本发明涉及动力传递装置。
背景技术:
::已知具备发动机和电动机作为驱动力源、能够使发动机停止而仅以电动机进行EV行驶的混合动力车辆(HV车辆)。例如在专利文献1中公开了在收纳壳体(后壳体)内具备可选单向离合器(以下,selectableone-wayclutch,称作SOWC)来作为锁定机构的混合动力车辆的动力传递装置。该动力传递装置通过机械式的油泵向SOWC内供给润滑油,所述机械式的油泵通过发动机的动力来驱动。现有技术文献专利文献专利文献1:日本特开2015-77846号公报技术实现要素:发明所要解决的问题在此,专利文献1所公开的动力传递装置通过机械式的油泵向收纳壳体内的各部件一律地供给润滑油,所以无法有意地控制向特定的部件、具体而言SOWC供给的润滑油的供给量。因此,根据SOWC的动作状况,有可能在SOWC内发生润滑油的过剩或不足,例如招致SOWC的误接合、寿命的降低等。本发明是鉴于上述情况而完成的,其课题在于,提供能够控制向SOWC供给的润滑油的供给量的动力传递装置。用于解决问题的手段为了解决上述课题,达到目的,本发明的第一技术方案的动力传递装置是车辆中的动力传递装置,所述车辆具备发动机和电动机作为驱动力源,能够使所述发动机停止而仅以所述电动机为驱动力源进行行驶,所述动力传递装置的特征在于,具备:输入轴,被输入来自所述发动机的动力;可选单向离合器,配置于所述输入轴的周围,且包括沿所述输入轴的轴向排列配置的袋板、凹口板以及选择板,所述可选单向离合器通过所述选择板的旋转而切换接合状态和非接合状态,所述接合状态是在所述袋板与所述凹口板之间传递转矩的状态,所述非接合状态是在所述袋板与所述凹口板之间不传递转矩的状态,而且所述凹口板伴随所述电动机的旋转而旋转;收纳壳体,收纳所述输入轴和所述可选单向离合器;以及中心支承件,在所述收纳壳体内设置于所述收纳壳体的内表面与所述输入轴之间,且支承所述输入轴,所述凹口板、所述选择板、所述袋板以及所述中心支承件沿所述输入轴的轴向排列配置,所述动力传递装置具备润滑油储存部,该润滑油储存部设置于所述收纳壳体内的润滑油的润滑路径上的相对于所述中心支承件与所述袋板相反的一侧,以贯通被配置于所述润滑油储存部与所述选择板之间的所述中心支承件以及所述袋板的方式,形成将储存于所述润滑油储存部的所述润滑油向所述可选单向离合器内供给的油路,在所述选择板中,在所述可选单向离合器的非接合时与所述油路的开口部在所述选择板的径向以及周向上不重叠、且在所述可选单向离合器的接合时与所述油路的开口部在所述选择板的径向以及周向上重叠的位置,形成有贯通孔。由此,动力传递装置能够将在收纳壳体内流动的润滑油储存于润滑油储存部,并将所储存的润滑油通过油路向可选单向离合器供给。另外,在动力传递装置中,在可选单向离合器的非接合时贯通孔与油路的开口部不重叠,所以能够减少从润滑油储存部向可选单向离合器供给的润滑油的油量,并且在可选单向离合器的接合时贯通孔与油路的开口部重叠而连通,所以能够增加从润滑油储存部向可选单向离合器供给的润滑油的油量。为了解决上述的课题,达到目的,本发明的第二技术方案的动力传递装置是车辆中的动力传递装置,所述车辆具备发动机和电动机作为驱动力源,且能够使所述发动机停止而仅以所述电动机为驱动力源进行行驶,所述动力传递装置的特征在于,具备:输入轴,被输入来自所述发动机的动力;可选单向离合器,配置于所述输入轴的周围,且包括沿所述输入轴的轴向排列配置的袋板、凹口板以及选择板,所述可选单向离合器通过所述选择板的旋转而切换接合状态和非接合状态,所述接合状态是在所述袋板与所述凹口板之间传递转矩的状态,所述非接合状态是在所述袋板与所述凹口板之间不传递转矩的状态,而且所述凹口板伴随所述电动机的旋转而旋转;收纳壳体,收纳所述输入轴和所述可选单向离合器;以及中心支承件,在所述收纳壳体内设置于所述收纳壳体的内表面与所述输入轴之间,且支承所述输入轴,所述凹口板、所述选择板以及所述袋板沿所述输入轴的轴向排列配置,所述动力传递装置具备润滑油储存部,该润滑油储存部设置于所述收纳壳体内的润滑油的润滑路径上的相对于所述袋板与所述选择板相反的一侧,以贯通被配置于所述润滑油储存部与所述选择板之间的所述袋板的方式,形成将储存于所述润滑油储存部的所述润滑油向所述可选单向离合器内供给的油路,在所述选择板中,在所述可选单向离合器的非接合时与所述油路的开口部在所述选择板的径向以及周向上不重叠、且在所述可选单向离合器的接合时与所述油路的开口部在所述选择板的径向以及周向上重叠的位置形成有贯通孔。由此,动力传递装置能够将在收纳壳体内流动的润滑油储存于润滑油储存部,将所储存的润滑油通过油路向可选单向离合器供给。另外,在动力传递装置中,在可选单向离合器的非接合时贯通孔与油路的开口部不重叠,所以能够减少从润滑油储存部向可选单向离合器供给的润滑油的油量,并且在可选单向离合器的接合时贯通孔与油路的开口部重叠而连通,所以能够增加从润滑油储存部向可选单向离合器供给的润滑油的油量。另外,本发明的第一以及第二技术方案的动力传递装置在上述发明的基础上,其特征在于,所述油路的截面形状和所述贯通孔的形状是相同的形状,且是圆形状。由此,动力传递装置通过使油路的截面形状和贯通孔的形状为圆形状,能够在具有相同面积的形状之中使最小曲率半径为最大,所以在通过油路和贯通孔向可选单向离合器供给润滑油时,能够抑制应力集中于油路端部,能够确保形成有油路的部件的强度。另外,本发明的第一以及第二技术方案的动力传递装置在上述发明的基础上,其特征在于,所述贯通孔形成于所述选择板中的外周侧,所述油路在所述选择板的径向上形成于与所述贯通孔对应的位置,所述油路的截面形状和所述贯通孔的形状是相同的形状,且是短边沿着所述选择板的径向配置的横长椭圆形状。由此,在动力传递装置中,贯通孔形成为横长椭圆形状,且与贯通孔的形成位置对应地在润滑油储存部的底部侧配置油路,由此能够降低被储存于润滑油储存部的润滑油的油面液位,能够调整润滑油储存部中的润滑油的油量。另外,本发明的第一以及第二技术方案的动力传递装置在上述发明的基础上,其特征在于,所述油路的截面形状和所述贯通孔的形状是相同的形状,且是长边沿着所述选择板的径向配置的长方形状。由此,动力传递装置通过使油路的截面形状和贯通孔的形状为长方形状,从而与使油路的截面形状和贯通孔的形状为具有相同面积的其他形状(圆形状等)的情况相比,在可选单向离合器的接合时贯通孔与油路的开口部重叠的情况下,从开始重叠起重叠面积立即变大,所以能够以小的重叠范围使更多的润滑油流入。发明效果根据本发明的动力传递装置,通过使形成于选择板的贯通孔和油路为连通或非连通的状态,能够控制向可选单向离合器内供给的润滑油的供给量。附图说明图1是具备本发明的第一~第三实施方式的动力传递装置的车辆的构架图。图2是表示本发明的第一实施方式的动力传递装置的结构的剖视图。图3A是表示本发明的第一~第三实施方式的动力传递装置的可选单向离合器的实施例1的图,是表示非接合时的各部分的状态的图。图3B是图3A的A-A剖视图。图4A是表示本发明的第一~第三实施方式的动力传递装置的可选单向离合器的实施例1的图,是表示接合时的各部分的状态的图。图4B是图4A的A-A剖视图。图5A是表示本发明的第一~第三实施方式的动力传递装置的可选单向离合器的实施例2的图,是表示非接合时的各部分的状态的图。图5B是图5A的A-A剖视图。图6A是表示本发明的第一~第三实施方式的动力传递装置的可选单向离合器的实施例2的图,是表示接合时的各部分的状态的图。图6B是图6A的A-A剖视图。图7A是表示本发明的第一~第三实施方式的动力传递装置的可选单向离合器的实施例3的图,是表示非接合时的各部分的状态的图。图7B是图7A的A-A剖视图。图8A是表示本发明的第一~第三实施方式的动力传递装置的可选单向离合器的实施例3的图,是表示接合时的各部分的状态的图。图8B是图8A的A-A剖视图。图9是表示关于本发明的第一~第三实施方式的动力传递装置的可选单向离合器的实施例1和实施例3的、接合时的油路重叠面积与行程量的关系的图表。图10是表示本发明的第二实施方式的动力传递装置的结构的剖视图。图11是表示本发明的第三实施方式的动力传递装置的结构的剖视图。具体实施方式关于本发明的实施方式的动力传递装置,参照图1~图11进行说明。此外,本发明不限于以下的实施方式。另外,下述实施方式中的构成要素包括本领域技术人员能够且容易置换的要素、或者实质上相同的要素。另外,以下参照的图1是具备动力传递装置的车辆整体的构架图,图2、图10以及图11是表示动力传递装置的一部分(输入轴的下半部分)的剖视图。[第一实施方式]具备本实施方式的动力传递装置的车辆是具备发动机和电动机作为驱动力源的混合动力车辆(HV车辆)、或者是插电式混合动力车辆(PHV车辆),更详细而言,是使用SOWC作为锁定机构的分离(split)式(动力分配方式)的车辆。如图1所示,具备本实施方式的动力传递装置的车辆具备发动机1、第一旋转机(电动机)2、第二旋转机(电动机)3、作为第一差动机构的单小齿轮型的行星齿轮机构4、作为第二差动机构的双小齿轮型的行星齿轮机构5、油泵6、SOWC7、作为收纳壳体的后壳体8以及中心支承件91(参照图2)。另外,具备本实施方式的动力传递装置的车辆具备:与发动机1的输出轴11a连接且被输入来自该发动机1的动力的输入轴11b;在内部插通输入轴11b、且能够相对于该输入轴11b相对旋转的第一旋转机2的转子轴21;驱动齿轮12;中间从动齿轮13;中间轴14;中间驱动齿轮15;差速器16;齿圈17;驱动齿轮18;以及驱动轮19。本实施方式的动力传递装置构成为,至少具备所述的发动机1、第二旋转机3、输入轴11b、油泵6、SOWC7、后壳体8以及中心支承件91。另外,本实施方式的动力传递装置具有仅以发动机1作为驱动力源、或者以发动机1和第二旋转机3作为驱动力源来行驶的HV行驶模式和使发动机1停止而将第二旋转机3作为驱动力源来行驶的EV行驶模式这2个行驶模式。行星齿轮机构4是用于将发动机1所输出的动力分配到第一旋转机2侧和驱动轮19侧(输出侧)的动力分配机构,具备太阳轮、小齿轮、齿圈以及齿轮架(在图1中省略标号)。在行星齿轮机构4中,太阳轮与第一旋转机2的转子轴21连接,齿圈与作为输出要素的驱动齿轮12连接,齿轮架与发动机1的输出轴11a连接。如图1所示,行星齿轮机构5具备太阳轮51、小齿轮52、齿圈53以及齿轮架54。在行星齿轮机构5中,太阳轮51与第一旋转机2的转子轴21连接,小齿轮52与油泵驱动齿轮62连接,齿圈53与后述的SOWC7的凹口板(notchplate)72连接,齿轮架54与发动机1的输出轴11a连接。此外,在太阳轮51与齿圈53之间,除了小齿轮52以外,还配置有另一个小齿轮(在图1中省略标号),齿轮架54将这些小齿轮保持为能够自转且公转。另外,如图2所示,行星齿轮机构5在后壳体8内且在输入轴11b的周围的位置配置于该输入轴11b与SOWC7之间。油泵6是用于向以配置于后壳体8内的SOWC7为代表的各部分供给润滑油的机械式的油泵。油泵6伴随发动机1的输入轴11b的旋转而被驱动。另外,如图1和图2所示,油泵6具备泵主体61、与泵主体61和小齿轮52连接的油泵驱动齿轮62。SOWC7是通过限制或容许行星齿轮机构5的旋转要素(齿圈53)的旋转而在HV行驶模式下例如对THS模式和OD锁定模式进行切换的部件。THS模式是由第一旋转机2产生针对发动机1的动力的反作用力而行驶的模式。另外,OD锁定模式是通过限制行星齿轮机构5的齿轮架54的旋转来使发动机1的旋转增速并将其从行星齿轮机构4的齿圈向输出要素(驱动齿轮12)输出的模式。如图2所示,SOWC7配置于输入轴11b的周围,更详细而言配置于行星齿轮机构5的齿圈53的外周。SOWC7具备作为固定侧座圈的袋板71、作为旋转侧座圈的凹口板72、作为切换部件的选择板73、以及用于将这些组装成一体的开口环74。并且,袋板71、凹口板72、选择板73以及开口环74沿着输入轴11b的轴向排列配置。另外,袋板71、凹口板72、选择板73以及开口环74整体上绕输入轴11b形成为环状。此外,所述的“轴向”表示与输入轴11b所延伸的方向平行的、动力传递装置中的旋转要素(行星齿轮机构5、SOWC7等)的旋转轴的方向。另外,在以后的说明所使用的“径向”表示作为与轴向正交的方向的、动力传递装置中的所述旋转要素的径向。在此,虽然在图2中省略了图示,在袋板71中与选择板73相对的面形成有沿着输入轴11b的轴向凹入的多个袋,在其内部收纳有压杆(strut)(接合片)71a(参照图3A等)。此外,在袋的内部设置有将压杆71a向选择板73侧按压的螺旋弹簧(省略图示)。另外,在凹口板72中的与选择板73相对的面,在与压杆71a对应的位置形成有多个凹口(接合凹部)。另外,在选择板73,在与凹口和压杆71a对应的位置形成有窗孔73b(参照图3A等)。并且,选择板73绕输入轴11b旋转,在窗孔73b与压杆71a的位置一致的情况下,被所述的螺旋弹簧按压的压杆71a穿过窗孔73b而向凹口板72侧突出,成为压杆71a与凹口板72的凹口接合的接合状态。另一方面,在窗孔73b相对于压杆71a的位置偏移了的情况下,由选择板73的没有形成窗孔73b的部分将压杆71a压入袋板71的袋内,成为非接合状态。此外,所述的“接合状态”是指,袋板71的压杆71a与凹口板72的凹口相接合,在袋板71与凹口板72之间传递转矩的状态。在该接合状态下,凹口板72仅能够相对于袋板71向一个方向旋转,而不能够向另一方向旋转。另一方面,所述的“非接合状态”是指,袋板71的压杆71a与凹口板72的凹口的接合被解除,在袋板71与凹口板72之间不传递转矩的状态。在该非接合状态下,凹口板72相对于袋板71向任意的方向均能够旋转。如图2所示,后壳体(收纳壳体)8收纳输入轴11b、转子轴21、行星齿轮机构5、油泵6、SOWC7以及中心支承件91等部件。中心支承件91是支承输入轴11b和转子轴21的部件。如图2所示,中心支承件91在后壳体8内设置于该后壳体8的内表面与输入轴11b之间。更详细而言,中心支承件91的径向外侧的端部经由紧固部件96固定于后壳体8的内表面,中心支承件91的径向内侧的端部经由轴承部件95安装于转子轴21。由此,中心支承件91经由轴承部件95支承转子轴21。另外,转子轴21是中空状的轴,在其内部,经由轴承部件(在图2中省略标号)设置有输入轴11b。因此,中心支承件91也经由轴承部件95、转子轴21以及转子轴21内部的轴承部件支承输入轴11b。此外,中心支承件91整体上绕输入轴11b形成为圆盘状。如图1所示,驱动齿轮12与中间从动齿轮13啮合。在中间从动齿轮13安装有中间轴14,在该中间轴14安装有比中间从动齿轮13小径的中间驱动齿轮15。另外,中间驱动齿轮15与差速器16的齿圈17啮合,从差速器16向左右的驱动轮19输出驱动转矩。并且,在第二旋转机3的转子轴(在图1中省略标号)安装有驱动齿轮18,该驱动齿轮18与所述的中间从动齿轮13啮合。在此,如上所述,在以往的动力传递装置中,存在无法有意地控制仅向SOWC供给的润滑油的油量这一问题,更具体而言,担心以下3个问题。(问题1:冷态发动机启动时的选择板的误动作)例如在冷态时(低温时),SOWC内部的润滑油的粘度高,在发动机启动时选择板被凹口板的旋转所拖拽而发生误动作(误旋转),导致SOWC有可能发生误接合(fail:失败)。这样的由凹口板的旋转引起的拖拽起因于介于凹口板与选择板之间的润滑油O的影响。在该情况下,若能够向选择板的相反侧、即选择板与袋板之间有意地供给润滑油O,则能够缓解介于凹口板与选择板之间的润滑油O的影响,在以往的动力传递装置中,无法有意地控制仅向SOWC供给的润滑油的油量,所以无法解决上述问题。(问题2:棘轮啮合转速的控制)认为例如在SOWC向正旋转方向高速地进行差速旋转的情况下,即凹口板向压杆与凹口接合的方向高速地旋转着的情况下,出于某种原因而导致选择板发生误动作而移动至接合位置(例如后述的图4A的位置)时,会在SOWC内外传递过大的冲击转矩,招致部件的破损和/或寿命的降低。为了防止该情况,在SOWC设置有在一定差速旋转以上的情况下使得压杆被凹口板排斥而不接合的棘轮功能。用于使该棘轮功能发挥功用的SOWC的差速转速(棘轮啮合转速),为了成为性能上要求的差速转速而希望设置得低,但为此需要通过向SOWC供给充分的量的润滑油来使高差速旋转时的压杆的动作衰减。然而,在以往的动力传递装置中,无法有意地控制仅向SOWC供给的润滑油的油量,所以无法解决上述问题。另外,即使能够有意地控制仅向SOWC供给的润滑油的油量,若润滑油的供给量增加,则也会招致在SOWC的低差速旋转时进行通常接合(选择板正常工作而接合)时的接合切实性降低这一背反问题。因此,为了解决上述问题,需要进行能够根据SOWC的动作状况(差速转速)来增减润滑油的供给量这样的油量控制。(问题3:极限超越转速的控制)认为例如在SOWC向负旋转方向进行高差速旋转的情况下,即凹口板向压杆与凹口接合的方向相反的方向高速旋转着时,处于某种原因而导致选择板发生误动作而移动到接合位置(例如图4A的位置)的情况下,压杆会与凹口板、或者与收纳有压杆的袋的内表面反复碰撞,招致部件的破损、寿命的降低。有可能产生这样的部件的破损的SOWC的差速转速(极限超越转速)为了成为性能上要求的差速转速而希望设置得高,但为此需要向SOWC供给充分的量的润滑油来使高差速旋转时的压杆的动作衰减。然而,在以往的动力传递装置中,无法有意地控制仅向SOWC供给的润滑油的油量,所以无法解决上述问题。另外,即使能够有意地控制仅向SOWC供给的润滑油的油量,若润滑油的供给量增加,则也会招致在SOWC的低差速旋转时进行通常接合(选择板正常工作而接合)时的接合切实性降低这一背反问题。因此,为了解决上述问题,需要进行能够根据SOWC的动作状况(差速转速)来增减润滑油的供给量这样的油量控制。为了解决以上那样的3个问题,本实施方式的动力传递装置如图2所示,在SOWC7的周边设置用于储存润滑油O的润滑油储存部92并从该润滑油储存部92向SOWC7内供给润滑油O,并且通过用于供给润滑油O的油路94和选择板73的贯通孔73a来控制润滑油O的供给量。如图2所示,在本实施方式的动力传递装置中,凹口板72、选择板73、袋板71以及中心支承件91从输入轴11b的轴向的一侧朝向另一侧依该次序排列配置。并且,在后壳体8内的润滑油O的润滑路径上的相对于中心支承件91与袋板71相反的一侧,设置有润滑油储存部92。此外,从油泵6供给的润滑油O从轴心(输入轴11b、转子轴21)朝向径向外侧通过各种路径流动,但设置有润滑油储存部92的“润滑油O的润滑路径”是指润滑油O依次流经转子轴21、轴承部件95、中心支承件91的路径。另外,所述的“在中心支承件91中与袋板71相反的一侧”表示如图2所示那样输入轴11b的轴向的另一侧。润滑油储存部92设置于润滑油O的润滑路径上的下游侧、即如图2所示设置于径向外侧,构成为能够接受因离心力而向径向外侧流动的润滑油O。另外,润滑油储存部92设置于在输入轴11b的轴向以及径向上分别与SOWC7接近的位置。如图2所示,润滑油储存部92是由在中心支承件91中与袋板71相反的一侧的面和覆盖该面的遮挡部件93划分而成的区域(空间)。更具体而言,在中心支承件91中与袋板71相反的一侧的面形成有槽部91a,设置有规定空间。并且,以覆盖该槽部91a的方式安装有板状的遮挡部件93。此外,中心支承件91绕输入轴11b配置,所以槽部91a也以规定深度形成为环状。由此,动力传递装置能够通过简易的构造储存在后壳体8内流动的润滑油O。另外,如图2所示,润滑油储存部92被遮挡部件93遮挡,所以密封性也提高。此外,储存于润滑油储存部92的润滑油O的储存量能够通过改变中心支承件91的槽部91a的大小(深度)来调整。另外,如图2所示,在润滑油储存部92与SOWC7之间形成有油路94。油路94分别贯通被配置于润滑油储存部92与凹口板72之间的中心支承件91和袋板71而形成。通过形成这样的油路94,能够将储存于润滑油储存部92的润滑油O向SOWC7内、更详细而言袋板71与选择板73之间、选择板73与凹口板72之间供给。此外,该油路94在图2中在中心支承件91和袋板71中的规定的一个部位以规定的径形成为圆形状。另外,如图2所示,在选择板73形成有沿着输入轴11b的轴向贯通的贯通孔73a。该贯通孔73a是用于调整从润滑油储存部92向SOWC7供给的润滑油O的油量的部件,形成为与油路94的开口部对应的形状。(贯通孔和油路的具体结构)以下,关于能够适用于本实施方式的动力传递装置的贯通孔和油路的具体结构,例举3个实施例进行说明。此外,以下供参照的图3A、图4A、图5A、图6A、图7A、图8A是从输入轴11b的轴向的另一侧朝向一侧观察图2所示的SOWC7而得到的图。另外,这些图中的“行程开方向”表示从非接合状态转换至接合状态的情况下的选择板73的旋转方向。(实施例1)如图3A和图3B所示,实施例1的贯通孔73a在选择板73中沿着输入轴11b的轴向、换言之选择板73的厚度方向贯通而形成(参照所述的图2)。并且,如图3A和图3B所示,贯通孔73a在选择板73中形成于在SOWC7的非接合时与油路94的开口部在选择板73的径向以及周向上不重叠、且在SOWC7的接合时与油路94的开口部在选择板73的径向以及周向上重叠的位置。换言之,成为如下状态:在SOWC7的非接合时贯通孔73a与油路94的开口部在输入轴11b的轴向上不相连,在SOWC7的接合时贯通孔73a与油路94的开口部在输入轴11b的轴向上相连。即,如图3A和图3B所示,在窗孔73b相对于压杆71a的位置偏移,SOWC7为非接合状态的情况下,贯通孔73a不处于与油路94的靠近选择板73侧的开口部同一相位(在选择板73的周向上相同的位置)、且在选择板73的径向上相同的位置,成为不重叠的状态。因此,在该情况下,从润滑油储存部92侧向SOWC7侧供给的润滑油O的油量减少。此外,虽然在图3B中省略了图示,在袋板71与选择板73之间存在可介入润滑油O的微小的间隙,另外,在SOWC7内,会因凹口板72与袋板71的差速旋转而产生内部负压。因此,即使如图3A和图3B所示那样处于贯通孔73a与油路94的开口部不重叠的状态,也会从润滑油储存部92侧向SOWC7侧供给能防止SOWC7的烧熔(日文:焼き付き)的量的润滑油O。另一方面,如图4A和图4B所示,在窗孔73b与压杆71a的位置一致,SOWC7为接合状态的情况下,贯通孔73a处于与油路94的选择板73侧的开口部同一相位、且在选择板73的径向上相同的位置,成为重叠的状态。因此,在该情况下,从润滑油储存部92侧向SOWC7侧供给的润滑油O的油量增加。另外,如图4A所示,贯通孔73a形成为圆形状。另外,在该情况下,与贯通孔73a的形状对应地,油路94的截面形状也形成为圆形状。而且,如图4B所示,油路94形成于在选择板73的径向与贯通孔73a对应的位置、即在SOWC7的接合时与贯通孔73a连通的位置。通过像这样地使油路94的截面形状和贯通孔73a的形状为圆形状,能够在具有相同面积的形状之中使最小曲率半径最大,所以在通过油路94和贯通孔73a向SOWC7供给润滑油O时,能够抑制应力集中于油路94端部,能够确保形成有油路的部件(在此为袋板71和中心支承件91)的强度。(实施例2)实施例2的贯通孔73Aa的功能和面积与实施例1的贯通孔73a相同,但贯通孔73Aa的形状与实施例1的贯通孔73a不同。如图5A和图5B所示,贯通孔73Aa在SOWC7A为非接合状态的情况下与油路94A的开口部不重叠,从润滑油储存部92侧向SOWC7A侧供给的润滑油O的油量减少。另外,如图6A和图6B所示,贯通孔73Aa在SOWC7A为接合状态的情况下与油路94A的开口部重叠,从润滑油储存部92侧向SOWC7A侧供给的润滑油O的油量增加。如图5A所示,贯通孔73Aa形成于选择板73A中的外周侧、即润滑油储存部92的底部侧。另外,贯通孔73Aa形成为短边沿着选择板73A的径向配置的横长椭圆形状。另外,在该情况下,与贯通孔73Aa的形状对应地,油路94A的截面形状也形成为横长椭圆形状。而且,如图6B所示,油路94A形成于在选择板73A的径向上与贯通孔73Aa对应的位置、即在SOWC7A的接合时与贯通孔73Aa连通的位置。通过像这样贯通孔73Aa形成为横长椭圆形状,且与贯通孔73Aa的形成位置对应地在径向外侧、即润滑油储存部92的底部侧配置油路94A,能够降低储存于润滑油储存部92的润滑油O的油面液位,能够调整润滑油储存部92中的润滑油O的油量。即,通过使贯通孔73Aa的形状为横长椭圆形状,形成与之相应的截面形状的油路94A,如图5B所示,与实施例1的油路94的高度h1(参照图3B)相比,油路94A的高度h2变低,与之相伴地,为了使油面比油路94A高而要储存于润滑油储存部92的润滑油O的油量变少。因此,与实施例1(参照图3B)相比,能够减少必须储存于润滑油储存部92的润滑油O的油量,润滑油储存部92的设计自由度提高。此外,所述的“油路94、94A的高度h1、h2”如图3B和图5B所示,在此表示从油路94、94A的底面到油路94、94A的中心的高度。(实施例3)实施例3的贯通孔73Ba的功能和面积与实施例1、2的贯通孔73a、73Aa相同,但形状不同。如图7A和图7B所示,贯通孔73Ba在SOWC7B为非接合状态的情况下与油路94B的开口部不重叠,从润滑油储存部92侧向SOWC7B侧供给的润滑油O的油量减少。另外,如图8A和图8B所示,贯通孔73Ba在SOWC7B为接合状态的情况下与油路94B的开口部重叠,从润滑油储存部92侧向SOWC7B侧供给的润滑油O的油量增加。另外,如图7A所示,贯通孔73Ba形成为长边沿着选择板73B的径向配置、且角部带有圆角的长方形状或者梯形状。此外,此处的梯形状表示在选择板73B的径向上相对的2边平行、且在该相对的2边中选择板73B的径向外侧的边比径向内侧的边长的形状。另外,在该情况下,与贯通孔73Ba的形状对应地,油路94B的截面形状也形成为长方形状。而且,如图8B所示,油路94B形成于在选择板73B的径向上与贯通孔73Ba对应的位置、即在SOWC7B的接合时与贯通孔73Ba连通的位置。通过像这样地使油路94B的截面形状和贯通孔73Ba的形状为长方形状(或者梯形状),从而与使油路94B的截面形状和贯通孔73Ba的形状为具有相同面积的其他形状(圆形状等)的情况相比,在SOWC7B的接合时贯通孔73Ba与油路94B的开口部重叠的情况下,从开始重叠起重叠面积立即变大,所以能够以小的重叠范围使更多的润滑油O流入。例如如图3B和图7B所示,设在所述的实施例1的情况和实施例3的情况下润滑油储存部92的油面液位(油量)相同时,如图9所示,贯通孔73a、73Ba与油路94、94B的开口部的相对于选择板73、73B的行程量的重叠面积分别不同。在此,“行程量”表示SOWC7、7B从非接合状态转换至接合状态的情况下的选择板73、73B的旋转量(移动量)。另外,图9中的“重叠面积最大”表示从润滑油储存部92向SOWC7、7B侧供给充分的量的润滑油O的时刻的、贯通孔73a、73Ba与油路94、94B的开口部的重叠面积,“满行程”表示贯通孔73a、73Ba与油路94、94B的开口部完全重叠时的选择板73、73B的旋转量。在具有实施例3的贯通孔73Ba以及与之对应的油路94B的情况下,在SOWC7B的接合时贯通孔73Ba(长方形)与油路94B的开口部(长方形)相重叠,所以与贯通孔73a(圆形)与油路94的开口部(圆形)相重叠的实施例1相比,相同定时(相同行程量)下的重叠面积变大。因此,如图9所示,在实施例3的情况下,在比实施例1小的行程下达到重叠面积最大。因此,在实施例3的情况下,能够在选择板73B少量旋转的时刻从润滑油储存部92向SOWC7B侧供给充分的量的润滑油O。另外,在实施例3中,使油路94B的截面形状和贯通孔73Ba的形状的角部具有圆度,由此在经由油路94B和贯通孔73Ba向SOWC7B供给润滑油O时,能够抑制应力集中于油路94B端部,能够确保形成有油路94B的部件(在此为袋板71和中心支承件91)的强度。具备以上那样的结构的动力传递装置能够将在后壳体8内流动的润滑油O储存于润滑油储存部92,并将所储存的润滑油O经由油路94、94A、94B向SOWC7、7A、7B供给。另外,动力传递装置通过具备贯通孔73a、73Aa、73Ba以及与之对应的油路94、94A、94B,在SOWC7、7A、7B的非接合时贯通孔73a、73Aa、73Ba与油路94、94A、94B的开口部不重叠,所以能够减少从润滑油储存部92向SOWC7、7A、7B供给的润滑油O的油量。另一方面,在SOWC7、7A、7B的接合时,贯通孔73a、73Aa、73Ba与油路94、94A、94B的开口部重叠而连通,所以能够增加从润滑油储存部92向SOWC7、7A、7B供给的润滑油O的油量。即,在对SOWC7、7A、7B的接合状态与非接合状态进行切换的选择板73、73A、73B的规定位置形成与油路94、94A、94B对应的贯通孔73a、73Aa、73Ba,将其设为连通或非连通的状态,由此能够控制从润滑油储存部92供给的润滑油O的油量。另外,关于所述的问题1(冷态发动机启动时的选择板的误动作),在本实施方式的动力传递装置中,能够与SOWC7、7A、7B的接合、非接合无关地向选择板73、73A、73B与袋板71之间供给润滑油O。由此,能够缓解介于凹口板72与选择板73、73A、73B之间的润滑油O的影响,能够抑制凹口板72对选择板73、73A、73B的拖拽。另外,关于所述的问题2(棘轮啮合转速的控制),在实施方式的动力传递装置中,在SOWC7、7A、7B的高差速旋转(正旋转)时选择板73、73A、73B因误动作而到达接合位置的情况下,如图4B、图6B以及图8B所示,成为选择板73、73A、73B的贯通孔73a、73Aa、73Ba与油路94、94A、94B重叠的状态。因此,通过因SOWC7、7A、7B的差速旋转而产生的内部负压,从而从润滑油储存部92向SOWC7、7A、7B内供给充分的量的润滑油O,能够降低所述的棘轮啮合转速。另外,在SOWC7、7A、7B的高差速旋转时,内部负压也高,所以能够将比低差速旋转时多的润滑油O向SOWC7、7A、7B内供给。另外,在SOWC7、7A、7B的低差速旋转时,内部负压比较低,所以即使在选择板73、73A、73B因误动作而到达接合位置的情况下,从润滑油储存部92向SOWC7、7A、7B供给的润滑油O也为少量。因此,在SOWC7、7A、7B的低差速旋转时,在成为了接合状态的情况下,能够抑制供给多余的润滑油O,能够防止接合切实性的降低。另外,关于所述的问题3(极限超越转速的控制),在实施方式的动力传递装置中,在SOWC7、7A、7B的高差速旋转(负旋转)时,在选择板73、73A、73B因误动作而到达接合位置的情况下,如图4B、图6B以及图8B所示,成为选择板73、73A、73B的贯通孔73a、73Aa、73Ba与油路94、94A、94B重叠的状态。因此,通过因SOWC7、7A、7B的差速旋转而产生的内部负压,从而从润滑油储存部92向SOWC7、7A、7B内供给充分的量的润滑油O,能够提高所述的极限超越转速。另外,在SOWC7、7A、7B的高差速旋转时,内部负压也高,所以能够将比低差速旋转时多的润滑油O向SOWC7、7A、7B内供给。另外,与所述问题2的情况同样,在SOWC7、7A、7B的低差速旋转时,内部负压比较低,所以即使在选择板73、73A、73B因误动作而到达接合位置的情况下,从润滑油储存部92向SOWC7、7A、7B供给的润滑油O也为少量。因此,在SOWC7、7A、7B的低差速旋转时,在成为接合状态的情况下,能够抑制供给多余的润滑油O,能够防止接合切实性的降低。这样,本实施方式的动力传递装置,在需要向SOWC7、7A、7B内供给更多的润滑油O的“SOWC7、7A、7B的高差速旋转时且选择板73、73A、73B的误动作时”,能够增加从润滑油储存部92向SOWC7、7A、7B供给的润滑油O,并且在需要减少SOWC7、7A、7B内的润滑油O的“SOWC7、7A、7B的低差速旋转时且选择板73、73A、73B的正常工作时”,能够减少从润滑油储存部92向SOWC7、7A、7B供给的润滑油O。另外,在“冷态发动机启动时”,能够与SOWC7、7A、7B的接合、非接合无关地向选择板73、73A、73B与袋板71之间供给润滑油O。因此,能够控制向SOWC7、7A、7B内供给的润滑油O的供给量。此外,在本实施方式的动力传递装置中,除了所述的问题1~问题3以外,还能够消除EV行驶期间的润滑油不足的问题。即,在以往的动力传递装置中,在进行EV行驶的情况下,伴随发动机的停止,机械式的油泵也停止,所以无法向SOWC充分地供给润滑油,例如在被供给的润滑油极少的情况下,SOWC有可能发生烧熔。另一方面,在本实施方式的动力传递装置中,在EV行驶期间,伴随输出轴系的旋转,例如被传递有来自第二旋转机3的转矩,从而凹口板72旋转,所以因该凹口板72与袋板71的差速旋转而在SOWC7内产生内部负压。因此,利用该内部负压,能够从润滑油储存部92经由油路94向SOWC7内引入润滑油O。因此,根据本实施方式的动力传递装置,即使在油泵6停止的EV行驶期间,也能够向SOWC7供给充分的量的润滑油O。[第二实施方式]以下,对第二实施方式的动力传递装置进行说明。在本实施方式的动力传递装置中,与第一实施方式相比较,润滑油储存部92和油路94的形成位置不同,其他结构相同。此外,在以下的说明中,关于贯通孔73a的形状和油路94的截面形状,以所述的实施例1(参照图3A~图4B)为前提进行说明,但对于实施例2、3也能够适用。在本实施方式的动力传递装置中,如图10所示,凹口板72、选择板73、袋板71C以及中心支承件91C从输入轴11b的轴向的一侧朝向另一侧依该次序排列配置。并且,在后壳体8内的润滑油O的润滑路径上且在袋板71C中与选择板73相反的一侧设置有润滑油储存部92C。此外,设置有润滑油储存部92C的“润滑油O的润滑路径”与第一实施方式同样,指润滑油O依次流经转子轴21、轴承部件95以及中心支承件91C的路径。另外,所述的“在袋板71C中与选择板73相反的一侧”如图10所示,表示输入轴11b的轴向的另一侧。润滑油储存部92C设置于润滑油O的润滑路径上的下游侧、即如图10所示设置于径向外侧,构成为能够接受因离心力而向径向外侧流动的润滑油O。另外,润滑油储存部92C设置于在输入轴11b的轴向以及径向上分别与SOWC7C接近的位置。如图10所示,润滑油储存部92C是由袋板71C和中心支承件91C的相对的区域划分而成的区域(空间)。更具体而言,如图10所示,袋板71C和中心支承件91C在输入轴11b的轴向上一部分区域邻接地配置,余下的一部分区域隔开规定距离地相对配置。即,袋板71C和中心支承件91C,在通过紧固部件96而被一起紧固的区域(径向外侧的区域)邻接地配置。另一方面,袋板71C和中心支承件91C,在通过紧固部件96而被一起紧固的区域的径向内侧的区域,在输入轴11b的轴向上隔开规定空间地相对配置。并且,将由该袋板71C和中心支承件91C形成的空间设为润滑油储存部92C。由此,动力传递装置不使用另外的部件而能够通过简易的构造储存在后壳体8内流动的润滑油O。此外,储存于润滑油储存部92C的润滑油O的储存量能够通过改变由袋板71C和中心支承件91C形成的空间的大小来调整。另外,如图10所示,在润滑油储存部92C与SOWC7C之间形成有油路94。油路94贯通被配置于润滑油储存部92C与凹口板72之间的袋板71C而形成。通过形成这样的油路94,能够将储存于润滑油储存部92C的润滑油O向SOWC7C内、更详细而言袋板71C与选择板73之间、选择板73与凹口板72之间供给。此外,该油路94在图10中在袋板71C中的规定的一个部位以规定的径形成为圆形状。在此,如图10所示,本实施方式的动力传递装置不是如所述的第一实施方式(参照图2)那样油路94形成为与输入轴11b的轴向平行,而是形成为向径向倾斜。即,油路94具有在凹口板72侧开口的第一开口部94a和在润滑油储存部92C侧开口的第二开口部94b,第二开口部94b形成于比第一开口部94a靠径向外侧的位置。在SOWC7C内,润滑油O从径向内侧朝向径向外侧流动,所以优选尽量向SOWC7C的径向内侧供给润滑油O。即,优选油路94的第一开口部94a尽量设置于SOWC7C的径向内侧。然而,在油路94平行的情况下,需要将润滑油O储存到润滑油储存部92C的高的位置。另一方面,在本实施方式的动力传递装置中,相对于润滑油储存部92C的润滑油O的油面设置高低差地形成油路94,由此该油路94向斜向倾斜,所以即使在储存于润滑油储存部92C的润滑油O的油量少的情况下,也能够向SOWC7C的径向内侧高效地供给润滑油O,能够提高对SOWC7C的润滑效率。另外,在润滑油储存部92C的润滑油O的油面高的情况下,图10所示的油泵驱动齿轮62会浸于润滑油O,有可能使得搅拌损失增加进而燃料经济性恶化。另一方面,本实施方式的动力传递装置通过相对于油面设置高低差地形成油路94,能够将润滑油储存部92C的润滑油O的油面调整得低,所以能够防止搅拌损失的增加和燃料经济性的恶化。此外,在EV行驶时,虽然泵主体61停止,但伴随输出轴系的旋转,例如被传递来自第二旋转机3的转矩,由此油泵驱动齿轮62旋转,所以会产生如上所述的搅拌损失的问题。[第三实施方式]以下,对第三实施方式的动力传递装置进行说明。本实施方式的动力传递装置与第一实施方式相比较,润滑油储存部92和油路94的形成位置不同,其他结构相同。此外,在以下的说明中,关于贯通孔73a的形状和油路94的截面形状,以所述的实施例1(参照图3A~图4B)为前提进行说明,但对于实施例2、3也能够适用。如图11所示,在本实施方式的动力传递装置中,中心支承件91D、凹口板72、选择板73以及袋板71D从输入轴11b的轴向的另一侧朝向一侧依该次序排列配置。即,在本实施方式的动力传递装置中,在输入轴11b的轴向上,袋板71D和凹口板72的配置与第一实施方式(参照图2)相反。并且,在后壳体8内的润滑油O的润滑路径上且在袋板71D中与选择板73的相反的一侧设置有润滑油储存部92D。此外,设置有润滑油储存部92D的“润滑油O的润滑路径”是指润滑油O依次流经输入轴11b、太阳轮51、小齿轮52、齿圈53D、或依次流经输入轴11b、齿轮架54、齿圈53D的路径。此外,在本实施方式中,如图11所示,为将在润滑路径流动的润滑油O导入润滑油储存部92D内而在齿圈53D形成有油路53Db。在润滑路径流动的润滑油O因离心力而在所述的润滑路径上向径向外侧流动,经由齿圈53D的油路53Db而储存于润滑油储存部92D内。润滑油储存部92D设置于润滑油O的润滑路径上的下游侧、即如图11所示设置于径向外侧,构成为能够接受因离心力而向径向外侧流动的润滑油O。另外,润滑油储存部92D设置于在输入轴11b的轴向以及径向分别与SOWC7D接近的位置。如图11所示,润滑油储存部92D由在袋板71D中与凹口板72相反的一侧的面和与该面相对配置的遮挡部件93D划分而成的区域(空间)。更具体而言,在袋板71D中与凹口板72相反的一侧的面安装有形成有弯折部93Da的板状的遮挡部件93D,以成为径向外侧封闭、且径向内侧开放的状态,将由该遮挡部件93D和在袋板71D中与凹口板72相反的一侧的面形成的空间设为润滑油储存部92D。由此,动力传递装置能够通过简易的构造来储存在后壳体8内流动的润滑油O。此外,储存于润滑油储存部92D的润滑油O的储存量具体地能够通过改变遮挡部件93D的弯折部93Da的位置来调整。另外,如图11所示,在润滑油储存部92D与SOWC7D之间形成有油路94。油路94贯通被配置于润滑油储存部92D与凹口板72之间的袋板71D而形成。通过形成这样的油路94,能够将储存于润滑油储存部92D的润滑油O向SOWC7D内、更详细而言袋板71D与选择板73之间、选择板73与凹口板72之间供给。此外,该油路94在图11中在袋板71D中的规定的一个部位以规定的径形成为圆形状。此外,在将SOWC7D配置于行星齿轮机构5D的外周的情况下,在使凹口板72相对于齿圈53D从输入轴11b的轴向的另一侧向一侧滑动而进行组装,但例如在采用所述的第一以及第二实施方式的SOWC7、7C的情况下,如图2和图10所示,相对于袋板71、71C,凹口板72配置于输入轴11b的轴向的一侧,所以形成于齿圈53的外周的花键53a变长,组装花费工夫。另一方面,在本实施方式的SOWC7D的情况下,如图11所示,相对于袋板71D,凹口板72配置于输入轴11b的轴向的另一侧,所以形成于齿圈53D的外周的花键53Da比第一以及第二实施方式的SOWC7、7C短,组装性提高。另外,在采用本实施方式的动力传递装置的情况下,油泵驱动齿轮62与润滑油储存部92D分离,所以不必担心所述的第二实施方式那样的、因油泵驱动齿轮62浸于润滑油O而引起的搅拌损失的增加等不良情况的产生。以上,关于本发明的动力传递装置,对具体实施方式进行了更具体的说明,但本发明的主旨不限于这些记载,必须基于权利要求书的记载而宽泛地进行解释。另外,理所当然地,基于这些记载进行了各种变更、改变等技术方案也包含于本发明的主旨中。标号说明1、发动机;11a、输出轴;11b、输入轴;12、驱动齿轮;13、中间从动齿轮;14、中间轴;15、中间驱动齿轮;16、差速器;17、齿圈;18、驱动齿轮;19、驱动轮;2、第一旋转机(电动机);21、转子轴;3、第二旋转机(电动机);4、行星齿轮机构(第一差动机构);5、5D、行星齿轮机构(第二差动机构);51、太阳轮;52、小齿轮;53、53D、齿圈;53a、53Da、花键;53Db、油路;54、齿轮架;6、油泵;61、泵主体;62、油泵驱动齿轮;7、7A、7B、7C、7D、SOWC;71、71C、71D、袋板(固定侧座圈);71a、压杆;72、凹口板(旋转侧座圈);73、73A、73B、选择板(切换部件);73a、73Aa、73Ba、贯通孔;73b、窗孔;74、开口环;8、后壳体(收纳壳体);91、91C、91D、中心支承件;91a、槽部92、92C、92D、润滑油储存部;93,93D遮挡部件;93Da弯折部;94、94A、94B、油路;94a、第一开口部;94b、第二开口部;95、轴承部件;96、紧固部件;O、润滑油。当前第1页1 2 3 当前第1页1 2 3