跨骑式车辆的制作方法

文档序号:3824137阅读:110来源:国知局
专利名称:跨骑式车辆的制作方法
技术领域
本发明涉及跨骑式车辆(例如摩托车)。本发明特别地涉及包括自动变速器的跨骑式车辆,该自动变速器能够通过离合器致动器和换档致动器执行换档。
背景技术
在摩托车中进行档速改变时,通常通过用手操作离合器杠杆并用脚的操作切换齿轮而使离合器分离以执行换档,接着用手操作离合器杠杆使离合器接合,从而进行档速改变。虽然近年来已经提出了不通过手动操作而是通过伺服电动机来执行自动变速操作的技术,但是与手动操作相比,出现了许多问题。
即,在进行档速改变时,摩托车状态(特别是离合器状态)和换档的时机彼此紧密相关,实际情况是自动变速操作特别难以控制。具体地说,当由于温度使离合器膨胀(例如约100μm的热膨胀)或离合器磨损(例如约100μm的磨损)时,会给离合器的时机带来漂移,结果不能进行平稳的换档操作。
当人(驾乘者)进行档速改变操作时,即使离合器处于不同温度的状态(即夏天或冬天,白天或黑夜),或者即使离合器处于新产品状态或已磨损状态,驾乘者都会立即根据经验或知识确定该状态,并通过手和脚的灵活精密的操作来平稳地执行换档。另一方面,当通过电动机等平稳地执行档速改变操作时,需要根据摩托车状态通过操作装置对换档的时机进行控制,难以稳定和平稳地执行离合器操作和换档操作。
此外,为了简化摩托车的换档操作,已经公开了下述构造,其中根据开关的输出信号来驱动伺服电动机并由伺服电动机自动进行换档操作,其中所述开关是与离合器的接合/分离操作配合动作的。
专利文献1JP-A-68-152938专利文献2JP-A-4-266619发明内容但是,实际上,人们一直期望实现一种能够通过采用离合器致动器和换档致动器自动执行换档的摩托车。本申请的发明人对在此情况下平稳地执行换档操作的自动变速器进行了开发。具体地说,发明人努力通过采用离合器致动器和换档致动器来提高离合器的可控性并缩短档速变换的时间段。
本发明是考虑到这一点而作出的,其主要目的是提供一种包括自动变速器的跨骑式车辆(例如摩托车),所述自动变速器能够提高离合器的可控性并缩短档速变换的时间段。
根据本发明,提供了一种跨骑式车辆,其特征在于跨骑式车辆包括能够通过离合器致动器和换档致动器执行换档的自动变速器;其中,离合器是多片式离合器,所述离合器的离合器操作由所述离合器致动器控制;所述多片式离合器设有用于扩大所述离合器的离合器部分接合区域的施力装置;并且在换档时,所述离合器致动器和所述换档致动器被控制来重叠操作。
在一种优选实施例中,用于扩大所述离合器部分接合区域的所述施力装置是螺旋弹簧。
在一种优选实施例中,所述施力装置通过降低所述多片式离合器的刚度来扩大所述离合器部分接合区域。
在一种优选实施例中,所述离合器致动器与控制装置相连;所述控制装置的特征在于,通过所述离合器致动器进行预定量的行程来由操作力传递机构向所述离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态;所述施力装置的特征在于,所述施力装置设置到所述多片式离合器以构成下述结构,在所述结构中,当所述离合器的温度改变时,第一范围与第二范围彼此分开,所述第一范围在所述第一状态下低温侧的行程位置与高温侧的行程位置之间,所述第二范围在所述第二状态下低温侧的行程位置与高温侧的行程位置之间。
在一种优选实施例中,所述离合器致动器与控制装置相连;所述控制装置的特征在于,通过所述离合器致动器进行预定量的行程来由操作力传递机构向所述离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态;并且所述施力装置的特征在于,所述施力装置设置到所述多片式离合器以构成下述结构,在所述结构中,当所述离合器磨损时,第一范围与第二范围彼此分开,所述第一范围在所述第一状态下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间,所述第二范围在所述第二范围下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间。
在一种优选实施例中,在所述重叠操作中,换档致动器的换档操作在通过控制所述离合器致动器产生的离合器部分接合区域中执行。
优选的是,所述离合器部分接合区域的开始时刻与所述离合器致动器的所述换档操作被控制为同步。
在一种优选实施例中,所述多片式离合器包括布置在同一轴心上的各个离合器盘,所述各个离合器盘能够围绕所述轴心彼此相对转动,能够在所述轴心的轴向上彼此接触和彼此分开,并配合连接到驱动侧和从动侧;止动件,所述止动件用于阻止彼此接触的两个离合器盘沿所述轴向的一个方向运动到预定位置或更远处;离合器弹簧,所述离合器弹簧用于沿所述一个方向向所述两个离合器盘施加作用力,使得运动受到所述止动件阻止的所述两个离合器盘彼此接触;和作用力解除装置,所述作用力解除装置用于使得能够通过从外部输入操作力而解除所述离合器弹簧施加到所述两个离合器盘的所述作用力;其中,所述离合器致动器是用于向所述作用力解除装置施加所述操作力的致动器;并且用于扩大离合器部分接合区域的所述施力装置是用于促使所述两个离合器盘沿所述轴向的另一方向彼此接触的传递转矩限制弹簧。
在优选实施例中,所述离合器致动器是用于通过进行预定量的行程来使操作力传递机构向所述离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态的致动器;并且所述离合器致动器和所述操作力传递结构的特征在于布置在所述发动机外侧。
在一种优选实施例中,所述致动器是电动机。
在一种优选实施例中,所述离合器致动器布置在所述跨骑式车辆的发动机内侧。
在一种优选实施例中,所述操作力传递机构以可沿分离和接近方向运动的方式设有位于所述离合器致动器侧的第一连接部分和位于所述离合器侧的第二连接部分,设有用于沿所述分离方向对所述第一连接部分和第二连接部分施力的第一施力装置,并且当断开所述离合器时,所述离合器构成为通过驱动所述离合器致动器使所述第一连接部分和第二连接部分克服所述第一施力装置的作用力彼此接近而断开。
根据本发明的其它方面,提供了一种跨骑式车辆,所述跨骑式车辆包括能够通过离合器致动器和换档致动器执行换档的自动变速器;其中,所述离合器致动器与控制装置相连;所述控制装置的特征在于,通过所述离合器致动器进行预定量的行程来由操作力传递机构向离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态;并且所述施力装置的特征在于,所述施力装置设置到所述离合器以构成下述结构,在所述结构中,当所述离合器的温度改变时,第一范围与第二范围彼此分开,所述第一范围在所述第一状态下低温侧的行程位置与高温侧的行程位置之间,所述第二范围在所述第二状态下低温侧的行程位置与高温侧的行程位置之间。
根据本发明的另一个方面,提供了一种跨骑式车辆,所述跨骑式车辆包括能够通过离合器致动器和换档致动器执行换档的自动变速器;其中,所述离合器致动器与控制装置相连;所述控制装置的特征在于,通过所述离合器致动器进行预定量的行程来由操作力传递机构向离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态;并且所述施力装置的特征在于,所述施力装置设置到多片式离合器以构成下述结构,在所述结构中,当所述离合器磨损时,第一范围与第二范围彼此分开,所述第一范围在所述第一状态下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间,所述第二范围在所述第二范围下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间。
在一种优选实施例中,所述跨骑式车辆是自动两轮车(例如普通道路式或越野式等),并且所述离合器致动器和所述换档致动器的特征在于由电子控制部分进行控制。
在一种优选实施例中,所述自动变速器的特征在于,根据驾驶者的指令,或者根据电连接到所述离合器致动器和所述换档致动器的电子控制装置的指令执行所述换档。
在一种实施例中,所述电子控制装置与用于检测所述跨骑式车辆情况的传感器电连接,其特征在于,根据所述跨骑式车辆的情况执行电子控制装置的所述指令。
根据本发明的一种实施例用于跨骑式车辆的离合器控制装置是用于跨骑式车辆的离合器控制装置,用于通过离合器致动器进行预定量的行程来由操作力传递机构向离合器传递操作力,而控制离合器从开始传递发动机侧的驱动力的第一状态到使离合器开始与发动机侧同步转动的第二状态,其特征在于,通过所述操作力传递结构,当离合器的温度改变时,第一范围与第二范围构成为彼此分开,所述第一范围在所述第一状态下低温侧的行程位置与高温侧的行程位置之间,所述第二范围在所述第二状态下低温侧的行程位置与高温侧的行程位置之间。
根据本发明的一种实施例用于跨骑式车辆的离合器控制装置是用于跨骑式车辆的离合器控制装置,用于通过离合器致动器进行预定量的行程来由操作力传递机构向离合器传递操作力,而控制离合器从开始传递发动机侧的驱动力的第一状态到使离合器开始与发动机侧同步转动的第二状态,其特征在于,通过所述操作力传递结构,第一范围与第二范围构成为彼此分开,所述第一范围在所述第一状态下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间,所述第二范围在所述第二范围下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间。
在实施例中,离合器致动器和操作力传递机构的特征在于布置在发动机外侧。
在一种实施例中,操作力传递机构以可沿分离和接近方向运动的方式设有位于离合器致动器侧的第一连接部分和位于离合器侧的第二连接部分,设有用于沿分离方向对第一连接部分和第二连接部分施力的第一施力装置,其特征在于,当断开离合器时,离合器构成为通过驱动离合器致动器使第一连接部分和第二连接部分克服第一施力装置的作用力彼此接近而断开。
在一种实施例中,操作力传递机构的特征在于,当离合器断开时,通过驱动离合器致动器,使第一连接部分和第二连接部分克服第一施力装置的作用力彼此接近到彼此接触而断开离合器。
在一种实施例中,操作力传递机构的特征在于提供了第二施力装置,用于在断开离合器的状态下,沿接近第二连接部分侧的方向对第一连接部分施力。
在一种实施例中,第一连接部分和第二连接部分的特征在于以可沿彼此分离的方向滑动的方式连接。
在一种实施例中,第一施力装置的特征在于它是螺旋弹簧。
根据本发明的跨骑式车辆,可以通过自动变速器自动改变速度,所述自动变速器能够通过离合器致动器和换档致动器来执行换档,多片式离合器设有用于扩大离合器的离合器部分接合范围的施力装置,此外,在换档时,控制离合器致动器和换档致动器重叠操作,因此,可以实现提高离合器的可控性并缩短档速变换的时间段。结果,在包括自动变速器的同时,可以实现可靠且平稳的离合器操作和换档操作。


图1是示出根据本发明实施例1的跨骑式车辆(摩托车)100的结构的侧视图;图2是示出根据本发明实施例1的摩托车100的构成元件的框图;图3是示出控制装置(ECU)50结构的框图;图4是用于对在手动离合器的情况下断开和连接离合器的操作进行说明的曲线图;图5是用于对由致动器进行断开和连接离合器的操作进行说明的曲线图;图6是用于对离合器设有施力装置以降低其刚度的情况下,由致动器进行断开和连接离合器的操作进行说明的曲线图;图7是用于对本发明实施例中的升档控制方法进行说明的曲线图;图8是用于对本发明实施例中的降档控制方法进行说明的曲线图;图9是用于对本发明实施例中的降档控制方法进行说明的曲线图;图10是用于对根据本发明实施例起动的控制方法进行说明的曲线图;图11是安装到根据本发明实施例的摩托车100的发动机16的侧视图;图12是发动机16的俯视图;图13是离合器20及其周边部分的剖视图;图14是从离合器致动器22的轴向观察到的离合器致动器22及其周边部分的视图;图15是示出离合器致动器22和离合器控制装置53的结构的视图;图16是示出从图15所示状态沿分离离合器的方向对离合器进行驱动的状态的视图;图17是示出从图16所示状态沿分离方向对离合器进行驱动的状态的视图;图18是示出从图17所示状态沿分离方向对离合器进行驱动的状态的视图;图19是示出根据本发明实施例2的离合器致动器22的结构的侧视图;图20是示出离合器致动器22及其周边结构的剖视图;图21是示出从图20所示状态沿分离方向对离合器进行驱动的状态的视图;图22是示出从图21所示状态沿分离方向对离合器进行驱动的状态的视图;图23(a)和(b)是根据本发明实施例3处于连接状态的离合器20的侧剖视图及其局部放大图;图24(a)和(b)是根据本发明实施例3处于断开状态的离合器20的侧剖视图及其局部放大图;图25(a)和(b)是根据本发明实施例3处于离合器部分接合状态的离合器20的侧剖视图及其局部放大图。
具体实施例方式
本申请的发明人已经想到,为了在摩托车中采用离合器致动器和换档致动器来自动执行换档,基本上不可能实现象人一样精巧地依照摩托车的状态(特别是离合器的状态)来执行离合器操作和换档操作,并想到了通过降低离合器刚度而扩大离合器部分接合的区域,以便易于由致动器执行控制。但是,公知扩大离合器部分接合的区域相当于延长了在此状态下档速改变的时间段,因此实际上在此状态下不能实现平稳的换档操作。
在此情况下,本申请的发明人注意了通过手动离合进行离合器断开和连接以及通过致动器进行离合器断开和连接的操作时间段。在通过手动离合进行离合器断开和连接的情况下,在离合器断开操作中需要一定离合器杠杆行程的操作,因此即使有经验的驾乘者尽可能快地进行操作,也需要花费一定的时间段(例如0.2秒或更多)。另一方面,在通过致动器进行离合器断开和连接的情况下,操作基本上可以立即完成(例如0.1秒或更少)。那么,即使在假定离合器部分接合区域会扩大的情况下,也可能使进行致动器换档的换档操作的总时间段比手动换档的总时间段短,进一步,这可以通过本申请的发明人开发的内容来实现以得到本发明。
下面将参考附图对根据本发明的实施例进行说明。在附图中,为了简化说明,具有基本相同功能的组成元件被赋予相同的标号。此外,本发明不限于下列实施例。
(实施例1)图1示出了根据本发明实施例1的跨骑式车辆100的构造。本实施例的跨骑式车辆100是包括自动变速器的跨骑式车辆,所述自动变速器能够通过离合器致动器和换档致动器执行换档,图1所示的跨骑式车辆100是普通道路摩托车。此外,本实施例的跨骑式车辆100可以是越野式摩托车。
图1所示示例中的摩托车100包括前轮11和后轮12,此外,燃料箱14设在用于使前轮11转向的车把13的后面。车座15布置在燃料箱14后面,驾乘者110骑在车座15上。发动机16设在燃料箱14和车座15的下方,发动机16由车体框架支承。
进一步来说,前叉19由摩托车100的前端部分以可转向的方式支承,后轮11由前叉19的下端部分支承。车把13被支承在前叉19的上端部分处。此外,用于驱动的后轮12被支承在摩托车100的后端部分处。车体由前轮11、后轮12支承在行驶路面上。
在图2中,根据本实施例的摩托车100的组成元件由框图示出。
本实施例的摩托车100设有离合器致动器24和换档致动器32,离合器20的操作可以由离合器致动器22来控制。根据本实施例的离合器20是多片式离合器,且该多片式离合器设有施力装置(未示出),施力装置用于扩大离合器的离合器部分接合区域。用于扩大离合器部分接合区域的施力装置降低了离合器20的刚度,通过设置施力装置扩大了离合器20的离合器部分接合区域。下面将对其细节进行说明。施力装置是弹簧(螺旋弹簧、碟形弹簧等),并可以是橡胶等制成的弹性部件。
离合器致动器22和换档致动器32电连接到电控制部分50,电控制部分50还与附装到车把13一部分上的操作部分52电连接。操作部分52包括用于执行升档的升档开关52a和用于执行降档的降档开关52b。根据本实施例,在换档时,离合器致动器24和换档致动器32都由电控制部分50控制以重叠操作。下文中将说明对重叠操作进行控制的方法。
摩托车100的发动机(内燃机)16通过动力传动轴17与多片式离合器20配合连接。多片式离合器20与变速器30配合连接。变速器30附装有链条缠绕式等类型的动力传动装置18以用于与后轮4配合连接。
变速器30由构成其外壳的壳体34、设在壳体34内侧的输入侧部件35和输出侧部件36、以及用于将输出侧部件36连接到输入侧部件35和从其断开的变速离合器37构成。输入侧部件35连接到多片式离合器20,输出侧部件36连接到动力传动装置18。变速离合器37与用于操作变速离合器37的液压式致动器32连接,通过由致动器32对变速离合器37进行断开和连接而使变速器30能够换档到期望的变速状态。
车把13设有操作部分52,该操作部分52在使变速器30执行上述变速操作时工作。此外,还设有电子装置控制器(电子控制装置)50,用于通过操作操作部分52使变速器30执行自动变速操作而产生期望的变速状态,并且各个致动器22、32和操作部分52分别电连接到控制装置50。
图3示出了根据本实施例的控制装置(ECU;电子控制单元或发动机控制单元)50的构造。
本实施例的控制装置50构造成能够对发动机16进行控制。控制装置(ECU)50连同上述离合器致动器22、换档致动器32一起电连接到用于执行升档的升档开关52a和用于执行降档的降档开关52b。除此以外,控制装置50还与发动机转数传感器111、车速传感器112、离合器致动器位置传感器(电位传感器)113、换档致动器位置传感器114、档位传感器115电连接,来自它们的检测值和操作信号被输入控制装置50。
此外,控制装置50还与离合器致动器22和换档致动器32一起连接到档位显示部分119、发动机点火部分120、燃料喷射装置121,并被构造成通过来自各个传感器111...等的信号对它们进行控制驱动。这里,来自升档开关116和降档开关117的信号、来自离合器致动器位置传感器113、换档致动器114等的信号被输入控制装置50,并且由来自控制装置50的控制信号控制驱动离合器致动器22和换档致动器32。
接下来将参考图4到图6对离合器操作中的离合器部分接合区域(或离合器部分接合范围)进行说明。
尽管当离合器驱动系统的刚度无限大时离合器部分接合区域不存在,但实际上离合器部分接合区域是存在的。产生离合器部分接合的原因可能包括离合器驱动系统的弹性变形(应变、扭转、拉伸),例如离合器摩擦片的应变、压板的应变、推杆的收缩、推动杠杆的扭转、离合器拉线或软管的拉伸等。
图4是示出手动离合器情况下离合器的断开和连接操作的曲线图,纵坐标表示杠杆负载,横坐标表示离合器杠杆的行程长度。如图4所示,在手动离合器操作情况下,离合器的断开和连接如下所述。
首先,即使在离合器杠杆行程增大时(标号a),由于开始有间隙区段,所以杠杆负载在该区段保持不变(标号s)。接着,离合器进入离合器部分接合范围,随着杠杆负载的增大(箭头标记b),离合器传递转矩减小(标号t),并通过离合器部分接合范围的终止(箭头标记c)而使离合器断开。
此后,在离合器传递转矩停在零位(标号u)的时候,进行离合器断开操作(箭头标记d)。接着,当离合器被连接时,通过驱动系统的摩擦减小杠杆负载(箭头标记e),接下来进行离合器连接操作(标号f),而连接离合器(标号g)。此后,当离合器进入离合器部分接合范围(箭头标记h)时,离合器传递转矩增大(标号t),离合器最终得到连接(标号a)。
这样,在手动离合器的情况下,根据驾乘者的操作,通过包括间隙区段和离合器部分接合段来执行离合器的断开操作和连接操作。
另一方面,图5示出了由致动器进行的离合器断开和连接操作。图5中纵坐标表示离合器传递转矩,横坐标表示致动器行程。
这里,离合器部分接合范围指的是从离合器进入(clutch in)到失速(stall)之间的范围。离合器进入指的是压板与摩擦片接触并开始传递驱动力,另一方面,失速指的是离合器传递转矩超过了发动机产生的转矩,离合器开始同步转动。此外,完全失速指的是离合器传递的转矩超过发动机产生的最大转矩,离合器开始同步转动。此外,在离合器部分接合的时间段内,尽管施加到压板上的负载变了,但是压板并不移动。
如图5所示,按照致动器的行程,使离合器的连接、离合器部分接合范围、离合器的断开发生改变,并且离合器传递的转矩在离合器进入和完全失速之间改变。
这里,在离合器在常温下不磨损的状态下,以离合器致动器行程与离合器传递转矩之间的关系将离合器部分接合范围设定为构成特性线A。
但是,即使在离合器在常温不磨损的状态下如图所示由特性线A(实线)来设定离合器部分接合范围的倾斜度时,当温度升高使离合器热膨胀100μm时,特性线也如图所示改变为特性线B(双点划线),结果,离合器部分接合范围偏离了设置。此外,当离合器磨损了例如100μm时,特性线如图所示改变为特性线C(单点划线),在此情况下,离合器部分接合范围也偏离设置。
就是说,当离合器热膨胀时,实线A所示位置A1处的离合器变到由双点线B所示的完全失速位置B2处。或者,当离合器磨损时,实线A所示完全失速位置A2改变到单点划线C所示的位置C1处。于是,可能发生这样的情况,即根据以前设定的致动器工作行程无论如何精确地操作离合器,也不能进行稳定的离合器操作。
当然,将热膨胀、磨损或其它因素也包括在内而由控制装置50来控制致动器24的行程也许不是不可能,但是这样的控制并不现实。为了解决这个问题,本申请的发明人对离合器进行了设计,使得离合器传递转矩相对于致动器操作的变化量变得相当不敏感。
为了使离合器传递转矩的变化量不敏感,可以降低离合器20的刚度。根据本实施例,通过对离合器20设置施力装置来减小刚度。在此情况下,由致动器进行的离合器断开和连接操作的特性从图5改变到图6。与图5类似,在图6中,纵坐标表示离合器传递转矩,横坐标表示致动器行程。
如图6所示,在此情况下,在离合器在常温下(例如25C)不磨损的状态中,离合器致动器24的行程与离合器传递转矩之间的关系被设定为使离合器部分接合范围变成特性线A。使图6中特性线A的倾斜度比图5中的特性线A更加平缓。这里在图6中,当离合器膨胀时,特性线A改变成双点划线表示的特性线B,另一方面,当离合器磨损时,特性线A改变成单点划线表示的特性线C。
为了将离合器部分接合范围设定为图6所示情况,即,当通过提供施力装置(例如用于扩大离合器部分接合区域的弹簧)来设定离合器20部分接合范围时,可以执行以下设定。
首先,在图6所示设定条件下,当离合器20的温度改变并且特性线A改变到特性线B时,将第一范围H1和第二范围H2构造成彼此分开,其中第一范围H1在离合器进入状态下低温侧(特性线A)的行程位置A1与高温侧(特性线B)的行程位置B1之间,第二范围H2在完全失速状态下低温侧(特性线A)的行程位置A2与高温侧(特性线B)的行程位置B2之间。在此情况下,第一范围H1和第二范围H2被设定为彼此分开一段距离L1。
此外,当离合器20磨损时,特性线A改变到特性线C,将第三范围H3与第四范围H4构造成彼此分开,其中第三范围H3在离合器进入状态下离合器磨损前的一侧(特性线A)的行程位置A1与离合器磨损后的一侧(特性线C)的行程位置C1之间,第四范围H4在完全失速状态下离合器磨损前的一侧(特性线A)的行程位置A2与离合器磨损后的一侧(特性线C)的行程位置C2之间。这里,第三范围H3和第四范围H4被设定为彼此分开一段距离L2。
如图6所示,根据本实施例的结构,通过用施力装置(例如螺旋弹簧等)扩大离合器部分接合范围,使得离合器部分接合范围中特性线A的倾斜度平缓到预定角度。因此,即使在如上所述离合器热膨胀且特性线A改变到特性线B的时候,由于第一范围H1和第二范围H2是彼此分开的,所以仅仅是离合器进入状态或者完全失速状态的行程位置发生了或多或少的偏移,而与图5所示离合器不同,可以限制对离合器20操作的妨碍。
顺便说一下,根据具有图5所示特性的离合器,当设定离合器进入状态的行程位置时,由于离合器热膨胀,实际上行程位置处于完全失速状态,因此与由人操作离合器不同,当由致动器操作离合器时,需要考虑到阻碍操作的问题。
除此之外,即使在离合器20的离合器盘磨损且特性线A改变到特性线C时,由于第三位置H3与第四位置H4是彼此分开的,所以与上述相似,仅仅是离合器进入状态或者完全失速状态的行程位置发生了或多或少的偏移,而与图5所示离合器不同,可以限制对离合器20操作的妨碍。
尽管以此方式,通过增加施力装置以加宽离合器部分接合区域提高了离合器20的可控性,因此即使在使用离合器致动器22时,也可以确保离合器20的正常工作,但是加宽离合器部分接合区域实际上延长了档速改变的时间段。由此,妨碍了平稳的离合器操作和换档操作。
因此,本申请的发明人想到了通过控制来重叠地进行离合器致动器22和换档致动器32的操作,而缩短档速改变的时间段,从而通过执行控制实现该想法。
下面将参考图7到图12,对重叠地(或同步地)操作离合器致动器22和换档致动器32的控制进行说明。
图7图示了对升档中的控制方法进行说明的视图。图7(a)示出了由电位计对作为离合器致动器22的离合器电动机进行的控制,并图示了离合器接合(接合)、离合器部分接合(离合器部分接合)和离合器分离(分离)的区域。图7(b)示出了由电位计对作为换档致动器32的换档电动机进行的控制。图7(c)示出了点火正时,图7(d)示出了电位计得到的档位作为参考。图7(e)是与时间轴和各个操作对应的图。
如图7(e)所示,当从行驶模式执行升档时,该操作通过离合器分离操作、离合器部分接合操作和离合器接合操作而返回行驶模式。这里,不是在离合器致动器(离合器电动机)使离合器分离之后,通过操作换档致动器(换档电动机)执行升档,而是当通过离合器致动器使离合器进入部分接合区域(离合器部分分离状态)时,已经通过换档致动器执行了升档操作。
这样的重叠操作(同步操作)需要控制几十毫秒(例如约30毫秒),且无法通过人的离合器操作(手动离合器操作)来实现。此外,根据本示例,控制离合器不被断开直到严格的完全分离位置,由此甚至缩短了离合器操作时间段。
通过离合器致动器22和换档致动器32的重叠操作(同步操作),即使在通过施力装置扩大离合器的离合器部分接合区域的情况下,也可以缩短档速改变时间段,实际上,获得了比手动离合器操作更短的档速改变时间段。如上所述,通过实现扩大离合器部分接合区域的装置(施力装置)提高了离合器的可控性,因此,根据本实施例的结构,可以构成这样的自动变速器,它实现了提高离合器可控性并缩短档速改变时间段。
图8图示了对降档中的控制方法进行说明的视图。在图8中,未示出点火正时(图7(c))。在降档中,也执行离合器致动器22和换档致动器32的重叠操作并在离合器部分分离状态期间执行降档操作。此外,在图8所示的示例中,也通过控制离合器不被断开直到严格的完全分离位置而缩短了离合器操作时间段。
接下来将对图8所示降档中的控制方法的示例进行详细说明。离合器致动器(离合器电动机)的控制(离合器分离操作)从换档开始判断时刻t0起的t1时间内开始。虽然根据本实施例,t1设定为0毫秒,但是t1也可以根据操作感来设定,例如可以设定在0到30毫秒的时间段内。另一方面,换档致动器(换档电动机)的控制(降档)从换档开始判断时刻t0起的预定时间段(t2)内开始。优选将时间段t2设定为与通过离合器致动器的操作而产生离合器部分接合区域的点同步。虽然根据本实施例,同步时间段t2被设定为30毫秒,但是t2也可以设定为例如10毫秒到60毫秒。
当离合器电动机的电位计指示V1(例如2.35V)时,从离合器分离状态改变到离合器部分接合状态,并且在120rpm的离合器转数差下通过离合器位置等于或小于预定值——即离合器电动机电位计的值V2(例如1.65V)或更小——来判断升档的结束。此时,换档电动机的电位计值V3为例如1.00V。此后,开始离合器接合操作,离合器电动机的电位计值被设定为V4(例如0.69V),且换档电动机的电位计值被设定为V5(例如2.50V)。
除此以外,作为其它示例的参考,图10示出了从起动开始的控制,特别是在起动中执行了换档(升档)时结合了起动和换档的控制。图10所示的曲线(a)到(d)与图7的曲线(a)到(d)相同。
根据本发明实施例的摩托车100,可以由能够通过离合器致动器和换档致动器来执行换档的自动变速器自动地改变速度,在多片式离合器处设有用于扩大离合器的离合器部分接合区域的施力装置,此外,在换档中,可以控制离合器致动器和换档致动器两者重叠操作,因此可以实现提高离合器的可控性并缩短档速改变的时间段。结果,可以在提供自动变速器的同时实现可靠且平稳的离合器操作和换档操作。
接下来将参考图11到图15对本实施例的跨骑式车辆(摩托车)进行进一步的详细说明。
图11是安装到本实施例的摩托车上的发动机16的侧视图。离合器致动器22和换档致动器32布置在发动机16周围。
图12是图11所示发动机16的俯视图。尽管标出了除离合器致动器22和换档致动器32之外的其它部件的标号,但是这些标号将随着对其它部件的解释一起进行说明。
图13是离合器20及其周边部分的剖视图,图14是从离合器致动器22的轴向观察到的离合器致动器22及其周边部分的视图。图15是示出离合器致动器22和离合器控制装置(操作力传递机构)53的结构组成的视图。
图11和图12所示的发动机16在驱动侧布置有离合器20,并设有离合器控制装置53用于连接和断开离合器20。
如图13所示,离合器20包括离合器壳体57,离合器壳体57连接到发动机16的曲轴56并随着曲轴56的转动而转动,而离合器片套毂58可转动地布置在离合器壳体57的内侧。离合器片套毂58连接到主轴59。
离合器壳体57布置有多个只可沿轴向滑动的圆环形的第一离合器盘60,此外,离合器片套毂58布置有多个只可沿轴向滑动的圆环形的第二离合器盘61。多个第一离合器盘60和第二离合器盘61彼此交替布置以在轴向上重叠。
此外,压板62可平行于轴向移动地布置,用于沿使第一离合器盘60和第二离合器盘61彼此压力接触的方向对第一离合器盘60和第二离合器盘61施压,并且由离合器弹簧63沿使这些盘彼此压力接触的方向对压板62施力。
通过沿图13中向左的方向(箭头标记A的方向)克服离合器弹簧63的作用力而移动压板62,解除第一离合器盘60和第二离合器盘61彼此压力接触的状态,并且离合器20构成为通过使这些盘分别彼此相对运动而断开。
通过使插入主轴59的离合器控制装置53的离合器杠杆66沿图13中向左的方向(箭头标记A的方向)运动,离合器20断开。
离合器控制装置53被构成这样,即通过操作力传递机构69使离合器致动器22产生预定量的行程来将操作力传递到离合器20,而控制离合器20从开始传递发动机16一侧的驱动力的第一状态(下文中称为“离合器进入状态”)到使离合器20开始与发动机16一侧同步转动的第二状态(下文中称为“完全失速状态”)。
根据操作力传递机构69的操作,在离合器在常温下未磨损的状态下离合器致动器22的行程与离合器传递转矩之间的关系如上述图6所示。就是说,通过施力装置(图15中的螺旋弹簧97)将离合器部分接合范围设定为特性线A,并且特性线A的倾斜度被设定到比图5所示更平缓。
离合器致动器22和操作力传递机构69的具体结构如下。
这里如图11和图12所示,在汽缸的后侧和曲轴箱的上方,离合器致动器22和操作力传递机构69布置在发动机16外侧。此外,如图12所示,离合器致动器22沿车辆宽度方向布置。
此外,如图15等所示,根据离合器致动器22,蜗轮68a设在驱动轴的前端部分以受到驱动而转动,而操作力传递机构69的扇形齿轮74与蜗轮68a啮合。齿轮74以轴75为中心可枢转地设置在轴75上,并布置有基本上V形的杠杆部件76与齿轮74一体枢转。
根据杠杆部件76,它的一端部76a通过轴77与离合器致动器22侧的第一连接部分79可枢转地相连,而另一端部76b由作为“第二施力装置”的拉伸弹簧80的一端部80a悬挂。如图15所示,拉伸弹簧80的另一端部80b由锁紧部分68b钩住。通过拉伸弹簧80,促使杠杆76沿图15中的逆时针方向(离合器断开方向)枢转。杠杆76的两侧都设有止动件78以在预定位置处停止枢转杠杆部件76。
此外,第二连接部分82布置成与共轴的第一连接部分79相对。第一连接部分79由螺纹部件85的外螺纹部分85a拧在第一连接主体84的螺纹孔84a处,并且外螺纹部分85a拧有螺母86。此外,螺纹部件85的前端部分85b通过轴77与杠杆部件76的一端部76a可枢转地相连。
此外,与第一连接部分79相似,第二连接部分82由螺纹部件90的外螺纹部分90a拧在第二连接部分主体89的螺纹孔89a处,并且将螺母91拧到外螺纹部分90a上。此外,螺纹部件90的前端部分90b通过轴94与驱动杠杆93的一端部93a可枢转地相连。
此外,连接销96插入两个连接部分主体84、89的通孔84b、89b中,两个连接部分主体84、89设置为可沿分离和接近方向运动,螺旋弹簧97作为用于沿分离方向对两个连接部分主体84、89施力的“第一施力装置”布置在两个连接部分主体84、89之间。
此外,驱动杠杆93可枢转地以位于其另一端部处的驱动轴93b为中心设置在该驱动轴93b上,驱动轴93b处形成有平面部分93c,离合器断开杆66的一端部66a与平面部分93c接触。由此,当通过使驱动杠杆93枢转来使驱动轴93b枢转时,离合器20被构成为通过将离合器断开杆66压到驱动轴93b的平面部分93c上而断开。
接下来还将参考图16到图18对操作进行说明。
为了使离合器20从连接离合器20的完全失速状态断开,通过操作设在车把13处的升档开关52a和降档开关52b来操作离合器致动器22,以转动图15中所示的蜗轮68a。
然后,使齿轮74和杠杆部件76以轴77为中心沿逆时针方向枢转预定量,并且第一连接部分79在推动以使螺旋弹簧97收缩的同时接近第二连接部分82一侧。
由此,通过螺旋弹簧97的作用力,推动第二连接部分82的一侧,驱动杠杆93以驱动轴93b为中心枢转,并且由驱动轴93b的平面部分93c使离合器断开杆66沿图6中向右的方向运动。
通过这种运动,压板62沿图13中向左的方向(箭头标记A的方向)克服离合器弹簧63的作用力运动,并且使各个第一离合器盘60、第二离合器盘61彼此接触的力减小。由此产生离合器部分接合状态。
当进一步驱动离合器致动器22时,如图16所示,第一连接部分79与第二连接部分82接触,并且当从该状态进一步驱动离合器致动器22时,如图17和图18所示,使驱动杠杆93枢转而断开离合器20。
此时,通过使用螺旋弹簧97等,造成离合器部分接合范围中的特性线A的倾斜度逐渐到达图6所示的预定角度,因此,即使在由于离合器热膨胀而使特性线A变成与特性线B一样时,通过使第一范围H1和第二范围H2彼此分开,也仅仅是离合器进入状态或者完全失速状态中的行程位置发生了或多或少的偏移,而不会妨碍离合器20的操作。
此外,即使在离合器20的第一离合器盘60、第二离合器盘61磨损,并且特性线A变成与特性线C一样时,由于第三范围H3和第四范围H4是彼此分开的,所以与上述类似,也仅仅是离合器进入状态或者完全失速状态中的行程位置发生了或多或少的偏移,从而不会妨碍离合器20的操作。
此外,根据本实施例的结构,离合器致动器22和操作力传递机构69布置在发动机16的外侧。因此,对离合器致动器22和操作力传递机构69的调整、维护等易于执行。特别是,由于多片式离合器20由多个片(第一离合器盘60、第二离合器盘61)重叠,放大了组装误差,因此在容易进行调整方面特别有效。
此外,尽管根据本实施,离合器致动器22布置在发动机16的外侧,但是考虑到获得节省空间的形状,离合器致动器22也可以一体布置到发动机16的内侧。与四轮客车等车辆不同,在摩托车中用于布置离合器致动器22的空间特别小,因此,能够获得节省空间的形状是相当大的优点。
此外,通过在分离和接近方向上可动地提供设在离合器致动器22侧的第一连接部分79和设在离合器20侧的第二连接部分82,并提供用于在分离方向上对第一连接部分79和第二连接部分82施力的螺旋弹簧97,构成了操作力传递机构69,因此可以构成比较简单的结构,并可以构成不太容易错误操作的机械结构。
此外,可以稳定地断开离合器20,因为离合器20被构造成通过使第一连接部分79和第二连接部分82彼此接近以产生彼此接触来进行断开。此外,通过用拉伸弹簧80在离合器断开方向对第一连接部分79施力,可以辅助离合器致动器22的驱动力,并可以减小离合器致动器22的尺寸。
此外,通过采用螺旋弹簧97作为“第一施力装置”,螺旋弹簧97可以容易地布置在第一连接部分79和第二连接部分82之间,并可以使操作力传递机构69的外形紧凑。
(实施例2)接下来将参考图19到图22,对根据本发明实施例2的结构进行说明。
图19是示出根据实施例2的离合器致动器22的结构的侧视图,图20是示出离合器致动器22及其周边结构的剖视图。图21示出了从图20所示状态沿断开方向驱动离合器的状态,图22示出了从图21所示状态进一步驱动离合器的状态。
本发明的实施例2是实施例1的修改示例,与实施例1的不同之处在于操作力传递机构69的齿轮74和杠杆部件76的结构以及驱动杠杆93的结构。
根据实施例2,设置小齿轮101来代替根据实施例1的齿轮74和杠杆部件76,并使小齿轮101与类似于实施例1的离合器致动器22的蜗轮68a啮合。
小齿轮101在对转动中心偏心的位置处设有轴77,并且第一连接部分79的螺纹部件85的前端部分85b可枢转地连接到轴77。此外,在小齿轮101中,锁定销102设置成在与轴77邻近的位置处突出,并且与实施例1类似的拉伸弹簧80的一端部80a由锁定销102钩住。
由此,如图20到图22所示,与实施例1类似,第一连接部分79构成为在小齿轮101转动时通过使以转动中心为中心的轴77转动而进行位移。此外,通过拉伸弹簧80,在断开离合器20的方向上对小齿轮101施力。
此外,根据实施例2,设置基本上L形的驱动杠杆103来代替实施例1中基本上直线形的驱动杠杆93。与实施例1类似,驱动杠杆103在其一端部103a处通过轴94与第二连接部分82相连,驱动杠杆103在其折叠弯成L形的部分处设有驱动轴103b,并构成为以驱动轴103b为中心枢转。驱动轴103b形成有与实施例1类似的平面部分103c,并构造成通过平面部分103c对离合器断开杆66施压。
此外,驱动杠杆103的一端部103d与从设在图1所示车把13处的离合器杠杆105延伸的线104相连,并且离合器20构造成通过拉动线104使驱动杠杆103枢转而手动断开。
据此,通过驱动离合器致动器22,通过蜗轮68a使小齿轮101枢转,第一连接部分79发生位移。由此,与实施例1类似,通过对第二连接部分82施压来使驱动杠杆103枢转,通过驱动轴103b推动离合器断开杆66滑动,而断开离合器20。
此外,根据实施例2,不仅可以如上所述通过离合器致动器22来断开离合器20,还可以通过操作离合器杠杆105来手动断开离合器20。就是说,由于操作力传递机构69的第一连接部分79和第二连接部分82布置为彼此分离并彼此接近,所以即使在未操作离合器致动器22且第一连接部分79的位置未发生位移时,也可以使第二连接部分82发生位移。因此,通过捏紧离合器杠杆105而拉动线104,不管驱动离合器致动器22与否,都可以通过线104来使与第二连接部分82相连的驱动杠杆103枢转。
因此,通过使驱动杠杆103枢转来使驱动轴103b枢转而断开离合器20,从而也可以采用手动操作并改善了使用方式。
为了简化说明,将略去对于与实施例1类似的部分的其它结构和操作。此外,尽管在上述实施例中采用多片式摩擦离合器作为离合器,但是本发明不限于此,离合器也可以是干式、湿式的,只要离合器是通过负载来改变传动状态的离合器即可。
此外,可以采用电动式或液压式的离合器致动器22。此外,用于检测离合器致动器22的操作位置的传感器不限于上述电位计传感器,而可以采用旋转编码器来检测转动位置,或者可以用行程传感器来检测直线位置。除此之外,也可以用其它弹簧、橡胶或树脂等制成的弹性部件代替螺旋弹簧97作为“第一施力装置”。
(实施例3)接下来将参考图23到图25对与本发明的实施例3有关的结构进行说明。在实施例3的结构中,还将对能够通过在离合器处提供施力装置(离合器部分接合区域扩大装置)而扩大离合器部分接合区域的方法进行说明。
图23(a)是根据实施例3处于连接状态的离合器20的侧剖视图,图23(b)是其局部放大图。图24(a)是根据实施例3处于断开状态的离合器20的侧剖视图,图24(b)是其局部放大图。图25(a)是根据实施例3处于离合器部分接合状态的离合器20的侧剖视图,图25(b)是其局部放大图。
如图23所示,离合器20包括内支承部件214和外支承部件215,内支承部件214由动力传动轴17支承而能够与动力传动轴17一起围绕动力传动轴17的轴心213转动(也参考图2),外支承部件215布置在轴心213上、向外配合到内支承部件214并由动力传动轴17支承而能够围绕轴心213转动。内支承部件214配合连接到动力传动轴17,而变速器30(参考图2)配合连接到外支承部件215。
此外,离合器20包括多个圆环形的第一离合器盘216和多个圆环形的第二离合器盘217,所述多个第一离合器盘216布置在轴心213上并以只能沿轴向滑动的方式与内支承部件214向外配合接合,所述多个第二离合器盘217布置在轴心213上并以只能沿轴向滑动的方式与外支承部件215向内相配接合。此外,第一离合器盘216和第二离合器盘217沿轴心213的轴向交替布置,并在轴向上彼此相对。
根据本实施例,各个离合器盘216、217布置在同一轴心213上,分别随着内支承部件214和外支承部件215一起围绕轴心213转动,从而能够彼此相对转动,此外,还使它们能够通过分别相对于内支承部件214和外支承部件215滑动,而彼此面接触并沿轴向彼此分离和接近。
此外,各个第一离合器盘216通过内支承部件214配合连接到动力传动轴17,各个离合器盘217通过外支承部件215配合连接到变速器30。
此外,离合器20包括止动件220和离合器弹簧222,止动件220用于阻止彼此接触的两个离合器盘216、217沿轴向的一个方向A运动到预定位置B或超过B位置,离合器弹簧222用于通过压板221沿一个方向A向两个离合器盘216、217施加作用力C,使得由止动件220阻止的两个离合器盘216、217彼此接触。
止动件220形成于内支承部件214处,通过构成圆环形而布置在轴心213上,并能够与在轴向上与止动件220相对的第一离合器盘216表面进行面接触。此外,压板221构造成圆环形且布置在轴心213上,并包括圆环形压力面221a,压力面221a与另一个第一离合器盘216沿轴向相对并与其面接触。压力面221a沿径向的外侧(一个部分)与止动件220沿轴向彼此相对。
如图23所示,通过压板221由离合器弹簧222对两个离合器盘216、217施加作用力C,并通过止动件220阻止它们沿一个方向A运动到预定位置B或超过位置B。因此,两个离合器盘216、217进入彼此接触的状态,即离合器20进入接触状态。
此外,离合器20包括作用力解除装置223,它能够通过从外部输入操作力来解除离合器弹簧222施加到两个离合器盘216、217的作用力C。作用力解除装置223包括布置在轴心213上的轴部件226,该轴部件226可以相对于压板221围绕轴心213转动,并可以向轴部件226输入操作力。
此外,离合器20包括致动器22,用于向作用力解除装置223的轴部件226施加操作力。致动器22包括液压缸22(参考图2)和用于将液压缸22的操作传递到轴部件226的齿条组230。
如图24所示,在操作液压缸22时,液压缸22通过齿条组230使作用力解除装置223的轴部件226沿与轴向上的所述一个方向A相反的另一方向D运动,而传递转矩限制弹簧(施力装置)232的轴部件226与离合器弹簧222的作用力C相反。于是,通过这样的运动解除离合器弹簧222施加到两个离合器盘216、217上的作用力C,以导致两组离合器盘216、217彼此分开的状态。即,离合器20产生断开状态。
在图23中,离合器20包括作为碟形弹簧的传递转矩限制弹簧232,用于在所述另一方向D上对两组离合器盘216、217施力以使之彼此接触。传递转矩限制弹簧232布置在轴心213上构成圆环形,向内配合安装到止动件220,并且将止动件220和传递转矩限制弹簧232在径向上彼此平行地布置。此外,压板221的压力面221a的径向内侧(另一部分)和传递转矩限制弹簧232在轴向彼此相对。
根据本实施例的结构,当处于没有操作力输入作用力解除装置223的自由状态时,两组离合器盘216、217通过离合器弹簧222的作用力C而彼此接触,以使离合器20进入连接状态(图23)。在此情况下,图2所示内燃机16的驱动力通过离合器20和变速器30传递到车轮12,此时使跨骑式车辆100能够在变速器30的变速状态下行驶。
接下来,当对操作部分52(52a、52b)进行操作使变速器30进入期望的变速状态时,首先通过将信号输入控制装置50来操作致动器(离合器致动器)22。接着,通过致动器22将操作力施加到作用力解除装置223,作用力解除装置223解除离合器弹簧222的作用力C。由此,离合器20进入断开状态(图24)。
当离合器20以此方式进入断开状态时,就断开了驱动力从动力传动轴17到变速器30的传递,并且在断开状态下能够对变速器30进行变速操作。因此,通过控制装置50操作致动器(换档致动器)32,并操作变速器30的变速离合器37使之断开和连接,由此获得期望的变速状态。
在对变速器30进行变速操作之后,通过控制装置50操作致动器22,并解除施加到作用力解除装置223的操作力。然后,通过离合器弹簧222的作用力C,使离合器盘216、217再次彼此接触。因此,跨骑式车辆100可以继续以期望的变速器30的变速状态行驶。
如上所述,当使离合器20从断开状态(图24)进入连接状态(图23)时,通过操作致动器22来逐渐减小施加到作用力解除装置223的操作力。然后,与此相反,逐渐增大由离合器弹簧222施加到两组离合器盘216、217上的作用力C,使两组离合器盘216、217沿所述一个方向A运动而直到预定位置B。
但是,如图25所示,在到达预定位置B之前,通过传递转矩限制弹簧232使两组离合器盘216、217彼此压力接触,并开始从传递转矩限制弹簧232施加反作用力E。
因此,在两组离合器盘216、217到达预定位置B之前,使两组离合器盘216、217彼此接触的力开始逐渐增大,通过这样,可以继续平稳地逐渐增大接触力,并且可以容易地产生适当的离合器部分接合状态。就是说,传递转矩限制弹簧(例如碟形弹簧)232具有使离合器部分接合状态适当地发生的功能。
因此,因为可以容易地通过多片式离合器20产生适当的离合器部分接合状态,所以通过致动器22也可以使离合器平稳地从断开状态进入连接状态,并可以平稳地驱动跨骑式车辆100在对变速器30进行的变速操作下行驶。
此外,设置了压板221用于通过离合器弹簧222的作用力C对两组离合器盘216、217施压,使止动件220在轴向与压板221的压力面221a上用于对两组离合器盘216、217施压的一部分相对,使传递转矩限制弹簧232与压力面221a的另一部分在轴向相对,并且在作用力解除装置223处于自由状态时,止动件220施加到两组离合器盘216、217的反作用力F的值与传递转矩限制弹簧232的反作用力E的值彼此基本相等。
因此,由施加到两组离合器盘216、217上的作用力C和与作用力C相反的两个反作用力E、F在两组离合器盘216、217的相应部分中产生的应力基本均匀,防止了在两组离合器盘216、217之间产生部分接触,从而实现了平稳接触。
因此,由于可以容易地通过多片式离合器20来产生适当的离合器部分接合状态,所以通过致动器22还可以使离合器20平稳地从断开状态进一步进入连接状态,并可以平稳地驱动跨骑式车辆100在对变速器30进行的变速操作下行驶。
此外,根据离合器20,由于离合器20可以平稳地从断开状态进入连接状态,所以还可以平稳地起动跨骑式车辆100。
根据本实施例的结构,设置了用于向作用力解除装置223施加操作力的致动器22和促使两组离合器盘216、217沿轴向的所述另一方向D彼此接触的传递转矩限制弹簧232。因此,在使离合器20从断开状态进入连接状态的情况下,当通过操作致动器22逐渐减小施加到作用力解除装置223的操作力时,与此相反,离合器弹簧222施加到两组离合器盘216、217的作用力逐步增大,并两组离合器盘216、217沿所述一个方向A运动以运动到预定位置。
但是,在到达预定位置之前,两组离合器盘与传递转矩限制弹簧产生压力接触,并开始从传递转矩限制弹簧向它们施加反作用力E。
因此,在两组离合器盘216、217到达预定位置之前,使两组离合器盘216、217彼此接触的力开始逐渐增大,通过这样,可以继续平稳地逐渐增大接触力,并且可以容易地产生适当的离合部分接触状态。
因此,由于可以通过多片式离合器20适当地产生离合器部分接合状态,所以通过致动器22可以平稳地使离合器20进入连接状态。
此外,设置了压板221用于通过离合器弹簧222的作用力对两组离合器盘216、217施压,使止动件220在轴向与压板221的压力面221a上被压到两组离合器盘216、217的一部分相对,使传递转矩限制弹簧232与压力面221a的另一部分在轴向相对,并且在作用力解除装置223处于自由状态时,止动件220施加到两组离合器盘216、217的反作用力F的值与传递转矩限制弹簧232的反作用力E的值彼此基本相等。
因此,由施加到两组离合器盘216、217上的作用力和与作用力相反的两个反作用力在两组离合器盘216、217的相应部分中产生的应力基本均匀,防止了在两组离合器盘216、217之间产生部分接触,从而实现了平稳接触。
因此,由于可以容易地通过多片式离合器20来产生适当的离合器部分接合状态,所以通过致动器22还可以使离合器20平稳地从断开状态进一步进入连接状态。
此外,尽管图1所示摩托车100是普通道路式的,但是本发明不限于此,而是也可以应用于上述越野式的摩托车。此外,本申请的说明书中“自动两轮车”表示摩托车,包括具有原动机的自行车(电动自行车)、小型摩托车,特别是指可通过倾斜车体而转向的车辆。因此,即使在前轮和后轮中至少一个是由两个或更多轮子构成,通过计算轮胎数量而构成的三轮车或四轮车(或更多轮子的车辆)时,这些也包括在“自动两轮车”中。此外,本发明不限于摩托车,而是可以应用于其它能够采用本发明效果的车辆,例如,除了摩托车之外,本发明可以应用于包括四轮汽车(ATV全地形车)2000或雪地机动车在内的所谓跨骑式车辆。
尽管已经如上述通过优选实施例对本发明进行了说明,但说明书不是限制性的,本发明当然可以进行各种修改或改变。
工业实用性根据本发明,可以提供包括自动变速器的跨骑式车辆,该自动变速器能够实现提高离合器的可控性并缩短档速改变的时间段。
参考标号说明10变速器11前轮12后轮13车把14燃料箱15车座16发动机17动力传动轴18动力传动装置19前叉20多片式离合器(离合器)21压板22离合器致动器24离合器致动器24缸(液压缸)30变速器32换档致动器34壳体35输入侧部件36输出侧部件37变速离合器50控制装置(电子控制部分,ECU)52操作部分52a 升档开关52b 降档开关
53离合器控制装置56曲轴57离合器壳体58离合器片套毂59主轴60第一离合器盘61第二离合器盘62压板66离合器断开杆66a 一端部68a 蜗轮68b 锁定部分69操作力传递机构74齿轮75轴76杠杆部件77轴78止动件79连接部分82连接部分84连接部分主体85螺纹部件86螺母89连接部分主体90螺纹部件91螺母93驱动杠杆94轴
96连接销97螺旋弹簧(施力装置)100 摩托车(跨骑式车辆)101 小齿轮102 锁定销103 驱动杠杆104 线105 离合器杠杆110 驾乘者111 发动机转数传感器112 车速传感器113 离合器致动器位置传感器114 换档致动器位置传感器115 档位传感器119 档位显示部分120 发动机点火部分121 燃料喷射装置213 轴心214 内支承部件215 外支承部件216 第一离合器盘217 第二离合器盘220 止动件221 压板221a 压力面223 作用力解除装置226 轴部件230 齿条组
权利要求
1.一种跨骑式车辆,其特征在于,所述跨骑式车辆包括能够通过离合器致动器和换档致动器执行换档的自动变速器;其中,离合器是多片式离合器,所述离合器的离合器操作由所述离合器致动器控制;其中,所述多片式离合器设有用于扩大所述离合器的离合器部分接合区域的施力装置;并且其中,在换档时,所述离合器致动器和所述换档致动器被控制来重叠操作。
2.根据权利要求1所述的跨骑式车辆,其特征在于,用于扩大所述离合器部分接合区域的所述施力装置是螺旋弹簧。
3.根据权利要求1所述的跨骑式车辆,其特征在于,所述施力装置通过降低所述多片式离合器的刚度来扩大所述离合器部分接合区域。
4.根据权利要求1所述的跨骑式车辆,其特征在于,所述离合器致动器与控制装置相连;其中,所述控制装置的特征在于,通过所述离合器致动器进行预定量的行程来由操作力传递机构向所述离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态;并且其中,所述施力装置的特征在于,所述施力装置设置到所述多片式离合器以构成下述结构,在所述结构中,当所述离合器的温度改变时,第一范围与第二范围彼此分开,所述第一范围在所述第一状态下低温侧的行程位置与高温侧的行程位置之间,所述第二范围在所述第二状态下低温侧的行程位置与高温侧的行程位置之间。
5.根据权利要求1所述的跨骑式车辆,其特征在于,所述离合器致动器与控制装置相连;其中,所述控制装置的特征在于,通过所述离合器致动器进行预定量的行程来由操作力传递机构向所述离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态;并且其中,所述施力装置的特征在于,所述施力装置设置到所述多片式离合器以构成下述结构,在所述结构中,当所述离合器磨损时,第一范围与第二范围彼此分开,所述第一范围在所述第一状态下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间,所述第二范围在所述第二范围下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间。
6.根据权利要求1所述的跨骑式车辆,其特征在于,在所述重叠操作中,所述换档致动器的换档操作在通过控制所述离合器致动器产生的离合器部分接合区域中执行。
7.根据权利要求6所述的跨骑式车辆,其特征在于,所述离合器部分接合区域的开始时刻与所述离合器致动器的所述换档操作被控制为同步。
8.根据权利要求1所述的跨骑式车辆,其特征在于,所述多片式离合器包括布置在同一轴心上的各个离合器盘,所述各个离合器盘能够围绕所述轴心彼此相对转动,能够在所述轴心的轴向上彼此接触和彼此分开,并配合连接到驱动侧和从动侧;止动件,所述止动件用于阻止彼此接触的两个离合器盘沿所述轴向的一个方向运动到预定位置或更远处;离合器弹簧,所述离合器弹簧用于沿所述一个方向向所述两个离合器盘施加作用力,使得运动受到所述止动件阻止的所述两个离合器盘彼此接触;和作用力解除装置,所述作用力解除装置用于使得能够通过从外部输入操作力而解除所述离合器弹簧施加到所述两个离合器盘的所述作用力;其中,所述离合器致动器是用于向所述作用力解除装置施加所述操作力的致动器;并且其中,用于扩大离合器部分接合区域的所述施力装置是用于促使所述两个离合器盘沿所述轴向的另一方向彼此接触的传递转矩限制弹簧。
9.根据权利要求1所述的跨骑式车辆,其特征在于,所述离合器致动器是用于通过进行预定量的行程来使操作力传递机构向所述离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态的致动器;并且其中,所述离合器致动器和所述操作力传递结构的特征在于布置在所述发动机外侧。
10.根据权利要求8所述的跨骑式车辆,其特征在于,所述致动器是电动机。
11.根据权利要求1所述的跨骑式车辆,其特征在于,所述离合器致动器布置在所述跨骑式车辆的发动机内侧。
12.根据权利要求8所述的跨骑式车辆,其特征在于,所述操作力传递机构以可沿分离和接近方向运动的方式设有位于所述离合器致动器侧的第一连接部分和位于所述离合器侧的第二连接部分,设有用于沿所述分离方向对所述第一连接部分和第二连接部分施力的第一施力装置,并且当断开所述离合器时,所述离合器构成为通过驱动所述离合器致动器使所述第一连接部分和第二连接部分克服所述第一施力装置的作用力彼此接近而断开。
13.一种跨骑式车辆,所述跨骑式车辆包括能够通过离合器致动器和换档致动器执行换档的自动变速器,其中,所述离合器致动器与控制装置相连;其中,所述控制装置的特征在于,通过所述离合器致动器进行预定量的行程来由操作力传递机构向离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态;并且其中,所述施力装置的特征在于,所述施力装置设置到所述离合器以构成下述结构,在所述结构中,当所述离合器的温度改变时,第一范围与第二范围彼此分开,所述第一范围在所述第一状态下低温侧的行程位置与高温侧的行程位置之间,所述第二范围在所述第二状态下低温侧的行程位置与高温侧的行程位置之间。
14.一种跨骑式车辆,所述跨骑式车辆包括能够通过离合器致动器和换档致动器执行换档的自动变速器,其中,所述离合器致动器与控制装置相连;其中,所述控制装置的特征在于,通过所述离合器致动器进行预定量的行程来由操作力传递机构向离合器传递操作力,而控制所述离合器从开始传递发动机侧的驱动力的第一状态到使所述离合器开始与所述发动机侧同步转动的第二状态;并且其中,所述施力装置的特征在于,所述施力装置设置到多片式离合器以构成下述结构,在所述结构中,当所述离合器磨损时,第一范围与第二范围彼此分开,所述第一范围在所述第一状态下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间,所述第二范围在所述第二范围下所述离合器磨损之前一侧的行程位置与所述离合器磨损之后一侧的行程位置之间。
15.根据权利要求1到14中任一项所述的跨骑式车辆,其中,所述跨骑式车辆是摩托车;并且其中,所述离合器致动器和所述换档致动器的特征在于由电子控制部分进行控制。
16.根据权利要求1到14中任一项所述的跨骑式车辆,其特征在于,所述自动变速器根据驾驶者的指令,或者根据电连接到所述离合器致动器和所述换档致动器的电子控制装置的指令执行换档。
17.根据权利要求16所述的跨骑式车辆,其特征在于,所述电子控制装置与用于检测所述跨骑式车辆情况的传感器电连接,其中,根据所述跨骑式车辆的情况执行所述电子控制装置的所述指令。
全文摘要
[问题]一种具有能够实现提高离合器的可控性并缩短档速变换的时间段的自动变速器的跨骑式车辆。[解决手段]一种具有能够通过离合器致动器(22)和换档致动器(32)执行换档的自动变速器(30)的跨骑式车辆(100)。离合器(20)是多片式离合器,其操作由离合器致动器(22)控制。该多片式离合器(20)具有施力装置(97)用于扩大离合器的离合器部分接合区域,离合器致动器(22)和换档致动器(32)以重叠方式操作。
文档编号B60W10/10GK1926019SQ20058000647
公开日2007年3月7日 申请日期2005年6月30日 优先权日2004年7月1日
发明者小杉诚 申请人:雅马哈发动机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1