次的涂覆精度;
荧光粉涂覆学习控制算法,如图3所示,包括以下步骤:(1)根据设定涂覆厚度,计算出当前涂覆控制器的理论各个控制参数,包括:荧光粉喷涂时间理论控制参数、荧光粉胶雾化理论控制参数、荧光粉胶流速理论控制参数;(2)根据所测出的上一次荧光粉层的厚度分布与设定涂覆厚度,计算出上一次荧光粉涂覆的涂覆误差;(3)根据步骤(2)所得到的涂覆误差,使用迭代学习控制算法,计算出当前涂覆控制器的各个控制参数的修正量,包括:荧光粉喷涂时间控制参数修正量、荧光粉胶雾化控制参数修正量、荧光粉胶流速参数修正量;(4)由步骤(I)与步骤(3)所得到的当前理论控制参数与控制参数修正量,计算得出当前涂覆控制器的真实控制量;
激光三角测量法测量荧光粉层厚度分布的方法包括以下步骤:(I)开启激光发射器,以与被测表面法线成Θ角照射被测表面,被测表面分别为荧光粉涂覆前的LED芯片表面和荧光粉涂覆后的荧光粉涂覆面;(2)用图像采集终端采集荧光粉涂覆前后的两幅激光光斑图像;(3)关闭激光发射器,由图像传感器伺服电机调节模块调整图像传感器的角度,再用图像采集终端采集荧光粉涂覆后的荧光粉涂层图像;(4)利用步骤(2)中的两幅激光光斑图像,采用激光三角测量法计算荧光粉涂层的厚度分布。以下再结合实例对上述控制方法作进一步说明,荧光粉涂覆厚度高精度控制的方法,包括以下步骤:
步骤一、控制荧光粉喷头精确移动到待涂覆LED芯片的正上方;请参阅图1,所述通过运动控制装置(可采用步进电机,伺服电机,直线电机作为驱动的xyz轴平台)把荧光粉喷头精确移动到涂覆区域的实施方法如下:在上位机中输入待涂覆LED支架的各种尺寸信息以及各种运动控制涂覆参数,包括LED芯片阵列的分布,LED芯片之间的距离,荧光粉喷头涂覆路线,荧光粉喷头移动速度;待LED芯片支架组,放好并固定在运动控制装置的工作台上后,上位机根据输入的参数信息,将荧光粉喷头高速高精度的移动到待涂覆的LED芯片正上方。喷头与LED芯片的垂直距离根据LED芯片的大小而定。步骤二、待步骤一完成后,通过步骤四所测得的上一次LED芯片荧光粉涂覆厚度参数与根据设定涂覆厚度参数,使用荧光粉涂覆学习控制算法计算得出当前涂覆控制器对荧光粉喷头的控制参数,用于提高荧光粉涂覆厚度的精度。请参阅图2,一种荧光粉涂覆学习控制算法,包括以下内容:
根据目标的涂覆厚度31,由涂覆控制器,计算出当前对涂覆控制装置系统的控制参数,包括:荧光粉喷涂时间理论控制参数、荧光粉胶雾化理论控制参数、荧光粉胶流速理论控制参数的参数向量35。其中,喷涂时间控制参数可以由每次荧光粉浆的喷涂量、荧光粉喷头内荧光粉胶的流速、喷嘴直径这些参数计算获得;荧光粉雾化气压控制参数可以由LED芯片大小,荧光粉喷头内荧光粉胶的流速,喷嘴与LED芯片表面的距离这些参数计算获得;荧光粉胶流速控制参数要根据喷涂时间控制参数与荧光粉雾化气压控制参数综合计算得到。根据上一次使用激光三角测量法32所测出的荧光粉层的厚度37与目标涂覆厚度31,计算出上一次的涂覆误差33 ;根据上一个步骤所得到的涂覆误差,使用迭代学习控制算法,计算出当前涂覆控制装置系统的控制参数的修正量34,包括:喷涂时间控制参数修正量、荧光粉雾化控制参数修正量、荧光粉胶流速控制参数修正量;
上述迭代学习算法可以使用不同的学习算子,目标就是使得荧光粉涂层的厚度精度提高。例如,使用“PID型”迭代学习算法如下:
权利要求
1.一种荧光粉涂覆厚度控制方法,其特征在于,使用激光三角测量法所得到的LED芯片荧光粉层的厚度分布反馈与荧光粉涂覆迭代学习控制算法相结合,用于精确控制在各种LED芯片上涂覆的荧光粉层厚度,包括以下步骤: 1.1控制荧光粉喷头移动到待涂覆LED芯片的正上方; 1.2待步骤1.1完成后,如果是当前待涂敷LED支架类型的首次涂覆,则使用当前待涂敷LED支架类型相对应的初始涂覆控制参数进行当前待涂敷LED支架的首次荧光粉涂覆;如果不是当前待涂敷LED支架类型的首次涂覆,则使用步骤1.4所测得的上一次涂覆完成后LED支架荧光粉涂覆厚度分布参数与当前待涂敷LED支架类型相对应的初始控制参数,使用荧光粉涂覆迭代学习控制算法计算得出本次待涂敷LED支架的涂覆控制参数; 1.3使用步骤1.2所计算得到的当前涂覆控制参数,控制荧光粉喷头完成当前LED支架的荧光粉涂覆工作; 1.4待步骤1.3完成后,通过基于激光三角测量法得到荧光粉涂层厚度分布的方法检测出当前所涂覆的LED支架的荧光粉层的厚度分布,用于步骤1.2的荧光粉涂覆学习控制算法的迭代计算中,计算下一次的涂覆精度。
2.根据权利要求1所述的一种荧光粉涂覆厚度控制方法,其特征在于,荧光粉喷头使用点胶喷头、雾化喷头、压电喷头荧光粉喷头,用于涂覆荧光粉胶。
3.根据权利要求1所述的一种荧光粉涂覆厚度控制方法,其特征在于迭代学习控制算法包括以下步骤: 3.1根据待涂敷LED支架类型与设定涂覆厚度,选取当前待涂敷LED支架类型的初始控制参数,包括:荧光粉喷涂时间初始控制参数、荧光粉胶雾化初始控制参数、荧光粉胶流速初始控制参数; 3.2根据步骤1.4中测出的上一次荧光粉层的厚度分布与步骤3.1中的设定涂覆厚度,计算出上一次荧光粉涂覆的涂覆误差; 3.3根据步骤3.2所得到的涂覆误差,使用迭代学习控制算法,计算出当前涂覆控制器的各个控制参数的修正量,包括:荧光粉喷涂时间控制参数修正量、荧光粉胶雾化控制参数修正量、荧光粉胶流速参数修正量; 3.4由步骤3.1与步骤3.3所得到的当前理论控制参数与控制参数修正量,计算得出当前涂覆控制器的真实控制量。
4.根据权利要求1所述的一种荧光粉涂覆厚度控制方法,其特征在于基于激光三角测量法得到荧光粉涂层厚度分布的方法包括以下步骤: 4.1开启用于发射测量荧光粉涂覆厚度分布的激光光线的激光测距传感器,照射被测表面,被测表面分别为荧光粉涂覆前的大功率LED芯片表面和荧光粉涂覆后的荧光粉涂覆面; 4.2对步骤4.1所采集的两幅激光光斑图像用平滑滤波器进行滤波; 4.3对步骤4.2滤波后得到的光斑图像进行二值分割;基于图像的灰度直方图,通过迭代计算得到分割阈值; 4.4求取激光光斑各处的质心位置; 4.5采用激光三角法计算荧光粉涂层厚度分布。
全文摘要
本发明涉及一种荧光粉涂覆厚度的控制方法。本发明的控制方法是在传统涂覆厚度控制方法上加入使用激光三角测量法所得到的LED芯片荧光粉层的厚度分布反馈与荧光粉涂覆学习控制算法,精确控制所述的荧光粉喷头对大功率白光LED芯片模组荧光粉涂覆过程,从而达到所述大功率白光LED芯片模组中荧光粉层厚度的高精度控制。本发明通过改进传统的涂覆工艺,采用高精度激光测距装置在线测出当前LED芯片荧光粉涂层的厚度,并使首次用一种迭代学习控制算法,实现荧光粉涂覆过程中的在线学习功能,调整每一次涂覆过程中的控制参数,大大提高现有荧光粉涂覆装置对大功率白光LED芯片或芯片模组的荧光粉涂覆精度,从而达到所述大功率白光LED芯片模组中荧光粉层厚度的高精度控制要求。
文档编号B05C19/06GK103143484SQ201310048598
公开日2013年6月12日 申请日期2013年2月7日 优先权日2013年2月7日
发明者郭琪伟, 胡跃明, 李致富, 马鸽 申请人:华南理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1