具有悬架力解耦系统的车辆的制作方法

文档序号:14823216发布日期:2018-06-30 07:25阅读:211来源:国知局
具有悬架力解耦系统的车辆的制作方法

现代车辆和其他轮式移动平台的悬架系统可用于车辆的车体或底盘的角。角悬架系统通常包括弹簧、减震器以及将车体连接到车辆的行走轮的多种连杆。由于作用在车体上的大部分力通过在道路表面和行走轮的轮胎之间的接触印痕传输,所以角悬架系统的主要目的之一是保持行走轮和道路表面之间的接触或“抓地力”。

车辆悬架系统有益于乘坐的舒适性以及与道路噪音、凸起和震动的隔离,并且有益于道路保持/操纵以及制动性能。由于这些目标一般彼此冲突,给定角悬架系统的调整和配置涉及寻找适于车辆意图实现的目的的最优舒适度-抓地力权衡。例如,用于运动型车辆的角悬架系统可调整为放弃一定量的乘坐舒适度,以获得加强的抓地力和操作员控制,而用于豪华车的角悬架系统可调整为实现相反的结果。



技术实现要素:

此处公开了一种力解耦系统,可用作车辆(即,机动车辆或其他轮式移动平台)的角悬架系统的一部分。通过经由一个或多个适当的柔性元件,诸如但不限于螺旋弹簧,将可控制/主动悬架致动器连接到车体和/或角悬架系统的悬架臂,力解耦系统将调节的质量块阻尼特性和主动悬架构件结合起来。本方法旨在当在道路表面行驶时,特别是道路噪音/震动频率接近车辆的“车轮跳动”频率时,通过将致动器的力从经历的车体加速度上解耦而优化上述舒适度-抓地力的权衡。

此处所用的术语“车轮跳动”指由于悬架系统的簧下质量块(即行走轮和悬架臂的质量块)的垂直摆动效果而使得行走轮可能倾向于摇摆或震动的现象。此类竖直运动可使得道路表面发生抓地力波动。因此,此处公开的系统旨在通过使得目标力解耦得以在预定频率范围内,诸如对应于车轮跳动频率的频率范围内,改善现有角悬架系统的性能。

通过如此处所述将悬架致动器用作自由体,致动器的力可有效地从竖直车体加速度上解耦,从而改善所有道路震动频率内的总体乘坐舒适度。因此,经由对悬架致动器的质量块以及螺旋弹簧或此处描述的其他机械柔性元件的柔性特性的适当选择,可“调节”悬架的性能。与提供大于500N/mm的被动机械柔性水平的传统橡胶衬套不同,本方法有意地使用提供低得多或“柔软得多”的柔性水平,例如20N/mm-50N/mm,的机械柔性元件,从而使得由于道路震动而经历的共振频率接近车辆的车轮跳动频率,该频率通常约为9-13赫兹(Hz)。

此处公开的车辆的一个具体示例性实施例包括车体、行走轮和悬架角。行走轮与道路表面保持接触。悬架角将行走轮连接到车体,并且保持行走轮和道路表面之间的接触。悬架角包括连接到行走轮和车体并在行走轮和车体之间延伸的悬架臂,以及布置在悬架臂和车体之间延伸的轴线上的悬架力解耦系统。车辆的每个角都可配置有相似的悬架角,其中每个可以相同或不同的方式配置为提供期望的悬架性能。

悬架力解耦系统包括布置在轴线上的具有致动器质量块的悬架致动器。致动器配置为沿着轴线输出致动器力,从而响应于致动器控制信号而延伸、收缩或以其他方式移动致动器质量块。系统还包括沿着轴线连接到致动器质量块和车体和/或悬架臂的一个或多个柔性元件,并且每个此类元件都提供预定的机械柔性水平。控制器响应于指示道路震动的车体阈值加速度而确定和生成致动器力,可经由一个或多个传感器检测车体阈值加速度,并将其报告给控制器。以此方式,当预定频率范围为车辆的车轮跳动频率范围时可有效地将致动器力从预定频率范围(例如约9-13Hz)内的道路震动上解耦。

作为非限制性实例,悬架致动器可以以各种方式实施为线性马达、旋转马达,诸如机动螺杆组件、液压致动器、受控制的阻尼器或液压-气动活塞。半主动的实施例可包括基于流体的磁致流变或电致流变装置。

结合附图和所附权利要求书,通过用于实施本公开的实施例和最佳方式的以下详细描述,本公开的上述特征和优势以及其他特征与优势显而易见。

附图说明

图1为根据本公开的具有使用悬架力解耦系统的独立角悬架的示例性车辆。

图2为用于图1所示车辆的给定行走轮的悬架力解耦系统的图示。

图3A和3B为分别描述使用图2的悬架力解耦系统的乘坐舒适度和抓地力相对效果的波德图,其中分别在竖直轴线上绘出增益和轮胎震动的幅度,在水平轴线绘出频率。

图4A-C分别为位移、加速度和轮胎力的示例性时间图,其中在竖直轴线绘出幅度,在水平轴线绘出时间。

具体实施方式

参照附图,其中相同附图标记指代相同的构件,图1提供具有多个与道路表面13滚动接触的行走轮12的示例性车辆10的图示。车辆10包括在示例性XYZ笛卡尔坐标系中相对于竖直(Z)、纵向(X)和横向/水平(Y)轴线布置的车体16。在图1的示例性实施例中,车辆10具有四个角C1、C2、C3和C4。如此处所描述,行走轮12中每个布置在角C1-C4之一上,并且操作地连接到悬架力解耦系统14。尽管图1示出四个行走轮12,因此示出四个角C1-C4,但是可在本公开的范围内设想具有更少或更多行走轮12的车辆10。

尽管出于示意的简洁性做出省略,但车辆10还包括配置为生成用于推动车辆10的驱动扭矩的动力装置。此类动力装置可包括内燃机、一个或多个马达/发电机和/或燃料电池,虽然上述装置都并未具体示出,但本领域技术人员应当理解包括这些装置的动力装置。来自动力装置的扭矩沿着道路表面13推动车辆10,其中车体16响应于道路噪音和振动经历在X、Y和/或Z方向的加速度。因此,如此处所述,悬架力解耦系统14配置为当面对此类道路震动时,特别是在接近上述车轮跳动频率,约9-13赫兹(Hz),或与其重叠的较低频率下,优化道路表面13上行走轮12的乘坐舒适度和抓地力。

悬架力解耦系统14可用作更大的车辆角悬架系统的一部分,图2图示了其元件并且下文也对其进行了描述。每个系统14将车体16操作地连接到行走轮12中对应的车轮上,从而保持行走轮12和道路表面13之间的接触,并辅助车辆10的操纵。虽然图2出于示意的简洁性省略了角悬架系统的某些构件,但角悬架系统通常在每个角C1-C4上包括一个或多个悬架臂22、对应的上或下球接头、枢转地支撑悬架臂22的衬套24、配置为经由轮毂和轴承组件旋转地支撑对应行走轮12的转向节、主减震器190、拉杆、防倾杆和扭力杆或稳定器杆。此处所述悬架力解耦系统14旨在结合这些构件操作,从而提供所公开的力解耦优势。

参照图2,图1所指示的车辆10的给定角C1、C2、C3或C4包括悬架力解耦系统14,其反过来在靠近行走轮12的位置上的由车体16限定的轮舱20内连接。行走轮12反过来绕着旋转轴线11旋转。悬架臂22经由衬套24连接到车体16。衬套24可安装在车体16上,且安装在加强的承受负载的车体结构位置,诸如车辆的子框架或动力装置支架。

悬架力解耦系统14包括具有一个或多个连接的致动器质量块18的悬架致动器(A)15。在图2的示例性实施例中,致动器质量块18可包括第一/上致动器质量块(AU)和第二/下致动器质量块(AL),其中“上”和“下”指代相对于道路表面13沿着悬架力解耦系统14的轴线17的相对位置,并且轴线17在车体16和悬架臂22之间延伸。例如,其可与道路表面13近似垂直。系统14布置在致动器轴线17上,悬架臂22以大致正交的方式,例如在真正正交±15度的范围内,相对于致动器轴线17布置。

上致动器质量块和下致动器质量块(AU、AL)可以沿着致动器轴线17按需延伸/收缩,或以其他方式移动,包括期望扭力柔度的实施例中可能的旋转移动。悬架致动器15还包括第一/上柔性元件19U和第二/下柔性元件19L,诸如具有预定机械柔性水平(即,通过弹性体变形传输由悬架致动器15引入的输入力或位移)的固定螺旋弹簧或阻尼器。

如图2所示,上柔性元件19U和下柔性元件19L可都用于某些实施例。具有第一机械柔性水平的上柔性元件19U将上致动器质量块(AU)连接到车体16。类似地,具有第二机械柔性水平的下柔性元件19L将下致动器质量块(AL)连接到悬架臂22。第一和第二机械柔性水平可能相同也可能不同,这取决于期望的舒适度/抓地力权衡性能,例如,如图4A-C图示和以下描述的非限制性示例性性能图中所示,上柔性元件19U提供相对较低的机械柔性水平而下柔性元件19L提供相对较高的机械柔性水平。虽然柔性水平的具体差可能随着车辆10的期望功能而变化,但出于示例目的,在期望较软的较低柔性的某些实施例中下柔性元件19L可具有小于第一柔性元件19U的90%的柔性水平。

悬架致动器15可以多种方式实施为线性或旋转马达,诸如旋转螺杆组件。可选地,悬架致动器15可为受控制的液压或液压-气动汽缸、磁致流变(MR)或电致流变(ER)装置、受控制的阀、螺线圈或配置为响应于来自控制器(C)50的致动器控制信号(箭头CCO)沿着致动器轴线17轴向或旋转地输出致动器力(FA)的其他适当主动致动器。通过在相反方向输出致动器力(FA),致动器力(FA)同等地作用在上柔性元件19U和下柔性元件19L上,并且分别抵靠车体16和悬架臂22挤压上柔性元件19U和下柔性元件19L。以此方式,悬架力解耦系统14配置为在车辆10操作时动态地补偿由于道路震动所经历的力或负载。

与校准的质量块被有效地刚性地附接到行走轮12和悬架臂22的质量块上的传统被动阻尼器不同,图2的悬架致动器15经由悬架致动器15上和/或下的柔性元件19U和19L得以连接。可选的减震器190,例如另一螺旋弹簧,可用于在特定角C1-C4承载或支撑车体16的静态负载,其中减震器190按照所示与悬架力解耦系统14的致动器轴线17平行布置,或布置在悬架力解耦系统14的周围。

由于例如图2中悬架致动器15之类的主动悬架致动器通常比被动阻尼器更重,因此可选择约为2-10kg的致动器质量块18的有用量,如此处所述用作调节的质量块阻尼器。即,经由被控制器50控制的悬架制动器15的操作而实现的、以受控方式响应于车体16加速度的致动器质量块18的加速度提供了在特定频带(包括车轮跳动的典型低频率)的角C1-C4上经历的车体16的基于道路震动的力和加速度的目标解耦。

控制器50可实施为具有必需存储器(M)和处理器(P)的一个或多个计算机装置,并具有其他相关硬件与软件,例如时钟或定时器、输入/输出电路等。存储器(M)包括足量的只读存储器,例如磁或光存储器,查询表75和实施方法100的计算机可读指令被记录在该只读存储器上。控制器50配置为执行方法100,从而响应于来自一个或多个传感器(SX)25的输入信号(箭头CCI)调节或控制悬架致动器15的操作。

作为本方法的一部分,传感器25可测量车体16的运动以及行走轮12的竖直/上下运动,即沿着图1的Z轴线的运动,并且因此可实施为安装在车体16和行走轮16上的加速度计。传感器25配置为传感或检测指示转弯的加速度、向前加速度和/或车辆10的制动以及此类操作中生成的力。传感器25可包括独立水平、纵向和竖直加速度传感器,配置为检测车辆10沿着图1轴线X、Y和Z的加速度。车辆10可采用稳定性控制系统(未示出),而传感器25是此系统的一部分。传感器25还配置为将指示具体感测参数的信号传输给控制器50,其中图1所述集体信号用着输入信号(箭头CCI)。

控制器50配置为从传感器25接收输入信号(箭头CCI),例如通过控制器区域网络(CAN)总线或经由低压电线(未示出),从而从查询表75中选择预定的致动器力(FA),作为输入信号(箭头CCI)的函数,并最终基于此类输入信号(箭头CCI)实时地控制悬架致动器15,即具有以毫秒计的响应时间。控制器50还编程为在车辆10执行多种操作并响应于从传感器25接收的信号时确定相对于道路表面13的车辆方位变化,并且基于该确定调节悬架致动器15的操作。因此,控制器50配置为响应于车体16的加速度(例如,作为所检测的加速度的线性函数)确定和生成致动器力(FA),从而使得由于车体16的加速度而产生的力在预定频率范围(例如,约9-13Hz的车轮跳动频率范围或其他期望频率范围)内解耦。

图3A和3B为作为传递函数的波德图,描述用于悬架力解耦系统14的给定配置的、如上所述作为对1m/s的校准周期/正弦道路表面震动加速度的响应的舒适度-抓地力权衡。道路噪音对图3A所示舒适度车体16的竖直加速度增益(G16))以及如图3B所示抓地力(轮胎正交力的变化,F12)具有基于频率的影响。在两张附图中,在水平轴线绘出频率,并在竖直轴线绘出幅度。

图3A的曲线20表示被动阻尼典型的角悬架响应,例如,使用偏刚性的橡胶衬套将角悬架系统的质量块连接到诸如图1的车体16的车体,并仅依赖此类衬套的被动柔性。曲线32表示主动悬架配置,其中诸如图2的悬架致动器15之类的悬架致动器可能经由硬橡胶衬套刚性地连接到车体16。区域35包括不变点(PI),即车体16或底座的响应所在的点,通常约为10-11Hz,未因未加入此处公开的力解耦的主动悬架致动器15的单独使用而改善。曲线34示出使用图2的悬架力解耦系统14时车体16的道路震动响应的目标频率下的减少,以及与此类解耦提供的不变点(PI)的偏离。

应当注意,在响应于约1Hz的区域38中,曲线32(即,没有此处所述力解耦的主动悬架)的幅度略微低于曲线34(使用系统14的本方法)。然而,在指示车体16的共振震动的10-11Hz范围内,图2的上致动器质量块AU和下致动器质量块AL的加速度提供一定力解耦,因此目标频率的柔性得以软化,例如,在上述轮胎跳动频率下或接近述轮胎跳动频率。然而,如上所述,此优势可能伴随着诸如1-2Hz的非常低频率下舒适度的权衡,即,在该实例中,放弃约1-2Hz的性能以获取更好的10Hz性能。然而,在其他实施例中可能的是,保留该1-2Hz的性能,并依然改善10Hz的性能。

图3B描绘与图3A的负载条件相同的情况下图2中悬架力解耦系统对抓地力的影响。曲线130表示被动阻尼典型的角悬架响应。曲线132表示传统主动悬架配置,其中致动器几乎刚性地连接到车体16。曲线134表示使用悬架力解耦系统14时道路震动响应的某些频率下的减少。与图3A和3B比较可以看出,由于图3A中观察到的1Hz和10Hz之间的舒适度改善导致相同频率下抓地力性能的降低,因此存在舒适度-抓地力权衡。在其他实施例中,可以调节与所示不同的性能,从而改善在低频率下的舒适度以及在高频率下的抓地力。因此,可将本方法“调节”至期望性能,诸如车轮跳动典型的低频率下的更软柔性。

图4A-C分别描绘对比被动悬架、传统主动悬架和使用本系统14的本解耦方法的、相对于图1中车体16的以米(m)计的致动器质量块位移(d)、以m/s2计的最高车体加速度(α)以及以牛顿(N)计的轮胎正交力(F12)的时间图。此外,图4A-C代表系统14的示例性实施例,其中下柔性元件19L比柔性元件19U更软。在其他实施例中,与上柔性元件19U相比,下柔性元件19L可能具有相同的柔性或柔性度更低/更硬。在示例性配置中,第一柔性元件的机械柔性不大于约第二柔性元件的机械柔性水平的75%。

曲线40示出相对于被动或传统主动悬架的位移、响应于校准道路噪音输入的下致动器质量块(AL)的更大位移量。曲线41示出:上致动器质量块(AU)的位移可配置为响应于给定致动器力(FA)最小化上质量块(AU)的位移,其中给定致动器力(FA)响应于传输到控制器50的给定输入信号(箭头CCI)而引入。曲线43表示相对于车体16的驱动轮12的竖直位移,其相对于被动或传统主动悬架配置略有不同。

图4B示出加速事件早期(例如,在加速事件的第一个0.1秒内)的最高车体加速度(α)的显著减少。曲线44示出如此处所述相对于被动和主动应用的性能幅度的此类车体加速度,其中致动器力(FA)未解耦。图4C将轮胎力(F12)的变化描绘为图4A和4B相同时间上方的曲线45。零变化是期望的。如图4C所示,在减少最高车体加速度(图4B)的同时保持了抓地力。

因此,系统14将调节的质量块阻尼与主动悬架结合起来,从而在图1中车体10的角C1-C4上实现力解耦,特别是通过使用将悬架致动器15连接在采用柔软得多的机械柔性水平(20N/mm及以上)的柔性元件上,例如螺旋弹簧上。通过将悬架致动器15连接到弹簧或其他柔性元件上,舒适度-抓地力权衡可能得以改善。附带优势包括主动悬架系统的盖上和驱动不平顺性的减少。

虽然详细描述了某些最佳方式和其他实施例,但是如所附权利要求书所限定,存在多种可选设计和实施例。此外,附图中所示实施例或本说明书所涉及的多个实施例的特性不一定需要理解为彼此独立的实施例。相反,可能的是,在实施例之一中描述的每个特性可以与其他实施例中的其他期望特性的一个或多个结合,生成未用言语描述或未参照附图的其他实施例。因此,此类其他实施例落入所附权利要求书的范围框架内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1