带有集成充电器的电气化动力传动系统的制作方法

文档序号:17672556发布日期:2019-05-15 23:09阅读:132来源:国知局

本公开涉及用于机动车辆的电驱动系统,以及与所述电驱动系统相关联的充电装置。



背景技术:

混合动力电动车辆(hev)和电池电动车辆(bev)可以依靠牵引电池来对牵引马达供电以进行推进,并且依靠牵引电池和牵引马达之间的功率逆变器将直流(dc)功率转换为交流(ac)功率。典型的ac牵引马达是三相马达,其可以由三个正弦信号供电,每个正弦信号以120度相位分离驱动。而且,许多电气化车辆可以包括dc-dc转换器,以将牵引电池的电压转换成牵引马达的操作电压电平。



技术实现要素:

一种车辆具有:电机,其包括两组电流隔离绕组;第一和第二逆变器,每个逆变器仅与所述组中的一个组耦合;牵引电池;和开关装置。所述开关装置将第一逆变器与端口耦合,使得来自远程源的电流流过所述组中的一个组,并在所述组中的另一个组中感应出电压以对电池充电,同时将源与电池隔离。

一种用于车辆动力系统的方法包括通过控制器将第一逆变器与充电端口耦合,使得来自远程源的电流流过第一逆变器和电机的第一组绕组并在电机的第二组绕组中感应出电压,所述第二组绕组与第一组电流隔离,以对牵引电池充电,同时将电池与源隔离。

一种车辆具有:电机,其包括两组电流隔离绕组;牵引电池;和开关装置。在充电期间,开关装置将所述组中的一个组与充电端口耦合,使得来自远程源的电流流过所述一个组并在所述组中的另一个组中感应出电压以对电池充电,同时将源与电池隔离。

附图说明

图1是典型的车载机动车辆充电器的框图。

图2是多相电机的示意图。

图3是多相电机的相量图。

图4a和图4b是电机的有效电感的示意图。

图5是带有集成充电器的车辆的框图。

图6是用于六相电动马达的电驱动器的示意图。

具体实施方式

本文描述了本公开的各种实施例。然而,所公开的实施例仅仅是示例性的,并且其他实施例可以采用未明确示出或描述的各种和替代形式。附图不一定按比例绘制;一些特征可能被扩大或最小化以示出特定部件的细节。因此,本文公开的具体结构和功能细节不应被解释为限制,而是仅仅作为用于教导本领域普通技术人员以各种方式使用本发明的代表性基础。如本领域普通技术人员将理解,参考任何一个附图示出和描述的各种特征可以与一个或多个其他附图中示出的特征组合以产生未明确示出或描述的实施例。所示特征的组合提供了典型应用的代表性实施例。然而,对于特定应用或实施方式,可能需要特征的与本公开的教导一致的各种组合和修改。

所公开的过程、方法、逻辑或策略可以递送到处理装置、控制器或计算机和/或通过它们实施,所述处理装置、控制器或计算机可以包括任何现有的可编程电子控制单元或专用电子控制单元。类似地,过程、方法、逻辑或策略可以以许多形式存储为可由控制器或计算机执行的数据和指令,所述形式包括但不限于永久存储在可以包括持久的不可写的存储介质(诸如rom装置)的各种类型的制品上的信息,以及可变地存储在可写存储介质(诸如软盘、磁带、cd、ram装置和其他磁和光学介质)上的信息。过程、方法、逻辑或策略也可以在软件可执行对象中实施。另选地,它们可以全部或部分使用合适的硬件部件(诸如专用集成电路(asic)、现场可编程门阵列(fpga)、状态机、控制器或其他硬件部件或装置)或者硬件、软件和固件部件的组合来实施。

尽管它们的架构存在差异,但是电动车辆(ev)在其结构上具有相似性。例如,电池、逆变器和电动马达通常是任何ev的主要构建区块。为了给电池供能并为马达供电,采用两种类型的充电器:车载充电器和车外(独立)充电器。车载充电器可以灵活地在任何有电源插座可用的地方充电。车载型具有增加车辆的重量、体积和成本的潜在缺点。因此,期望通过使用可用硬件(主要是电动马达和逆变器)对电池充电来避免额外的充电器重量、空间和成本问题的任何可能性。考虑到ev的情况:其在充电时间期间,车辆不被驱动,并且在驾驶时间期间不希望给电池组充电,除了制动时的再生,车载充电器和牵引系统的集成似乎是一种可行的选择。

对于任何集成系统,需要满足对车载充电器(包括电流隔离)的特定要求。关于集成充电器要考虑的其他方面是电压水平适应性、充电期间马达中不希望形成的扭矩、效率、来自电网的电流中的低谐波含量以及可能的强制单位功率因数操作。

由于集成充电器可以向系统引入的许多优点,先前已经报道了不同类型的集成充电器。然而,这些集成充电器中的大多数在其结构上缺乏电流隔离。此处,某些提议的集成电荷为充电过程提供电流隔离。

目前,一些制造商不使用集成充电器,而是专注于不使用电驱动部件的车载充电器。图1示出了车辆10,车辆10具有可操作地布置有电源14的车载充电器装置12。车载充电器装置12包括充电端口16、电磁干扰(emi)滤波器18、二极管桥20、dc/ac转换器22、变压器24、ac/dc滤波器26、升压转换器28和牵引电池30。emi滤波器18在向二极管桥20提供输入之前降低高频电子噪声。变压器24提供了dc/ac转换器22和ac/dc转换器26之间的隔离。升压转换器28在向牵引电池30提供输入之前执行功率因数校正(以及可能的电压调节)以从ac/dc转换器26输出。

对于高功率应用(例如,电动车辆),大型ac电机有时包括由多个逆变器供电的多个绕组(图2)。此处,a1是绕组1的相位a的电感,a2是绕组2的相位a的电感,b1是绕组1的相位b的电感,b2是绕组2的相位b的电感,c1是绕组1的相位c的电感,c2是绕组2的相位c的电感,d1是绕组1沿d轴的电感,d2是绕组2沿d轴的电感,q1是绕组1沿q轴的电感,q2是绕组2沿q轴的电感,并且ω是电速度。转子d轴相对于相位轴a1成角度θ1,并且相对于相位轴a2成θ2,并且α=θ2-θ1。

由于这些多相电机的结构,除了各个相位之外,相位组之间的互感(磁耦合)是不可避免的。这不仅对确定性能和设计控制系统是有用的,而且对分析容错性也是有用的。当能量仅注入到一组绕组时,绕组(相位)之间的这种交叉耦合可以形成变压器。

在ac稳态条件下,d轴和q轴磁链ψd和ψq的rms值可以组合成相量:

ψi=ψdi+jψqi(1)

ii=idi+jiqi(2)

vi=vdi+jvqi=riii+jωψi(3)

其中,i=1,2并且vdi=riidi–xqiiqi–xq1q2iq2以及vqi=eqi+riiqi+xdiidi+xd1d2id2。这些等式在图3中以图形方式描述,其中ψdi是绕组i沿d轴的磁链,ψqi是绕组i沿q轴的磁链,ψi是绕组i的总磁链,idi是绕组i沿d轴的电流,iqi是绕组i沿q轴的电流,ii是绕组i的总电流,vdi是沿d轴施加到绕组i的电压,vqi是沿q轴施加到绕组i的电压,vi是施加到绕组i的总电压,ri是绕组i的电阻,ω是电速度,eq1是绕组1所见的沿q轴的反电动势(emf),xd1是绕组1沿d轴的电抗,xq1是绕组1沿q轴的电抗,xd1d2是绕组1和2沿d轴的互电抗,xq1q2是绕组1和2沿q轴的互电抗,φ是i1和v1之间的角度,γ是i1和eq1之间的角度,以及δ是vq1和eq1之间的角度。

交叉耦合项在相量图中出现为另外的电压降,其倾向于限制电流。如果α=0(相位组之间的角度),则两组之间存在紧密耦合的电感,如已经观察到的那样;如果这些组由共同的电压源供电,则每组中的电流将大约是另一个组是开路时将在一个组中流动的电流的一半。这是一个实用的点,因为它意味着在双绕组中,如果一个组是开路的,则如果不被调节,另一个组中的电流可能会增加一个接近200%的因子。同样,如果一个组短路,则第二组的阻抗将减小,并且如果不被调节,则其电流也可以增加到高值。

双组的行为类似于并联电感的行为,参见图4a和图4b,其中等效电感为:

在这种情况下,如果l1=l2=l,则有效电感变成:

其中ψ1是线圈1的磁通量,ψ2是线圈2的磁通量,m是线圈的互感,l1是线圈1的电感,l2是线圈2的电感,并且i是总电流。此外,当α=0时,m变得接近l并且有效等效电感变为l。同时,相位之间的耦合系数将为k=1(理论上)。总电流是受l限制的电流,并且是每组中流动的电流的一半。但是如果一个组是开路的,则相同的总电流将倾向于在一个组中流动。这意味着对电流的调节可能会有所帮助。

由于牵引系统和车载充电器不能同时起作用,并且考虑到相位之间可接受的耦合量,如上所述,采用多相电机作为变压器来为车载充电器创建隔离似乎是一种合乎逻辑的方法。图5示出了用于集成车载充电器和牵引系统的高级提议架构。在这个实例中,车辆32包括变速器33和差速器34,变速器33和差速器34被布置成直接驱动车轮/轮胎组件36。(车轮/轮胎组件37跟随从动车轮/轮胎组件36。)车辆32还包括电驱动系统38,电驱动系统38被配置成经由离合器40与变速器33选择性地耦合。电驱动系统38包括电动马达42、逆变器和绕组开关装置44以及牵引电池46。逆变器和绕组开关装置44被布置成从外部充电线48接收电力。可以经由逆变器和绕组开关装置44将从外部充电线48接收的电力提供给牵引电池46以用于充电目的。类似地,可以经由逆变器和绕组开关装置44将从牵引电池46接收的电力提供给电动马达42以操作电动马达42。控制器49(或控制器,在此可互换使用)与电驱动系统38通信并控制电驱动系统38。当然,可以设想其他和/或不同的车辆配置。例如,这类配置不需要包括变速器33或离合器40等。

如下面进一步详细解释,逆变器和绕组开关装置44以及电动马达42在车辆推进期间用作牵引系统,并且在牵引电池46的充电期间参与充电过程。

图6示出了用于图5的电驱动系统38的一个提议拓扑结构。在这个实例中,电动马达42包括两组绕组52、54,并且逆变器和绕组开关装置44包括一对逆变器56、58和开关s1、s2。车辆32还包括功率因数校正级61和二极管桥式整流级62、emi滤波器63和充电端口64。充电端口64示出为与远程电源66耦合。

在牵引模式下,控制器49(图5)将开关s1、s2连接到牵引电池46和逆变器56之间的位置1,从而将逆变器56与充电端口64隔离。牵引电池46因此连接到逆变器56、58二者。逆变器56、58中的每一个可以分别将所要求电力的一半提供给绕组52、54,并且控制器49可以同步控制和功率流。(在牵引模式下,充电端口64当然不会与远程电源66连接。)

在充电模式下,控制器49(图5)将开关s1、s2连接到逆变器56和功率因数校正级61之间的位置2。逆变器56的dc链路电容器通过功率因数校正级61充电,并且逆变器56将这个dc电力转换为ac电力(具有所需频率)。ac电力流过绕组52,其在绕组54处感应出电压并且相应的电流流过绕组54。然后,逆变器58在将所述电流注入牵引电池46之前对所述电流进行整流。因此,在牵引模式和充电模式下,充电端口64都与牵引电池46完全隔离。

考虑到通过绕组52、54和芯传输的功率水平(例如,~8kw),芯饱和不可能。同样为了实现零电压源,如果电机42的漏感未高至足以达到此目的,则可以将三相电感器与绕组52串联添加。另外,如果耦合系数不够高,则可以将一组电感器和电容器(谐振回路)与绕组52串联添加。

在充电过程期间,期望最大耦合并因此有最大互感。控制器49可以将电机42的转子(在永磁马达的情况下)放置在提供相位之间的最大耦合系数的位置。使用解析器可以简化此任务。例如,已知的测试或模拟技术可以用于识别使耦合系数最大化的转子位置。然后这个位置可以存储在控制器49可访问的存储器内(或者在操作期间在线获得),使得在充电之前,控制器49可以经由解析器识别电流转子位置,并且然后使转子移动到期望位置以最大化耦合。也可以使用其他技术。

一些实施例可以提供某些优点。可以免去车载充电器的dc-dc级。功率电平可以高于等效电平1或电平2充电器。最大功率容量取决于马达结构和芯饱和限制。所提议的集成充电器可以是双向的,以在电网和电池之间传输电力。通过改变功率因数校正级、二极管桥式整流级和emi滤波器的设计,所提议的转换器可以用于来自公用电网的单相、两相或三相输入。

说明书中使用的词语是描述性词语而不是限制性词语,并且应当理解,在不脱离本公开和权利要求的精神和范围的情况下,可以做出各种改变。如前所述,各种实施例的特征可以组合以形成可能未明确描述或示出的其他实施例。虽然各种实施例可能已经被描述为关于一个或多个期望特性相较于其他实施例或现有技术实施方式提供优点或者是优选的,但是本领域普通技术人员认识到要实现期望的整体系统属性,可能会损害一个或多个特征或特性,这取决于具体的应用和实施方式。这些属性包括但不限于成本、强度、耐久性、生命周期成本、可销售性、外观、包装、尺寸、适用性、重量、可制造性、装配简易性等。因此,关于一个或多个特性,被描述为相较于其他实施例或现有技术实施方式是不太期望的实施例不是在本公开的范围之外,并且对于特定应用可能是期望的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1