用于检测机动车辆行驶方向的方法

文档序号:3881101阅读:414来源:国知局
用于检测机动车辆行驶方向的方法
【专利摘要】本发明涉及一种用于确定车辆纵向行驶方向的方法,包括收集第一信号(信号1)的步骤(a),所述第一信号表示第一驾驶参数,例如方向盘扭矩,其中数值符号和/或变化符号不取决于车辆的纵向行驶方向,收集第二信号(信号2)的步骤(b),所述第二信号表示不同于第一驾驶参数的第二驾驶参数,例如角速度,其中所述数值符号和/或变化符号的改变取决于车辆的纵向行驶方向,随后的符号比较步骤(c),分别将第一信号(信号1)的数值符号与第二信号(信号2)的数值符号,以及第一信号(信号1)的变化符号与第二信号(信号2)的变化符号相比较,从而判断车辆纵向行驶方向,所述比较步骤(c)取决于所述符号是否相同或相反。
【专利说明】用于检测机动车辆行驶方向的方法

【技术领域】
[0001] 本发明涉及协助机动车辆驾驶、用于帮助和确保这种车辆操控安全的装置和方法 的常见领域。

【背景技术】
[0002] 更具体涉及一种用于检测机动车辆行驶方向的方法,同时应用行驶方向信息管理 辅助转向系统,特别是助力转向系统。
[0003] 已知,通过设置在齿轮箱的传感器,来检测车辆的行驶方向(前进或倒车),该信 息可以用于获得驾驶辅助所述车辆的不同车载功能,例如辅助停车功能。
[0004] 虽然该检测模式通常令人满意,然而其具有特定缺陷。
[0005] 例如,当未挂挡或驾驶员脱开离合器时,检测实际上是无效的。
[0006] 因此,在确定情况下,例如如果驾驶员决定在轻微斜坡上空档倒车,所述驾驶员可 能,以他/她的驾驶舒适性,甚至他/她的安全为代价,丧失确定的辅助功能。


【发明内容】

[0007] 因此,本发明的目的在于克服上述缺陷,提出一种新的用于检测车辆纵向行驶方 向的方法,所述方法有效可靠,无论车辆运行的条件,特别的,所述方法能在发动机和驱动 轮没有连接的情况下实施,同时显示相对简单的执行过程。
[0008] 本发明目的的实现通过一种用于确定车辆纵向行驶方向的方法,其特征在于包括 收集第一信号(信号1)的步骤(a),所述第一信号表示第一驾驶参数,其中所述第一信号数 值符号和/或所述第一信号的变化符号不取决于车辆的纵向行驶方向,收集第二信号(信 号2)的步骤(b),所述第二信号表示不同于第一驾驶参数的第二驾驶参数,其中所述第二 信号数值符号和/或所述第二信号变化符号的改变取决于车辆的纵向行驶方向,随后的符 号比较步骤(c),分别将第一信号(信号1)的数值符号与第二信号(信号2)的数值符号, 以及第一信号(信号1)的变化符号与第二信号(信号2)的变化符号相比较,从而判断车 辆纵向行驶方向,所述比较步骤(c)取决于所述符号是否相同或相反。
[0009] 有利地,由于根据本发明的方法使用基于持续检测的驾驶参数的信号作为信息 源,其在所有情况下,在车载网络上,通过不同传感器或车载系统可以周期性得到,根据本 发明的方法,以准确和稳固的方式,通过使用可靠信号,持续确定所述车辆的行驶方向,无 论车辆的运行条件。
[0010] 此外,行驶方向的检测由特别简单的符号分析操作获得,其需要较少电动或软件 程序,并且无附加的,甚至不用,专用传感器。因此,所述方法的实现特别简单和便宜,并且 甚至可能减轻车载负载以及进一步节省传感器。

【专利附图】

【附图说明】
[0011] 通过阅读随后的,以纯描述和非限定实例的方式给出的说明书,并通过使用附图, 本发明的其他目的,特征和优点将更为显著,其中附图:
[0012] 图1所示为根据本发明的确定车辆行驶方向的方法的处理过程的功能框图。
[0013] 图2所示为车辆运行条件实例的原理俯视图,以及对确定信号符号的影响。
[0014] 图3所示为使用确定行驶方向的方法用于监控和控制学习方法,来允许确定辅助 转向系统的方向盘的绝对角度多向旋转位置。

【具体实施方式】
[0015] 本发明涉及一种用于确定车辆纵向行驶方向的方法。
[0016] 如果相应车辆处于对应瞬间,所述方法有利地以自动方式确定前进或倒车的进 展,并将该有效信息(行驶方向)提供给一个或多个车载计算机便于使用,例如通过控制器 区域网(CAN)。
[0017] 出于方便,可以考虑将前进过程对应于正线速度(V>0),考虑为沿着车辆轨迹的切 线方向,以及倒车过程对应于负线速度(v〈0)。
[0018] 根据本发明并特别如图1所示,所述方法包括收集第一信号(信号1)的步骤(a), 所述第一信号表示第一驾驶参数,其中所述第一信号数值符号和/或所述第一信号的变化 符号不取决于车辆的纵向行驶方向,收集第二信号(信号2)的步骤(b),所述第二信号表 示不同于第一驾驶参数的第二驾驶参数,其中所述第二信号数值符号和/或所述第二信号 变化符号的改变取决于车辆的纵向行驶方向,随后的符号比较步骤(c),分别比较第一信号 (信号1)的数值符号与第二信号(信号2)的数值符号,以及第一信号(信号1)的变化符 号与第二信号(信号2)的变化的符号,从而判断车辆纵向行驶方向(VX)或V〈0),所述比较 步骤(c)取决于所述符号是否相同或相反。
[0019] 为了描述方便,如果需要,"信号"的表示可以平凡地指定如下,另有说明除外,该 数值在给定瞬间量化所述信号的幅值(以及因此相关参数的幅值),以及表示所述信号变 化的差值或梯度,并且尤其是所述信号对相应时间的一阶(甚至高阶)微分。
[0020] "驾驶参数"可以认为是任何适于执行比较功能的参数,尤其是任何能被直接测量 或间接计算的参数并且其代表刻画了车辆移动的一个方面的物理量,特别是运动学或动力 学物理量,或者是应用于所述车辆用于驾驶的设定值,当然假设所述参数符号的行为对于 行驶方向满足敏感条件(对于第二参数)或满足不敏感的条件(用于第一参数)。
[0021] 有利地,第一信号的符号允许对第一行车条件进行检测,表示可能的运行条件的 一个子集,因此允许设置参考系统的第一元件,所述参考系统是这样的,使得所述参照系 统内的第二参数符号的知识随后能以确定的方式,鉴于所述参考系统内可能存在的运行条 件,推断车辆的行驶方向。
[0022] 所使用的协定可能取决于所保存的参数的性质。
[0023] 因此,例如可以提出,通常,当第一信号(信号1)的符号与第二信号(信号2)的 符号相同时,车辆的行驶方向对应于向前行驶(v>0),相反地,当两个信号的符号彼此不相 同时,即相反符号时,车辆的行驶方向对应于反向行驶(v〈0)。当然,还可以考虑相反协定。
[0024] 有利地,根据特别简单的规则,便于编程和执行,使得本发明可以可靠的检测行驶 方向。
[0025] 优选地,所考虑的第一行车参数将是方向盘扭矩(在图3中以表达"转向柱扭矩" 指定),表示驾驶员施加在方向盘的扭矩。
[0026] 所述方向盘扭矩当然可以由任何适于获取的元件提供。因此,优选地,尤其由扭矩 传感器直接测量提供,例如设置在转向柱或者任何其他适当位置,并优选地属于辅助转向 系统,更具体为助力转向。所述方向盘扭矩还可以,通过适当的计算机的其他有效信号过程 的评估间接获得。
[0027] 一旦提出用于第一信号的符号协定,为了能够区分相对于车辆的正常前向行驶位 置,对应于右转向的扭矩(在此被协定选择为负号)和对应于左转向的扭矩(选择为正 号),所述第一信号在此表示该方向盘扭矩参数,有利地包括能够将左/右参考系统关联至 车辆的信息,涉及行驶方向,即所述第一信号设置第一条件确定所述行驶方向。
[0028] 优选地,所考虑的第二驾驶参数为车辆角速度Φ ',可以有利地由ESP型稳定控制 系统提供。
[0029] 有利地,该第二信号包括第二信息,并设置第二条件用于确定行驶方向,与第一信 号带来的第一条件结合,能够清除运行条件的不确定性,其中车辆实际上,通过限制单一状 态可能性的范围,来同时满足上述两个条件。
[0030] 该理论将通过附图2示出的实例得到更好的理解。
[0031] 通常来讲,当驾驶员向左转方向盘(当他/她位于正常驾驶位置,朝向车辆前部), 将前轴向左转向时,与前导向轮的转向角i相联系的方向盘扭矩为正数,正向地位于三角 学方向中,当方向盘向右转时,所述方向盘扭矩为相反负数。
[0032] 类似地,可以认为在三角学方向(逆时针方向)上车辆围绕自身转弯时,角速度 Φ '为正数。
[0033] 因此,如果车辆相反转弯行驶(V〈0),即对应车辆按"惯例"向右转向(状态2A), 通过方向盘向右转(α〈0)发出信号,随后导致角速度必为正数(Φ ' >0)。
[0034] 相反地,同时检测第一负信号,发出方向盘扭矩向右转向的信号(α〈〇),以及第二 正信号(即相反符号),发出正角速度(Φ' >〇)信号,因此逆时针旋转移动,必然指示反向 行驶(V〈0)。
[0035] 如果同样向右转弯,车辆停止随后向前行驶重启(V>0),可以理解为方向盘保持右 转(α〈0),即使转向力度可能会改变,同时角速度反向,在地面坐标系中,实际行驶引起车 辆本身以顺时针方向平缓转弯(状态2Β)。
[0036] 行驶方向的改变可以由角速度符号的改变检测,所述角速度在此情况下变为负数 (Φ '〈0)〇
[0037] 更全局来讲,右转向负扭矩(α〈〇)和负角速度(φ '〈〇)的积累检测,即相同符号, 必然发出向前行驶信号(V>0)。
[0038] 但在转弯之后,车辆继续向前行驶并且沿直线(状态2C),方向盘理论上处于居中 位置(α = 0),角速度理论上基本为0(Φ'= 0),可能轻微变化的例外反映了围绕中间位 置的轻微轨迹校正。
[0039] 在该状态下,为了防止由于连接到收集信号缺陷的可能不确定性引起的任何错误 解释,理论上基本为0,本发明的方法有利地包括,随后详细描述的,过滤步骤和/或验证步 骤,能够忽略信号或被认为不可靠的结论,和/或采取适宜的保护措施。
[0040] 当车辆最后向前行驶左转(状态2D)时,转向扭矩(向左)正如角速度(Φ ' >0) 一样变为绝对正数(α >0)。
[0041] 相同符号的第一信号和第二信号在此被再次检测,在此情况下,均为正数,特征化 向前行驶。
[0042] 此外值得注意的是,参数的使用,在此是方向盘扭矩和角速度的使用已经在车载 网络CAN有效,因为它们由不同于辅助转向的多种车载系统(ABS,ESP)周期性提供,使得没 有应用实现,以及更全局来讲没有特定传感器的存在,将仅仅专用于检测行驶方向,从而用 于简化和减轻车辆结构。
[0043] 根据第一可能实施例(图1所示的"静态方法"),在比较步骤(c)中,可以获得第 一信号和第二信号(信号1,信号2)的瞬时值的符号的静态比较(Cl)。
[0044] 该方法特别的对应于上述实例,有利地允许应用由其他车载系统(ABS,ESP)提供 的直接和快速的"原始"信号,通过分析所述信号提取各自符号,随后比较所述符号。
[0045] 根据另一实施例(图1所示的"动态方法"),可以独立的或相反地应用于补充先 前的静态模式,在比较步骤(c)中,可以获得第一信号和第二信号各自的变化符号之间的 动态比较(c2)。
[0046] 根据该第二实施例,对于所考虑的信号或多个信号,在预设周期的一个相同信号 值演变的符号特别的被检测,例如,在实现该方法的算法的两个逐次的过程中,通过测量分 别被收集的所述信号的两个数值之间的不同进行检测。
[0047] 显然,可以考虑任何适于报告和/或量化信号变化的信号处理,例如所述信号或 多个信号的微分估算,或应用到高通滤泼器的所述信号。
[0048] 正如已经考虑为用于比较"原始"信号值,可能用于定义比较定律,如果第一信号 的变化符号(例如正数增加,负数减小)与第二信号的变化符号一致,这意味着随后车辆向 前行驶,相反,如果第一信号的变化符号不同于第二信号的变化符号,这意味着车辆反向行 驶。
[0049] 有利地,为了获得同一时间的基于相同信号的静态比较(cl)和动态比较(c2),如 果必须并行,可以考虑积累两个实施步骤,随后,如果必须,输出每个方法的结果,从而改善 方法的可靠性和准确性。
[0050] 特别地,可以确定,如果两个实施步骤提供相同结果,即全都确定相同行驶方向, 随后新结果被认为可靠,如果相反提供相异结果,所述实施之一得出向前行驶的结果,,另 一确定为反向行驶,随后必须解除当前迭代的结果,并保留所述当前迭代之前的最后一致 迭代结果,所述最后清晰迭代结果因此临时"延长"至少到下一迭代步骤。
[0051] 无论考虑的实施步骤,根据本发明的方法优选包括第一和/或第二信号的过滤步 骤⑷,在其间,第一信号(信号1)和第二信号(信号2)分别与预设接受阈值比较,随后的 分析和条件中和步骤(e)包括其间被选择,在比较当前迭代η的应用步骤(c)中,信号中的 任何符号都被新收集,如果所述信号(信号1)被视为可靠即大于或等于接受阈值,在所述 迭代过(符号[信号1]η)程中,所述信号符号被重新接收,或者如果所述信号被视为可疑 地低于所述接受阈值,在先前迭代符号(信号I) (η-1))过程中,相反信号符号被收集。
[0052] 有利地,该过滤步骤特别地用于消除陷于背景噪音中的细微信号,因此防止应用 不充分可靠的数据,这具有歪曲估算的风险和导致相对于行驶方向的错误结论的风险。
[0053] 该预防措施是特别可观的假设,车辆严格直线行驶(图2中的状态2C),以此方式, 该信号为准零,例如由于围绕中间位置轻微轨迹校正振荡,其可能振幅将不再对应清除操 作,从而将不足以实际显著。
[0054] 在该不确定情况下,缺少相应的新数据将微调或更新车辆运行条件的评估,因此 所述算法有利地不再估算和传输可疑信号,为了临时预防,先前迭代的结果(所考虑的信 号符号),即向前传输,在满意可靠条件下获得的上一预估结果。
[0055] 自然,一旦该转换阶段已经过去,即一旦驾驶条件发生了足够显著变化,例如在车 辆变换车道或车辆弯道的结合过程中,所述条件的改变立刻发出信号清除转移信号或正值 或负值信号,超越接受阈值,从而恢复和更新,基本上实时地检测行驶方向。
[0056] 所述接受阈值或多个接受阈值,定义了"死区",用于排除被判断为不充分可靠的 信号,可以有利地调节。
[0057] 所述方法因此可以包括,先于比较步骤(C)的,在设置过程中的阈值调整步骤(未 图示),例如如果必须,选择和/或自动调整所述接受阈值或多个接受阈值,例如取决于一 个数值和/或其他相关信号。
[0058] 该调整步骤有利地允许调节方法的灵敏度,通过寻求性能和稳定性之间的协调。
[0059] 通常来讲,所选择的阈值必须至少高于相关信号的预估噪音等级,可以例如由试 验实施测量。
[0060] 此外,根据可以独立地构成本发明的优选特征,所述方法包括验证步骤(f),在此 期间,测量或估算车辆线速度(Y)与预设速度阈值比较,仅依靠车辆线速度小于所述速 度阈值的条件,在比较步骤(C)中判断,允许验证行驶方向的变化。
[0061] 的确,在包括围绕过零点发生瞬间的两次逐次迭代的时间范围内,行驶方向的物 理改变推断车辆线速度交叉为0,必然涉及到所述测量速度绝对值减小低于阈值接近0,其 中所述阈值可以,一方面根据算法取样频率,另一方面根据车辆加速度或减速度的最大预 测量级,进一步设定。
[0062] 相反地,只要车辆的线速度持续高于所述阈值,就不可能发生行驶方向的改变,以 及任何相反结论,这必然是错误的,因此必须解除。
[0063] 有利地,该验证步骤(f)因此,通过第三驾驶参数,提供了一种附加检测基准,允 许确认或相反解除由比较步骤或多个步骤(c)、(cl)、(c2)确定的运行条件的解释,从而改 善方法的可靠性。
[0064] 自然,该步骤特别的可以单独使用,或者为了获得加强的可靠性,与前述过滤和分 析步骤结合使用。
[0065] 根据本发明的优选实施例,用于确定行驶方法的方法形成整合部分,例如图3所 示确定方向盘绝对角位置的方法,该最后一种方法基于至少一个涉及车辆动态驾驶参数的 模型,例如同一轴系统的车轮之间速度的不同,车辆的横向加速度,或者角速度,其中所述 用于确定行驶方向的方法对车辆进行至少一次运行状态的检测,这被认为是不利于所述模 型的可靠性,例如具有标记转弯情况的反向行驶。
[0066] 有利地,在检测运行状态的情况下,不利于所述用于确定方向盘绝对角位置的方 法的准确性或可靠性,特别地,在确定预设特定条件下,例如确定转弯条件下检测反向行 驶,设置在所使用的模型有效域的极限或外部,发出抑制信号临时中和或校正估算算法过 程,这计算了所述绝对角位置。
[0067] 优选地,用于实施确定方向盘绝对角位置的方法的算法为"找角"型算法,例如本 申请人:的专利申请FR2953181中所描述的。
[0068] 根据该算法,首先测量所述方向盘的相对角位置,例如通过"解角器"型传感器,所 述传感器设置在与转向柱接合的助力引擎的主轴上,随后为了获得绝对瞬时位置、方向盘 的多向旋转,校正补偿值(补偿)施加于该相应测量步骤,其中校正补偿值(补偿)以每次 迭代的依次显著不同的加权平均计算,每次迭代一方面在考虑的迭代过程中测量相对角位 置的值,另一方面估算方向盘绝对角位置之间,间接通过基于Jeantaud-Ackerman分析的 应用定律获取并具有动态驾驶参数,例如由防抱死系统ABS提供的后轮之间的速度差,或 者甚至横向加速度,或者由静态控制系统ESP提供的瞬时角速度。
[0069] 有上述差异是由于,用于计算最终保存补偿,权重系数可以看做是绝对角位置估 算准确性的可靠指数,取决于驾驶条件和用于计算的原始数据。
[0070] 更具体而言,用于确定方向盘角位置的方法包括测量相对角位置的步骤(未图 示),在此期间,所述测量值表示测得的方向盘相对角多向旋转位置Θ MlativewhM1,通过解角 器型车载传感器的使用,优选地在车辆启动时初始化为〇。
[0071] 在应用与电动助力引擎主轴相连的解角器型传感器的情况下,方向盘的相对角位 置可以表达为此形式:

【权利要求】
1. 一种用于确定车辆纵向行驶方向的方法,其特征在于,包括收集第一信号(信号1) 的步骤(a),所述第一信号表示第一驾驶参数,其中所述第一信号数值的符号和/或所述第 一信号的变化的符号不取决于车辆的纵向行驶方向,收集第二信号(信号2)的步骤(b),所 述第二信号表示不同于第一驾驶参数的第二驾驶参数,其中所述第二信号数值符号和/或 所述第二信号变化符号的改变取决于车辆的纵向行驶方向,随后的符号比较步骤(c),在其 间分别将第一信号(信号1)的数值符号与第二信号(信号2)的数值符号,以及将第一信 号(信号1)的变化的符号与第二信号(信号2)的变化的符号相比较,从而判断车辆纵向 行驶方向,所述比较步骤(c)取决于所述符号是否相同或相反。
2. 根据权利要求1所述的方法,其特征在于,所考虑的第一驾驶参数为方向盘扭矩,表 示驾驶员对方向盘施加的扭矩,优选由例如设置在转向柱上的扭矩传感器提供。
3. 根据权利要求1或2所述的方法,其特征在于,所考虑的第二驾驶参数为车辆角速度 (步'),优选由ESP型稳定控制系统提供。
4. 根据前述权利要求中任一项所述的方法,其特征在于,在比较步骤(c)中,静态比较 (cl)在第一信号(信号1)和第二信号(信号2)的瞬时值符号之间实施。
5. 根据前述权利要求中任一项所述的方法,其特征在于,在比较步骤(c)中,动态比较 (c2)在第一信号和第二信号的变化符号之间实施。
6. 根据前述权利要求中任一项所述的方法,其特征在于,包括第一和/或第二信号的 过滤步骤(d),在此其间,第一信号(信号1)和第二信号(信号2)分别与预设接受阈值 比较,随后的条件中和步骤(e)包括选择,所述选择用于在当前迭代(n)中,应用比较步骤 (c),如果所述信号(信号1)被视为可靠即大于或等于接受阈值,那么在所述迭代(符号 [信号1] (n))过程中,所述信号的符号被重新收集,或者相反地,如果所述信号被视为不可 靠即小于所述接受阈值,那么在先前迭代(符号[信号1] (n-1))过程中的信号符号被收 集。
7. 根据前述权利要求中任一项所述的方法,其特征在于,包括验证步骤(f),在此其 间,将测量或估算的车辆线速度(V)与预设速度阈值(VWil)相比较,使得允许仅依靠车辆 线速度小于所述速度阈值的条件来验证行驶方向的变化,所述行驶方向的变化在比较步骤 (c)中判断。
8. 根据前述权利要求中任一项所述的方法,其特征在于,其形成了基于至少一个包括 车辆动态驾驶参数的模型来确定方向盘的绝对角位置方法的不可分割部分,所述动态驾驶 参数例如相同轮轴系统的车轮间的速度差,车辆横向加速度,或角速度,并且所述确定行驶 方向的方法用于检测检测车辆的至少一种运行状态,例如,有显著转弯的倒车的情况,其被 认为不利于所使用的模型的可靠性。
9. 一种机动车辆,其特征在于,包括配置或编程为执行权利要求1-8中任一项所述方 法的车载计算机。
10. -种被计算机读取的数据介质,并且所包含的软件程序代码元素,使得当所述介质 被计算机读取时,执行权利要求1-8中任一项所述的方法。
【文档编号】B60W40/10GK104487307SQ201380035989
【公开日】2015年4月1日 申请日期:2013年7月3日 优先权日:2012年7月6日
【发明者】斯特凡·卡萨尔, 罗曼·莫雷蒂, 吕克·莱迪耶 申请人:捷太格特欧洲公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1