混合电动车辆滑行状态下的电动机扭矩控制方法与流程

文档序号:17554667发布日期:2019-04-30 18:31阅读:566来源:国知局
混合电动车辆滑行状态下的电动机扭矩控制方法与流程

本公开涉及一种用于控制混合电动车辆的电动机扭矩的方法。更具体地,本公开涉及一种用于控制混合电动车辆滑行状态下的驱动电动机扭矩的方法。



背景技术:

一般而言,由发动机和电动机驱动的混合电动车辆是一种利用化石燃料的能量结合电能而排放较少的废气并具有改善的燃料效率的环境友好型车辆。对此,图1是示意性地示出混合电动车辆中的动力系(powertrain)的配置的图,其包括作为驱动动力源的发动机和电动机,以及变速器。如图1所示,混合电动车辆中包括传动系(例如动力传动装置)的动力系包括:作为车辆行驶驱动源的布置为串联的发动机1与电动机3(以下称为“驱动电动机”);选择性地连接或断开发动机1与驱动电动机3之间的动力的发动机离合器2;用于驱动和控制驱动电动机3的逆变器5;改变发动机1和驱动电动机3的动力并传递给驱动轴的变速器4;以及与发动机1连接以传递动力并起动发动机或从发动机的动力发电的混合式起动发电机(HSG)7。作为驱动电动机3的能量源(即电力源)的可充电/放电电池6通过逆变器5与驱动电动机3连接。

在此配置中,发动机离合器2通过液压而接合或脱离,选择性地连接或断开发动机1与驱动电动机3之间的动力。变速器4与驱动电动机3的输出侧连接,将发动机和驱动电动机的动力传递给驱动轴。逆变器5将电池6的直流电转换为交流电,并将交流电施加于驱动电动机3以使驱动电动机3驱动。

一般的混合电动车辆根据驾驶状态来选择驾驶模式。例如,混合电动车辆可以以电动车辆(EV)模式(其是仅利用驱动电动机3的动力的纯电动车辆模式)和混合电动车辆(HEV)模式(其中同时利用发动机1和驱动电动机3的动力)行驶。另外,在车辆制动(即压下刹车踏板)时或依靠惯性滑行时,可执行再生制动(RB)模式,该模式利用通过驱动电动机3的发电而回收的制动能量和惯性能量为电池6充电。混合式起动发电机7通过利用发动机1的动力作为发电机运行或在再生制动状态下作为发电机运行也对电池6充电。作为参考,在混合电动车辆中,将驱动电动机3与变速器4连接的类型称作安装有变速器的电气装置(TMED)类型。

图2是示出混合电动车辆中蠕行扭矩和滑行扭矩的特性的图,其示意性地示出对应于电动机速度(即变速器输入轴转速)的驱动电动机扭矩的状态(如蠕行扭矩、滑行扭矩等)的实例。如领域内已知的,混合电动车辆在松开制动踏板和松开加速踏板的状态下蠕行或滑行。术语“松开踏板”(pedal-off)是指驾驶员不操作对应踏板(即驾驶员的脚从踏板移开)的状态,而术语“下压踏板”是指驾驶员下压对应踏板的状态。

蠕行扭矩是当驾驶员的脚从制动踏板和加速踏板移开(即处于松开制动踏板和松开加速踏板的状态)时通过发动机怠速控制特性和自动变速器的扭矩转换器实现的。在需要蠕行扭矩的蠕行期间,通过发动机扭矩产生驱动力用于维持低速下的怠速。

在速度相对较高的滑行期间,在燃油切断状态下,发动机摩擦力产生制动力,由此车辆通过发动机摩擦扭矩(即发动机制动扭矩)而制动。滑行时的驱动电动机扭矩(下文中称作“滑行扭矩”)是负扭矩,其是产生制动力并使电池被充电的充电扭矩(例如发电扭矩、再生制动扭矩等)。在驱动电动机与自动变速器连接的TMED混合电动车辆中,没有扭矩转换器且怠速控制特性不同,但需要实现与装备有自动变速器的一般车辆相同的驾驶舒适度。

图3和图4是说明TMED混合电动车辆的滑行扭矩控制的图。图3示出在车辆仅由驱动电动机3驱动而发动机离合器2脱离的EV模式中,通过驱动电动机3的再生力获得滑行扭矩的状态。图4示出发动机离合器2接合时通过发动机1的摩擦扭矩而获得滑行扭矩的状态。

参考图3,当在发动机离合器脱离状态下以EV模式行驶的车辆开始利用车辆的惯性滑行且制动踏板和加速踏板未被踩踏时,驱动电动机3产生的再生功率(如充电电力)通过逆变器5储存到电池6中。当TMED混合电动车辆处于正常状态下,如上所述,驱动扭矩负责EV模式中的滑行扭矩以提高驱动效率,并将车辆的惯性能量变换为电能。电动机扭矩(即滑行扭矩)被控制在与变速器输入轴的当前速度对应的发动机摩擦扭矩,借此变速器的输入速度决定电动机速度。

在电池6充满电的情况下,发动机离合器2被接合,由燃油切断状态下发动机1的摩擦力产生制动力(如图4所示)。但是,车辆的惯性力取决于发动机离合器2接合之前/之后的发动机转动惯量,因此,当车辆滑行时,发动机离合器接合之前和之后的角减速度有差异。

更详细地,首先,在滑行过程中在发动机离合器接合之前(即,当发动机离合器未接合时)的车辆角减速度可以通过以下公式(1)求出。

当驱动电动机扭矩τMot被控制在发动机摩擦扭矩τEng_Drag时,即τMot=τEng_Drag,如现有技术那样,角减速度可以通过以下公式(2)求出。

相比之下,发动机离合器接合状态下的车辆角减速度可以通过以下公式(3)求出。

由于加上了发动机转动惯量JEng,车辆角减速度可以通过以下公式(4)求出。

在公式(1)和公式(2)中,JEng是发动机的转动惯量,JMot是电动机的转动惯量,JDT是传动系的转动惯量,JVeh是车辆的转动惯量。此外,τMot是电动机扭矩,τEng_Drag是发动机摩擦扭矩,τDT_Drag是传动系摩擦扭矩,τLoad是车辆的驱动负载扭矩。

此外,是在发动机离合器未接合状态下滑行时车辆的角减速度,是在发动机离合器接合状态下滑行时车辆的角减速度。所有转动惯量、扭矩以及角减速度都是以变速器输入轴为基准的换算值。

结果,如公式(2)和公式(4)所示,滑行车辆的角减速度在发动机离合器接合之前和接合之后存在差异,如以下公式(5)所示。

角减速度的差异导致快速的车辆速度变化,并且由于惯性差异,驾驶员在他/她变速时感受到差异。

在该背景技术部分中公开的上述信息仅用于增强对本公开背景的理解,因此其可能含有不构成该国本领域中普通技术人员已经知晓的现有技术的信息。



技术实现要素:

本公开致力于解决上述与现有技术相关的问题。

因此,本公开提供了一种电动机扭矩控制方法,其在控制混合电动车辆滑行状态下的驱动电动机扭矩时,可改善改变模式(例如EV模式HEV模式)时的驾驶性,其中在发动机离合器接合前的模式(即EV模式)与发动机离合器接合后的模式(即HEV模式)之间不产生车辆角减速度差异。

根据本公开的实施方式,用于控制车辆滑行时的电动机扭矩的方法包括:获取该车辆行驶时由检测器检测到的关于变速器输入轴转速的信息、从该变速器输入轴转速得到的关于变速器输入轴角加速度的信息以及关于发动机离合器的状态的信息;基于所获取的信息判定该车辆是否处于滑行状态;当判定该车辆处于滑行状态且该发动机离合器脱离时,基于与该变速器输入轴转速对应的发动机摩擦扭矩、发动机转动惯量和该变速器输入轴角加速度来计算电动机扭矩指令;以及根据所计算的电动机扭矩指令来控制用于驱动车辆的驱动电动机的扭矩。

电动机扭矩指令可得自如下的公式:电动机扭矩指令=发动机摩擦扭矩–发动机转动惯量×变速器输入轴角加速度。发动机摩擦扭矩可被确定为映射图中与变速器输入轴转速对应的值。

当该车辆处于滑行状态且发动机离合器接合时,电动机扭矩指令可被计算为零,并对驱动电动机执行零扭矩控制。

基于由加速踏板检测器检测到的关于加速踏板的操作的信息来判定该加速踏板是否被操作,并且当变速器输入轴转速大于预定的临界值时,可判定该车辆处于滑行状态。

此外,根据本公开的实施方式,用于控制车辆滑行时的电动机扭矩的方法包括:获取该车辆行驶时由检测器检测到的关于变速器输入轴转速的信息、从该变速器输入轴转速得到的关于变速器输入轴角加速度的信息以及关于发动机离合器的状态的信息;基于所获取的信息判定该车辆是否处于滑行状态;当判定该车辆处于滑行状态且发动机离合器接合时,基于发动机转动惯量和该变速器输入轴角加速度来计算电动机扭矩指令;以及根据所计算的电动机扭矩指令来控制用于驱动该车辆的驱动电动机的扭矩。

电动机扭矩指令可得自如下的公式:电动机扭矩指令=发动机转动惯量×变速器输入轴角加速度。

当该车辆处于滑行状态且发动机离合器脱离时,电动机扭矩指令可被计算为等于与变速器输入轴转速对应的发动机摩擦扭矩。

发动机摩擦扭矩可被确定为映射图中与变速器输入轴转速对应的值。

基于由加速踏板检测器检测到的关于加速踏板的操作的信息来判定该加速踏板是否被操作,并且当该变速器输入轴转速大于预定的临界值时,可判定该车辆处于滑行状态。

此外,根据本公开的实施方式,提供一种包含程序指令的非暂时性计算机可读介质,该程序指令用于执行如上所述的控制车辆滑行期间的电动机扭矩的方法。

因此,根据本公开,当车辆滑行时,通过根据以变速器输入轴转速、变速器输入轴角加速度、发动机摩擦扭矩、发动机转动惯量和发动机离合器的状态为基础的指令来控制驱动电动机的扭矩,能够消除因发动机离合器的状态引起的车辆减速差异,并能改善车辆的驾驶性。

以下讨论该公开的其他方面和优选实施方式。

附图说明

现在将参考在附图中图示的实施方式对本公开的以上和其它特征进行详细说明,下文给出的这些实施方式仅仅用于示例说明,因此不是对本公开的限制,其中:

图1是示出使用发动机和电动机作为驱动源的一般混合电动车辆的传动系的配置的示意图;

图2是示出一般混合电动车辆的蠕行扭矩和滑行扭矩的特性的图;

图3是示出在一般混合电动车辆中在发动机离合器脱离状态下通过驱动电动机的再生力获得滑行扭矩的状态的图;

图4是示出在一般混合电动车辆中在发动机离合器接合状态下通过发动机摩擦力获得滑行扭矩的状态的图;

图5是示出根据本公开实施方式的控制电动机扭矩的方法的流程图;

图6是示出在图5的实施方式中当发动机离合器脱离时用于确定电动机扭矩的方法的框图;

图7是示出根据本公开实施方式的控制电动机扭矩的方法的流程图;且

图8是示出在图7的实施方式中当发动机离合器接合时用于确定电动机扭矩的方法的框图。

应当理解,所附的附图并非必然是按比例的,而只是呈现说明本公开的基本原理的各种优选特征的一定程度的简化表示。本文公开的本发明的具体设计特征,包括例如具体尺寸、方向、位置和形状,将部分取决于特定的既定用途和使用环境。在附图中,附图标记在附图的几张图中通篇指代本公开的相同或等同部件。

具体实施方式

现在将在下文中详细地参照本公开的各个实施方式,其实施例在附图中图示,并在下文加以描述。尽管将结合示例性实施方式描述本公开,但应当理解,本说明书无意于将本公开局限于这些实施方式。相反,本公开不仅要涵盖所公开的实施方式,还要涵盖由所附权利要求所限定的本公开的精神和范围内的各种替代形式、修改、等效形式和其它实施方式。

本文使用的术语仅仅是为了说明具体实施方式,而不是意在限制本公开。如本文所使用的,单数形式“一个、一种、该(a、an、the)”也意在包括复数形式,除非上下文中另外清楚指明。还应当理解的是,在说明书中使用的术语“包括(comprises和/或comprising)”是指存在所述特征、整数、步骤、操作、元件和/或部件,但是不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、部件和/或其群组。如本文所使用的,术语“和/或”包括一个或多个相关所列项的任何和所有组合。

应理解,本文使用的术语“车辆”或“车辆的”或其它类似术语包括通常的机动车,例如,包括多功能运动车(SUV)、公共汽车、卡车、各种商务车的客车,包括各种船只和船舶的水运工具,飞行器等等,并且包括混合动力车、电动车、插入式混合电动车、氢动力车和其它代用燃料车(例如,来源于石油以外的资源的燃料)。如本文所提到的,混合动力车是具有两种或多种动力源的车辆,例如,具有汽油动力和电动力的车辆。

此外,应当理解,可以由至少一个控制单元和/或控制器执行一种或多种以下方法或其方面。术语“控制器”或“控制单元”可指代包括存储器和处理器的硬件设备。存储器配置为存储程序指令,并且处理器被配置为执行该程序指令以进行以下进一步描述的一个或多个处理。此外,应当理解,以下方法可以由包含控制单元和/或控制器的装置执行,其中该装置在本领域中已知为适合用于控制车辆滑行状态下的驱动电动机的扭矩。

此外,本公开的控制单元和/或控制器可以实现为包含由处理器、控制器等执行的可执行程序指令的计算机可读介质上的非暂时性计算机可读介质。计算机可读介质的实例包括但不限于,ROM、RAM、光盘(CD)-ROM、磁带、软盘、快闪驱动器、智能卡和光学数据存储装置。计算机可读记录介质还可以分布在连接网络的计算机系统中,以便,例如通过远程信息处理(telematics)服务器或控制器局域网(CAN)以分布式模式存储和执行计算机可读介质。

本公开提供了一种电动机扭矩控制方法,其在控制车辆(例如混合动力车辆)滑行状态下的驱动电动机扭矩时,可改善改变模式(EV模式HEV模式)时的驾驶性,其中在发动机离合器接合前的模式(EV模式)与发动机离合器接合后的模式(HEV模式)之间不产生车辆角减速度差异。

图5是示出根据本公开实施方式的控制电动机扭矩的方法的流程图,并且示出了在混合电动车辆滑行时,根据发动机离合器接合与否来控制驱动电动机的扭矩(即滑行扭矩)的过程。

在如下描述中,在根据所公开实施方式的电动机扭矩控制过程中,主要部件可以是一个控制单元,或者多个控制单元可相互协作执行电动机控制过程。例如,混合电动车辆可装备有混合控制单元(HCU)和电动机控制单元,混合控制单元是总体控制车辆的最高级控制单元,电动机控制单元通过逆变器控制驱动电动机的运行,其中HCU可确定电动机扭矩指令,随后电动机控制单元可根据来自HCU的电动机扭矩指令来控制驱动电动机的扭矩。

首先,控制单元获取由加速踏板检测器检测到的关于加速踏板操作的信息和由车辆内的检测器检测到的关于变速器输入轴转速(即电动机速度)的信息、由变速器输入轴转速确定的变速器输入轴角加速度,以及发动机离合器的状态信息(S11)。加速踏板检测器可以是例如检测由驾驶员操作的加速踏板的位置的加速踏板位置传感器(APS)。

控制单元在车辆行驶期间基于加速踏板检测器的信号来检查加速踏板的操作状态(S12)。即,基于加速踏板检测器的信号,判断驾驶员是否从加速踏板移开脚。当判定出加速踏板是否被操作,将从APS信号获得的加速踏板下压距离与预定的第一临界值相比较(S12),然后,当加速踏板下压距离小于第一临界值时,判定驾驶员的脚从加速踏板移开(即踏板松开)。

如果驾驶员操作加速踏板以使车辆加速,即,当从APS信号获得的加速踏板下压距离大于第一临界值时,意味着驾驶员已操作了加速踏板以使车辆加速,由此执行加速踏板操作状态下的一般车辆加速控制。相反,当在S12步骤中确定加速踏板未下压时,控制器将变速器输入轴转速与预定的第二临界值相比较(S13),当变速器输入轴转速大于第二临界值时,判定车辆处于滑行状态。

如果在S13步骤中变速器输入轴转速小于第二临界值,则控制器执行一般的蠕行控制。另外,当在S13步骤中判定车辆为滑行状态时,检查发动机离合器的状态(S14),根据发动机离合器的状态执行滑行控制,其中根据发动机离合器接合与否确定电动机扭矩指令。当发动机离合器接合时,电动机扭矩指令被计算为零,对驱动电动机实行零扭矩控制(S15),因此由燃油切断状态的发动机直接提供摩擦负载以及惯性负载。即,通过发动机离合器的摩擦力产生制动力,结果通过例如发动机制动的发动机摩擦扭矩(即发动机制动扭矩)使车辆制动。

相反地,当发动机离合器脱离时,可以基于发动机摩擦扭矩、发动机转动惯量以及变速器输入轴角加速度计算出电动机扭矩指令(S16),并根据计算出的电动机扭矩指令来控制驱动电动机的扭矩(即滑行扭矩)。发动机摩擦扭矩可以基于映射图(map)中的变速器输入轴转速而获得(该映射图被预先设置并输入到控制器中),并且发动机转动惯量作为发动机的特征值被预先设置并输入到控制器中。

此外,变速器输入轴角加速度(其值基于变速器输入轴转速而确定)可以通过对变速器输入轴转速进行微分而确定,或者如图6所示,可以基于前一个采样时间的变速器输入轴转速与当前采样时间的变速器输入轴转速之间的差值以及采样时间段的z值而确定。

步骤S16中滑行时电动机扭矩指令可以由以下公式(6)计算出。

电动机扭矩指令=发动机摩擦扭矩-发动机转动惯量×变速器输入轴角加速度。 (6)

图7是示出根据本公开实施方式的控制电动机扭矩的方法的流程图,步骤S11至S14与参考图5描述的实施方式中的内容相同,所以将不再描述。

在图7所示的实施方式中,同样地,电动机扭矩指令取决于车辆滑行时发动机离合器是否接合。即,当发动机离合器接合时,可以基于发动机转动惯量以及变速器输入轴角加速度,利用如下公式(7)计算电动机扭矩指令(S15),如图8所示。

电动机扭矩指令=发动机转动惯量×变速器输入轴角加速度(7)

控制器确认作为发动机特征值的发动机转动惯量,并且也可以以如上所述的相同方式确定变速器输出轴加速度。

当发动机离合器接合时,如上所述,燃油切断状态下的变速器可产生摩擦负载和惯性负载,但惯性负载被电动机扭矩抵消。相反地,当发动机离合器未接合时,电动机扭矩指令可以计算为等于基于变速器输入轴转速加以确定的发动机摩擦扭矩,如以下公式(8)所示(S16),并且发动机摩擦扭矩可以基于映射图中的变速器输入轴转速而获得,该映射图被预先设置并输入到控制器中。

电动机扭矩指令=发动机摩擦扭矩 (8)

由此,根据发动机离合器是否接合,基于由公式(7)或公式(8)而计算出的电动机扭矩指令来控制驱动电动机的扭矩(即滑行扭矩)。

已经参照本公开的实施方式详细地描述了本公开的内容。然而,本领域技术人员应当理解,在不背离本公开的原理和精神的情况下可以对这些实施方式作出改变,本公开的范围由所附权利要求及其等效形式限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1