固定翼无人机及其工作方法与流程

文档序号:13378779阅读:1433来源:国知局
固定翼无人机及其工作方法与流程

本发明涉及一种固定翼无人机及其工作方法。



背景技术:

由于无人机具有机动快速、使用成本低、维护使用简单等特点,因此在国内外已经广泛被运用。但迄今为止,世界上使用的无人机由于受制于起降技术局限性,实际使用仍然得不到全方位应用。在固定翼垂直起降无人机方面,仅仅在西方少数几个发达国家中海军中鲜有应用,而双电池混合动力固定翼垂直起降无人机还是空白。



技术实现要素:

本发明的目的是提供一种无人机及其工作方法,其通过双电池协同工作,提高起飞效率和悬停的稳定性,以及延长了续航里程。

为了解决上述技术问题,本发明提供了一种无人机,包括:充放电控制模块、与该充放电控制模块相连的燃料电池和锂电池,所述充放电控制模块由一处理器模块控制,即当处理器模块获得无人机上升或悬停指令,则所述处理器模块通过充放电控制模块控制燃料电池和锂电池同时对飞机动力系统进行供电;以及在巡航过程中,所述处理器模块通过充放电控制模块控制燃料电池对飞机动力系统进行供电,且同时通过燃料电池对锂电池进行充电。

进一步,所述飞机动力系统包括:由处理器模块控制的水平动力子系统和垂直动力子系统;其中所述水平动力子系统位于机身处,且包括:水平螺旋桨机构;所述垂直动力子系统包括:对称设于左、右机翼处的垂直螺旋桨机构;以及所述处理器模块还与用于检测无人机飞行姿态的陀螺仪、用于对无人机进行定位的gps模块相连。

进一步,所述垂直螺旋桨机构包括至少一垂直螺旋桨,用于将垂直螺旋桨机构悬挂于机翼下方的悬挂装置,所述垂直螺旋桨适于通过相应微型电机驱动转动;所述悬挂装置包括:适于使垂直螺旋桨向前或向后倾斜的第一角度微调电机,以及使垂直螺旋桨向左或向右倾斜的第二角度微调电机;其中所述第一、第二角度微调电机和微型电机均由处理器模块控制,以根据飞行姿态调节垂直螺旋桨的倾角和垂直螺旋桨的转速。

进一步,所述无人机还设有用于检测飞行过程中侧风的风向传感器和风速传感器,所述风向传感器和风速传感器适于将当前飞机所受侧风的风向和风速数据发送至处理器模块;所述处理器模块适于根据侧风的风向和风速数据,调节垂直螺旋桨的倾角和垂直、水平螺旋桨的转速,以稳定当前飞行姿态。

又一方面,本发明还提供了一种无人机的工作方法,其中

所述无人机包括:充放电控制模块、与该充放电控制模块相连的燃料电池和锂电池,所述充放电控制模块由一处理器模块控制;

所述工作方法包括:当处理器模块获得无人机上升或悬停指令,则所述处理器模块通过充放电控制模块控制燃料电池和锂电池同时对飞机动力系统进行供电;以及

在巡航过程中,所述处理器模块通过充放电控制模块控制燃料电池对飞机动力系统进行供电,且同时通过燃料电池对锂电池进行充电。

进一步,所述处理器模块还与用于检测无人机飞行姿态的陀螺仪、用于对无人机进行定位的gps模块相连;所述飞机动力系统包括:由处理器模块控制的水平动力子系统和垂直动力子系统;其中所述水平动力子系统位于机身处,且包括水平螺旋桨机构;所述垂直动力子系统包括:对称设于左、右机翼处的垂直螺旋桨机构;所述垂直螺旋桨机构包括至少一垂直螺旋桨,用于将垂直螺旋桨机构悬挂于机翼下方的悬挂装置,所述垂直螺旋桨适于通过相应微型电机驱动转动;所述悬挂装置包括:适于使垂直螺旋桨向前或向后倾斜的第一角度微调电机,以及使垂直螺旋桨向左或向右倾斜的第二角度微调电机;其中所述第一、第二角度微调电机和微型电机均由处理器模块控制,以根据飞行姿态调节垂直螺旋桨的倾角和垂直螺旋桨的转速;根据飞行姿态调节垂直螺旋桨的倾角和转速的方法包括:所述处理器模块适于控制第一角度微调电机带动垂直螺旋桨向前倾斜,同时控制水平螺旋桨机构中水平螺旋桨工作,以缩短无人机到达设定的巡航高度的时间,且在无人机在达到巡航高度的同时,满足其巡航速度。

进一步,所述无人机还设有用于检测飞行过程中侧风的风向传感器和风速传感器,所述风向传感器和风速传感器适于将当前飞机所受侧风的风向和风速数据发送至处理器模块;所述处理器模块适于根据侧风的风向和风速数据,调节垂直螺旋桨的倾角和垂直、水平螺旋桨的转速,以稳定与当前飞行姿态。

进一步,所述处理器模块适于根据侧风的风向和风速数据,调节垂直螺旋桨的倾角和垂直、水平螺旋桨的转速,以稳定与当前飞行姿态的方法包括:若无人机在空中悬停,则水平螺旋桨停止工作,且垂直螺旋桨工作,所述处理器模块适于根据侧风的风向和风速数据,改变垂直螺旋桨的倾角和转速,以稳定悬停姿态;若无人机巡航,所述处理器模块适于根据侧风的风向和风速数据,改变垂直螺旋桨的倾角和转速,以保持巡航高度。

进一步,所述处理器模块适于判断侧风的风向和风速是否有助于飞行,若有助于飞行,则降低垂直螺旋桨和/或水平螺旋桨的转速,并通过充放电控制模块控制燃料电池对对锂电池进行充电。

所述无人机还包括:用于控制无人机按相应路径飞行的处理器模块,与该处理器模块相连的第一、第二gps模块,第一、第二gps模块通过相应串口与处理器模块相连,所述处理器模块适于在第一gps模块无法工作时,启动第二gps模块工作。

所述的无人机控制系统的工作方法,还包括:对无人机飞至目的地的路径进行选择,以获得最优路径。

对无人机飞至目的地的路径进行选择,以获得最优路径的方法包括:获得各楼间风的实时数据,并建立城市楼间风道网;当无人机设定飞行目的地后,无人机内的处理器模块通过路径优化子系统适于根据城市楼间风道网选择无人机飞至该目的地的最优路径;并且所述无人机的机翼上覆盖有光伏电池,所述路径优化子系统还适于获得各楼间的实时光照强度;所述路径优化子系统在选择最优路径时,若两条或两条以上的路段具有相同数据的楼间风,则将实时光照强度最大的路段选入最优路径中;所述路径优化子系统还适于获得城市上空的云层数据,且在选择最优路径时,避开云层覆盖区的路段;所述无人机还设有用于拍摄建筑物全景的摄像装置,该摄像装置与处理器模块相连,且所述处理器模块适于根据建筑物全景识别该建筑物的高度。

当无人机在雨雪天气飞行时,所述路径优化子系统适于选择建筑物的背风路段作为无人机在最优路径中的路径选择;并且使无人机的飞行高度低于该建筑物的高度,以通过该建筑物遮挡雨雪;所述工作方法还包括:根据飞行姿态调节垂直螺旋桨的倾角和转速的方法,即所述处理器模块适于控制第一角度微调电机带动垂直螺旋桨向前倾斜,同时控制水平螺旋桨机构中水平螺旋桨工作,以缩短无人机到达设定的巡航高度的时间,且在无人机在达到巡航高度的同时,满足其巡航速度。

若无人机在空中悬停,则水平螺旋桨停止工作,且垂直螺旋桨工作,所述处理器模块适于根据侧风的风向和风速数据,改变垂直螺旋桨的倾角和转速,以稳定悬停姿态;若无人机巡航飞行时,所述处理器模块适于根据侧风的风向和风速数据,改变垂直螺旋桨的倾角和转速,以保持巡航高度;所述处理器模块与机内的充放电控制模块相连,且所述充放电控制模块适于将机载电池电量发送至处理器模块,且当机载电池电量低于一设定值时,所述处理器模块控制无人机停至一光照强度高的区域,以通过所述光伏电池对机载电池进行充电;或所述处理器模块控制无人机停至一风力较大的区域,以通过风吹动水平螺旋桨和/或垂直螺旋桨产生电能对机载电池进行充电;其中,所述垂直螺旋桨适于通过第一、第二角度微调电机调节倾角,以使垂直螺旋桨迎风旋转。

本发明的无人机及其工作方法的有益效果:通过与充放电控制模块相连的燃料电池和锂电池,使无人机在上升或悬停时,燃料电池和锂电池协同工作,提高了起飞效率以及悬停稳定性,并且在巡航时,通过燃料电池对锂电池进行充电,提高了巡航里程。

附图说明

下面结合附图和实施例对本发明进一步说明。

图1是本发明的无人机的控制原理图;

图2是本发明的无人机的结构示意图;

图3是本发明的垂直螺旋桨机构的结构框图。

图中:水平动力子系统1、水平螺旋桨101、垂直动力子系统2、垂直螺旋桨201、微型电机202、机翼3、悬挂装置4、第一角度微调电机401、第二角度微调电机402。

具体实施方式

现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。

实施例1

如图1所示,本发明提供了一种无人机,包括:充放电控制模块、与该充放电控制模块相连的燃料电池和锂电池,所述充放电控制模块由一处理器模块控制,即当处理器模块获得无人机上升或悬停指令,则所述处理器模块通过充放电控制模块控制燃料电池和锂电池同时对飞机动力系统进行供电;以及在巡航过程中,所述处理器模块通过充放电控制模块控制燃料电池对飞机动力系统进行供电,且同时通过燃料电池对锂电池进行充电。

所述飞机动力系统包括:由处理器模块控制的水平动力子系统1和垂直动力子系统2;其中所述水平动力子系统1位于机身处,且包括:水平螺旋桨机构;所述垂直动力子系统2包括:对称设于左、右机翼3处的垂直螺旋桨201机构;以及所述处理器模块还与用于检测无人机飞行姿态的陀螺仪、用于对无人机进行定位的gps模块相连。

所述垂直螺旋桨201机构包括至少一垂直螺旋桨201,用于将垂直螺旋桨201机构悬挂于机翼3下方的悬挂装置4,所述垂直螺旋桨201适于通过相应微型电机202驱动转动;所述悬挂装置4包括:适于使垂直螺旋桨201向前或向后倾斜的第一角度微调电机401(如图3中f1方向),以及使垂直螺旋桨201向左或向右倾斜的第二角度微调电机402(如图3中f2方向);其中所述第一、第二角度微调电机和微型电机202均由处理器模块控制,以根据飞行姿态调节垂直螺旋桨201的倾角和垂直螺旋桨201的转速。

图3中一垂直螺旋桨201包括两个垂直螺旋桨201,且前后对称设置,因此,也同样包括两个第二角度微调电机402,该两个第二角度微调电机402由处理器模块控制适于同步转动。

所述无人机还设有用于检测飞行过程中侧风的风向传感器和风速传感器,所述风向传感器和风速传感器适于将当前飞机所受侧风的风向和风速数据发送至处理器模块;所述处理器模块适于根据侧风的风向和风速数据,调节垂直螺旋桨201的倾角和垂直、水平螺旋桨的转速,以稳定当前飞行姿态。

具体的,所述风向传感器和风速传感器用于测得无人机在飞行过程中实际获得的侧风的风向和风速数据,进而通过垂直螺旋桨201的倾角,即前或后,左或右调节,并结合垂直、水平螺旋桨的转速,以起到稳定飞行姿态的效果,并且若侧风有利于飞行,则还可以适当降低水平螺旋桨的转速,将燃料电池的更多电力分配给锂电池,对锂电池进行充电。

例如飞机从东往西飞行,若遇到西南方向的侧风,则处理器模块适于调节垂直螺旋桨201的倾角,即向西南方向倾斜,以抵消西南方向的侧风对无人机飞行路线的影响;并且,根据风速大小,改变垂直螺旋桨201的转速。

其中,所述处理器模块例如但不限于采用单片机或者arm处理器。

实施例2

在实施例1基础上,本发明还提供了一种无人机的工作方法。

其中所述无人机包括:充放电控制模块、与该充放电控制模块相连的燃料电池和锂电池,所述充放电控制模块由一处理器模块控制;所述工作方法包括:当处理器模块获得无人机上升或悬停指令,则所述处理器模块通过充放电控制模块控制燃料电池和锂电池同时对飞机动力系统进行供电;以及在巡航过程中,所述处理器模块通过充放电控制模块控制燃料电池对飞机动力系统进行供电,且同时通过燃料电池对锂电池进行充电。

所述处理器模块还与用于检测无人机飞行姿态的陀螺仪、用于对无人机进行定位的gps模块相连;所述飞机动力系统包括:由处理器模块控制的水平动力子系统1和垂直动力子系统2;其中所述水平动力子系统1位于机身处,且包括水平螺旋桨机构;所述垂直动力子系统2包括:对称设于左、右机翼3处的垂直螺旋桨201机构;所述垂直螺旋桨201机构包括至少一垂直螺旋桨201,用于将垂直螺旋桨201机构悬挂于机翼3下方的悬挂装置4,所述垂直螺旋桨201适于通过相应微型电机202驱动转动;所述悬挂装置4包括:适于使垂直螺旋桨201向前或向后倾斜的第一角度微调电机401,以及使垂直螺旋桨201向左或向右倾斜的第二角度微调电机402;其中所述第一、第二角度微调电机和微型电机202均由处理器模块控制,以根据飞行姿态调节垂直螺旋桨201的倾角和垂直螺旋桨201的转速。

根据飞行姿态调节垂直螺旋桨201的倾角和转速的方法包括:所述处理器模块适于控制第一角度微调电机401带动垂直螺旋桨201向前倾斜,同时控制水平螺旋桨机构中水平螺旋桨工作,以缩短无人机到达设定的巡航高度的时间,且在无人机在达到巡航高度的同时,满足其巡航速度。

所述无人机还设有用于检测飞行过程中侧风的风向传感器和风速传感器,所述风向传感器和风速传感器适于将当前飞机所受侧风的风向和风速数据发送至处理器模块;所述处理器模块适于根据侧风的风向和风速数据,调节垂直螺旋桨201的倾角和垂直、水平螺旋桨的转速,以稳定与当前飞行姿态。

具体的,所述处理器模块适于根据侧风的风向和风速数据,调节垂直螺旋桨201的倾角和垂直、水平螺旋桨的转速,以稳定与当前飞行姿态的方法包括:若无人机在空中悬停,则水平螺旋桨停止工作,且垂直螺旋桨201工作,所述处理器模块适于根据侧风的风向和风速数据,改变垂直螺旋桨201的倾角和转速,以稳定悬停姿态;若无人机巡航,所述处理器模块适于根据侧风的风向和风速数据,改变垂直螺旋桨201的倾角和转速,以保持巡航高度。

具体实施过程:若无人机在控制悬停,若遇到从东往西的侧风,则垂直螺旋桨201的倾角对应侧风方向,以抵消侧风对无人机飞行姿态的影响,并且根据侧风的风速调节垂直螺旋桨201的转速。

所述处理器模块适于判断侧风的风向和风速是否有助于飞行,若有助于飞行,则降低垂直螺旋桨201和/或水平螺旋桨的转速,并通过充放电控制模块控制燃料电池对对锂电池进行充电,进而提高了无人机的巡航里程。

实施例3

在上述2实施例的基础上,本实施例的无人机控制系统,包括:用于控制无人机按相应路径飞行的处理器模块(采用arm嵌入式控制器、单片机或骁龙801处理器等),与该处理器模块相连的第一、第二gps模块,第一、第二gps模块通过相应串口与处理器模块相连,所述处理器模块适于在第一gps模块无法工作时,启动第二gps模块工作(第一、第二gps模块可采用北斗导航模块替代)。

所述处理器模块适于默认由第一gps模块工作,若第一gps模块出现故障,则处理器模块无法接收到第一gps模块的发送数据后,接收第二gps模块的发送数据,以保障飞机在飞行过程中不会由于gps模块出现故障,造成飞机偏离航线,失踪。或者第一、第二gps模块的供电启动模块由处理器模块控制,且通过处理器模块在判断第一gps模块故障后,通过供电启动模块控制第二gps模块,使其进入通电工作状态,采用供电启动模块的方式,能够使第一gps模块重启,使其复位,能修复一些软件、通讯层的故障。

所述无人机控制系统还包括:与该处理器模块相连的路径优化子系统;所述路径优化子系统适于获得各楼间风的实时数据,并建立城市楼间风道网;当无人机设定飞行目的地后,所述路径优化子系统适于根据城市楼间风道网选择无人机飞至该目的地的最优路径。

通过路径优化子系统获得无人机飞往目的地的最优路径,充分利用各楼间风道中楼间风的风向,提高了飞行速度,降低了飞行能耗。

具体的,各楼间风的实时数据适于通过分布于各高楼间的风道数据采集节点获得,所述风道数据采集节点包括:安装于楼宇间的用于检测楼间风风速的风速传感器和楼间风风向的风向传感器,并且与该风速传感器和风向传感器相连的节点处理器和无线模块(无线模块优选:3g或4g通讯模块,和/或,wifi通讯模块),即将风速、风向数据通过无线方式发送至无人机,以通过路径优化子系统进行数据分析,进而建立城市楼间风道。

无人机在设定飞行目的地后,路径优化子系统或远程服务器分析飞行路径所经历的城市相应楼间风道,并规划出最合理的飞行路线,即为最优路径。

具体的,城市楼间风道网以各楼间风道的交点为节点,并且根据相邻两节点之间的楼间风道的风速、风向数据进行路径选择,即选取风向与飞行路径相匹配的相应楼间风道作为最优路径的选择路段,使无人机尽可能的在顺风的情况下到达目的地,以达到提高飞行速度,降低燃料消耗的目的;或者选择虽逆风、但风速小、路程短的路段。具体可以通过设定相应限定值,例如逆风状态时,将具体的风速级别进行数字化,如1级、2级等,路程也可以设置10米、20米或30米等,例如设定路段选择条件为不大于风速2级,路程不超过20米时,可以选择该路段,则在最优路径规划过程中,若某一路段满足上述条件,则可以选择该路段加入至最优路径。

无人机适于通过机载的无线通信模块接收风道数据采集节点发送的楼间风的实时数据,路径优化子系统获得最优路径,使无人机按照上述路径飞至目标地址。

所述无人机控制系统还包括:与处理模块相连的地图存储模块和用于检测无人机飞行姿态的陀螺仪,以及由该处理器模块控制的飞机动力子系统;具体的,所述无人机内的处理器模块还连接有地图存储模块,处理器模块适于将接收的最优路径与地图信息相匹配,以使无人机按照最优路径进行飞行,在飞行过程中通过相应gps模块和陀螺仪对飞行路径、飞行姿态进行修正。

所述无人机还设有用于检测飞行过程中所遇侧风的风向传感器和风速传感器,所述风向传感器和风速传感器适于将当前无人机所受侧风的风向和风速数据发送至处理器模块;所述处理器模块适于根据侧风的风向和风速数据,调节垂直螺旋桨201的倾角和垂直、水平螺旋桨的转速,以稳定当前飞行姿态。

若无人机在城市中楼间飞行,则侧风属于楼间风的一种。

具体的,所述无人机上的风向传感器和风速传感器用于测得无人机在飞行过程中实际获得的侧风的风向和风速数据,进而通过垂直螺旋桨201的倾角,即前或后,左或右调节,并结合垂直、水平螺旋桨的转速,以起到稳定飞行姿态的效果,并且若侧风有利于飞行,则还可以适当降低水平螺旋桨的转速,以节约电能。

例如无人机从东往西飞行,若遇到西南方向的侧风,则处理器模块适于调节垂直螺旋桨201的倾角,即向西南方向倾斜,以抵消西南方向的侧风对无人机飞行路线的影响;并且,根据风速大小,改变垂直螺旋桨201的转速。或者利用无人机运输快递时,通过无人机可以保持稳定的悬停姿态,以保证飞行高度与送货楼层相匹配,提高送货的准确性,降低无人机碰撞几率。

所述无人机的机翼上覆盖有光伏电池,所述路径优化子系统还适于获得各楼间的实时光照强度,以及所述路径优化子系统或远程服务器在选择最优路径时,若两条或两条以上的路段具有相同数据的楼间风,则将实时光照强度最大的路段选入最优路径中。其中,一路段的实时光照强度,根据该路段的所在地理位置、无人机经过该路段的时间段的太阳位置和相应的天气状况等因素,来计算得出。

进一步,所述路径优化子系统还适于获得城市上空的云层数据,且在选择最优路径时,避开云层覆盖区的路段;以及所述处理器模块还与用于拍摄建筑物全景的摄像装置相连,且所述处理器模块适于根据建筑物全景识别该建筑物的高度;当无人机在雨雪天气飞行时,所述路径优化子系统适于选择建筑物的背风路段作为无人机在最优路径中的路径选择;并且使无人机的飞行高度低于该建筑物的高度(优选低于该建筑物的顶层高度3-10米,并与该建筑外墙的间距为3-5米),以通过建筑物遮挡雨雪。

优选的,所述处理器模块还与机内的充放电控制模块相连,且所述充放电控制模块适于将机载电池电量发送至处理器模块,且当机载电池电量低于一设定值时,所述处理器模块控制无人机停至一光照强度高的区域,以通过所述光伏电池对机载电池进行充电;或所述处理器模块控制无人机停至一风力较大的区域,以通过风吹动水平螺旋桨和/或垂直螺旋桨产生电能对机载电池进行充电;其中所述垂直螺旋桨适于通过第一、第二角度微调电机调节倾角,以获得最大风力,提高风力发电效率。具体的,所述无人机控制系统还包括:充放电控制模块,且该充放电控制模块适于将风力和太阳能所产生电能进行互补后对机载电池进行充电,所述充放电控制模块可以通过现有技术的相应风光互补模块实现。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1