耐热压性聚酯瓶及其生产方法

文档序号:4286739阅读:229来源:国知局

专利名称::耐热压性聚酯瓶及其生产方法
技术领域
:本发明涉及耐热压性聚酯瓶及其生产方法。更具体地,本发明涉及所谓鹤颈(craneneck)形状的耐热压性聚酯瓶及其生产方法,该耐热压性聚酯瓶的颈部与瓶总高度的比例大于常规聚酯瓶。
背景技术
:热塑性树脂如聚对苯二甲酸乙二酯(PET)的双轴拉伸吹塑成型容器具有瓶需要的优良透明性、表面光泽及耐冲击性、刚性和阻气性,并已经广泛用作容纳各种液体用瓶。通常,在瓶装产品的生产中,热填充内容物,或者填充内容物,此后加热灭菌或巴氏灭菌,以改进内容物的保存性。然而,聚酯瓶具有耐热性差的缺陷,在热填充内容物时经历热变形和体积收缩变形。因此,实施进一步地热定形双轴拉伸吹塑成型容器。然而,在其中将自发产生压力的内容物填充和密封后将其加热灭菌或巴氏灭菌的用途(耐热压性瓶)中,压力和热同时作用在瓶的底部上,从而使瓶部由于热蠕变现象(heat-creepingphenomenon)而膨胀。因此,已经进行尝试与常规耐压瓶相比更多地增加底部的厚度以致在限定的区域上赋予其耐热性,然而,这仍是不足的,以致难以获得减轻重量和降低厚度的效果。从以上的观点,已经提出了耐热压性聚酯瓶及其生产方法。例如,本申请人提交的JP-A-8-267549和JP_A_9_118322提出了由两段吹塑成型法生产的耐热压性聚酯瓶及其生产方法。根据这些方法,可以提供具有优良耐热压性且即使通过进行加热灭菌或巴氏灭菌也没有上述问题的聚酯瓶。因为已经可以提供具有优良耐热压性的聚酯瓶,所以现在期望将该聚酯瓶用于容纳自发产生压力且在填充后必须加热灭菌或巴氏灭菌的饮料如啤酒等。S卩,虽然迄今为止常规上将啤酒容纳在玻璃瓶或罐中,但是现在期望将啤酒容纳在重量轻且具有优良的耐冲击性的双轴拉伸吹塑成型的聚酯瓶中,作为包装啤酒用容器的一种形式。另一方面,当提及啤酒时,啤酒的通用和常用容器为玻璃瓶,所述玻璃瓶具有细长形状的颈部,即,具有其截面直径小于体部横截面直径但长的所谓鹤颈形状。因此,期望聚酯瓶也具有像啤酒瓶的常用形状的带有长颈部的所谓鹤颈形状。
发明内容发明要解决的问题然而,由常规两段吹塑成型法生产的耐热压性聚酯瓶通常使预制品的嘴部热结晶(heat-crystallized),从而具有从嘴部经由短颈部连续至肩部,并进一步连续至体部,连续至底部的形状。还未知想起该啤酒瓶形状的聚酯瓶。即,虽然程度会依赖于相对湿度和聚酯树脂的结晶度而不同,但是聚酯树脂通常是吸湿性的并倾向于随着吸湿率的增大而蠕变变形(ere印-deformed)。如果将过度吸湿的瓶填充以液体内容物,则该瓶的体积由于热和压力而膨胀。在其中颈部具有小横截面直径且为细长的鹤颈形状的瓶中,特别地,液体内容物液面下降在颈部中变得显而易见,这可能导致容纳量不足的误解。因此,迄今为止,生产不可避免地具有如上所述的从嘴部经由短颈部连续至肩部,并进一步连续至体部及连续至底部的形状的聚酯瓶。因此,本发明的目的为提供耐热压性聚酯瓶及其生产方法,该耐热压性聚酯瓶具有适合于容纳啤酒的所谓鹤颈形状而不消除传统玻璃瓶装啤酒的印象。本发明的另一目的是提供耐热压性聚酯瓶及其生产方法,该耐热压性聚酯瓶有效地防止聚酯树脂吸湿,尽管其具有小的横截面直径的细长鹤颈形状,但不引起上述问题。根据本发明,提供通过双轴拉伸成型聚酯树脂预制品获得的包括嘴部、颈部、肩部、体部和底部的耐热压性聚酯瓶,其中颈部的长度在除了嘴部之外的瓶高度的10至40%的范围内,颈部的结晶度在20至35%的范围内,体部的结晶度在35至50%的范围内。在本发明的耐热压性聚酯瓶中,期望1.在温度30°C和湿度80%RH的条件下保存7天后,体部的吸湿率为3000ppm以下;和2.在填充有调节至气体体积(GV)为3.3的碳酸溶液(carbonatedsolution)且此后在65°C条件下灭菌30分钟后,体积的变化为4.0%以下。根据本发明,还提供耐热压性聚酯瓶的生产方法,其包括以下步骤通过双轴拉伸吹塑成型聚酯树脂预制品而获得一次成型品的一次吹塑成型步骤,通过热处理该一次成型品获得加热收缩的二次成型品的热处理步骤,和通过双轴拉伸吹塑成型该二次成型品而获得最终成型品的二次吹塑成型步骤,其中该一次吹塑成型步骤双轴拉伸该一次成型品的颈部至与最终成型品颈部几乎相同的尺寸,及该热处理步骤不会使得二次成型品的颈部加热收缩。在本发明耐热压性聚酯瓶的生产方法中,期望1.在二次吹塑成型步骤中由最终成型品的体积比(volumeratio)表示的加工量(amountofwork)为20至40体积%;2.在一次吹塑成型步骤中颈部的金属模具温度在15至60°C的范围内,同时相应于其它部分的金属模具温度在60至150°C的范围内。3.在热处理步骤中体部的加热温度在120至210°C的范围内;和4.在二次吹塑成型步骤中的金属模具温度在15至60°C的范围内。在本发明的耐热压性聚酯瓶中,第一重要特征在于颈部长度L在除了嘴部之外的瓶高度H的10至40%的范围内。图1为显示本发明耐热压性聚酯瓶的侧截面图,其中,一般来说,通常标号为1的本发明耐热压性聚酯瓶包括嘴部2、鹤颈形状的颈部3、连续至颈部3及连续至体部5的肩部4、体部5和底部6。颈部3具有长度L,并形成外径向下增大的锥形表面,所述长度L位于除了嘴部之外的瓶1的高度H的10至40%、特别是在15至30%的范围内。此外,在颈部3和肩部4之间的根部3a具有内径D1,并形成鹤颈形状的细长颈部,所述内径D1大于嘴部内径,并且位于体部内径D2的30至80%、特别是45至70%的范围内。当填充有作为内容物的啤酒时,鹤颈形状的颈部给予消费者与长期熟知的在玻璃瓶中填充的啤酒的印象相同的印象。虽然该图显示颈部为线性锥形,但是该颈部可以略微改变其形状,如温和地曲线化、设置有浅的小珠(shallowbead),等。底部6作为整体是薄地形成的并呈现包括多个穿过底中心部7的谷部8和多个足部9(优选5至6个足部)的所谓花瓣(petaloidal)底部形状,从而赋予瓶1自立性(self-erectingperformance)禾口耐压性。在本发明的耐热压性聚酯瓶中,第二重要特征在于,基于密度分析法的结晶度在颈部中为20至35%,在体部中为35至50%。本发明的耐热压性聚酯瓶形成与常规啤酒用玻璃瓶形状类似的鹤颈形状的细长颈部。如后所述,该颈部也通过一次吹塑成型步骤来拉伸。因此,包括颈部的整个瓶具有20%以上的结晶度,具有优良耐热性,并在增加体部结晶度时具有增强的强度,这最大地影响了体积膨胀,即,瓶几乎不膨胀。此外,本发明的耐热压性聚酯瓶具有以下特征在温度30°C和湿度80%RH的条件下保存7小时后,体部显示3000ppm以下的吸湿率。S卩,如上所述,聚酯树脂的吸湿性能依赖其结晶度而变化。然而,根据本发明,即使在颈部的最小结晶度也为20%以上,在具有最大的与液体内容物接触的面积的体部结晶度为35%以上。因此,吸湿率保持在3000ppm以下,并抑制了蠕变变形。因此,即使所谓鹤颈形状的颈部,也能够降低瓶中液体内容物液面(填充线(fillingline))的变化。因此,即使在存在从成型后的不同时期被填充并具有不同吸湿率的瓶的情况下,也能够稳定地保持填充线的位置。此外,本发明的耐热耐压性聚酯瓶具有以下特征填充有调节至3.3GV的碳酸溶液,且此后在65°C条件下灭菌30分钟后,体积的变化为4.0%以下。本发明的耐热压性聚酯瓶的生产方法为两段吹塑成型法,其包括以下步骤通过双轴拉伸吹塑成型聚酯树脂预制品而获得一次成型品的一次吹塑成型步骤,通过热处理该一次成型品获得加热收缩的二次成型品的热处理步骤,和通过双轴拉伸吹塑成型该二次成型品而获得最终成型品的二次吹塑成型步骤,其中第一重要特征在于,该一次吹塑成型步骤双轴拉伸该一次成型品的颈部至与最终成型品颈部几乎相同的尺寸,及该热处理步骤不会使得二次成型品的颈部加热收缩,和第二重要特征在于,在二次吹塑成型步骤中由最终成型品的体积比表示的加工量为20至40体积%。此处,加工量由下式表示,加工量=(最终成型品的体积_二次成型品的体积)/最终成型品的体积X100图2是显示通过在本发明耐热压性聚酯瓶的生产方法中的步骤获得的一次成型品、二次成型品和最终成型品的形状和尺寸的图。如从图2将显而易见,最终成型品1的颈部3具有与通过一次吹塑成型步骤获得的一次成型品22和通过热处理步骤获得的二次成型品24的那些几乎相同的形状和尺寸。使二次成型品24收缩至小于一次成型品22,并具有与最终成型品1底部6的形状几乎相同形状的底部。难以将鹤颈形状的细长颈部双轴拉伸。因此,如果热处理包括颈部的瓶,收缩就不均勻地发生,二次成型品易于倾斜。结果,体部和底部也不均勻地加热收缩,损害至二次吹塑用金属模具中的插入和该金属模具的闭合。根据本发明的耐热压性聚酯瓶的生产方法,鹤颈形状的细长颈部仅通过一次吹塑成型步骤而不经由加热收缩或二次吹塑形成。这并不引起关于在加热收缩后设置和固定二次成型品至二次吹塑用金属模具的问题,也不引起生产性降低的问题。此外,根据本发明,为了特别地改进耐压性,二次吹塑成型步骤中的加工量为20体积%以上,其大于由常规两段吹塑法生产的聚酯瓶的加工量。因此,保持由于该加工产生的畸变(distortion)以赋予最终成型品以弹性,从而改进了耐压性。通常,在由两段吹塑法获得的耐热压性聚酯瓶中,为了应对在热填充时或在填充后的加热灭菌处理时的加热收缩,通过减小最终成型品中的残余畸变(residualdistortion)来改进耐热性。从该观点,使热处理后的二次成型品尽可能地接近于最终成型品的形状,从而降低在二次吹塑成型步骤中的加工量。另一方面,在本发明的耐热压性聚酯瓶中,为了应对在填充后的加热灭菌处理时由于内压引起的沿膨胀方向的力作用的现象,该现象完全不同于耐热用途,将二次吹塑成型步骤中的加工量设置为大于由以上两段吹塑成型法获得的通用耐热性聚酯瓶的加工量,以赋予得到的瓶以相对大的畸变,从而使得该瓶在加热时具有弹性,因此使得可以增加耐压强度。图1是显示本发明耐热压性聚酯瓶的图,其中(A)为侧横截面图(不包括嘴部),(B)为侧面图,和(C)是底面图;图2是显示在本发明的耐热压性聚酯瓶的生产方法中的步骤中获得的中间产品的形状和尺寸的图;图3是显示本发明的耐热压性聚酯瓶的生产步骤的图;和图4是说明在实施例中制备的聚酯瓶各部分处的结晶度的图。具体实施例方式(预制品)作为用于本发明的耐热压性聚酯瓶的热塑性聚酯,可以特别地优选使用对苯二甲酸乙二酯型热塑性聚酯。在优选用于本发明的对苯二甲酸乙二酯型热塑性聚酯中,对苯二甲酸乙二酯单元占据最多且通常为70摩尔%以上,且特别地80摩尔%以上的酯重复单元,玻璃化转变点(Tg)为50至90°C且特别为55至80°C,熔点(Tm)为200至275°C且特别为220至270°C。虽然从耐热压性的观点,均聚对苯二甲酸乙二酯是优选的,但是也可使用包含少量除了对苯二甲酸乙二酯单元之外的酯单元的共聚聚酯。作为除了对苯二甲酸之外的二元酸,存在示例性的芳族二羧酸如间苯二甲酸、邻苯二甲酸和萘二甲酸;脂环二羧酸如环己烷二羧酸等;脂族二羧酸如琥珀酸、己二酸、癸二酸和十二烷二酸,其以一种或两种以上组合使用。作为除了乙二醇之外的二醇组分,可以使用丙二醇、1,4-丁二醇、二甘醇、1,6-己二醇、环己烷二甲醇和双酚A的环氧乙烷加合物的一种或两种以上。使用的对苯二甲酸乙二酯型热塑性聚酯应具有至少对于成膜足够大的分子量,依赖于用途而使用注塑级或挤出级之一。期望其固有粘度(I.V.)通常在0.6至1.4dL/g、特别是0.63至1.3dL/g的范围内。除了由上述聚酯树脂单层构成预制品制得的单层瓶之外,本发明的耐热压性聚酯瓶可由与其它热塑性树脂组合的多层构成的预制品制得。作为除了上述聚酯树脂之外的热塑性树脂,可使用任意树脂,只要其能够被拉伸吹塑成型和热结晶即可。虽然对其没有限定,但是可以使用烯烃树脂如聚乙烯、聚丙烯、乙烯/丙烯共聚物、乙烯/乙烯醇共聚物和环烯烃聚合物;及聚酰胺树脂如含亚二甲苯基的聚酰胺等。还可以使用通过将含亚二甲苯基聚酰胺与二烯化合物或过渡金属催化剂共混获得的吸氧性气体阻隔性树脂组合物、再循环聚酯[PCR(从使用的瓶再生的树脂)、SCR(在生产工厂中产生的树脂)或其混合物]。如图3㈧所示,本发明中使用的预制品10包括嘴部11、体部12和闭合底部13。虽然没有详细地在图3中示出,但是嘴部11设置有盖紧固机构如满足使用的盖(如帽或冠)的结构的环形突起或螺纹。所述嘴部11变成图1中容器嘴部2,而且预制品体部12的上部变成最终成型品的颈部,以及中间部和下部变成体部。能够通过常规方法如注塑成型或压缩成型将聚酯树脂成型为预制品。期望将预制品10的嘴部11热结晶,即,通过已知方法选择性地加热这些部分。在特定的结晶温度下将聚酯等热结晶至显著的程度。因此,通常,可以在结晶温度下加热预制品的相应部分。通过红外线加热或感应加热来完成加热。通常,通过使用绝热材料从热源隔离来选择性地加热待拉伸的体部。热结晶可以与预热至预制品10的拉伸温度同时进行,或与其分开进行。在与其它部分热隔离的状态下,在通常为140至220°C且特别为160至210°C的温度下,通过加热预制品的嘴部来热结晶该嘴部。预制品的嘴部期望具有25%以上的结晶度。此处,如果已填充内容物后的灭菌处理条件与稍后出现的实施例的条件几乎相当或更温和,则不必须需要热结晶该嘴部。(两段吹塑成型法)能够通过两段吹塑成型法来成型本发明的耐热压性聚酯瓶。在该两段吹塑成型法中,首先将加热至拉伸温度的预制品一次吹塑成型,从而形成具有粗略凸圆形状的底部的一次成型品。接着,将不包括嘴部和颈部的该一次成型品的肩部、体部和底部加热收缩,从而获得二次成型品。将处于加热状态的二次成型品进一步二次吹塑成型,从而获得最终成型品。现参考示出两段吹塑成型法的图3,通过使用加热机构预热根据要求部分热结晶的预制品10。将预热的预制品10在一次吹塑金属模具21中双轴拉伸吹塑成型,从而形成粗略凸圆形状的底部,同时将除了热结晶部分之外的预制品部分高度拉伸,从而获得一次成型品22。此时,将鹤颈形状的颈部拉伸为与最终成型品形状几乎相同的形状(图3(A))。考虑到在从一次吹塑金属模具中取出或插入至二次吹塑金属模具时的收缩,对于最终成型品的颈部允许约士5%的误差。接着,通过加热机构23加热除了嘴部和颈部之外的一次成型品22的部分,从而获得具有收缩的底部和体部的二次成型品24(图3(B))。接着,在二次吹塑金属模具25中吹塑成型该二次成型品24,从而获得最终成型品1,该最终成型品1包含多个谷部和足部并具有高度拉伸以在除了底中心部之外具有减少的厚度的底部(图3(C))。通常,在通过已知方式如红外线加热、热风加热炉或感应加热加热的85至135°C、特别地90至130°C的温度下拉伸预制品。能够通过利用给予成型的预制品的热,即,通过利用余热来进一步拉伸吹塑成型该成型的预制品。然而,通常,期望一次成型在冷却状态的该预制品,在上述拉伸温度下加热该预制品,从而拉伸吹塑成型该预制品(冷型坯方法(coldparisonmethod))0[一次吹塑成型步骤]本发明中,在一次吹塑成型步骤中重要的是将颈部拉伸为最终成型品颈部形状的鹤颈形状。为此,期望将图3(A)中所示的相应于颈部部分的金属模具21a的温度设定在15至60°C,特别在15至40°C的范围内。此外,期望将相应于不包括颈部部分的金属模具21b的温度设定为60至150°C。这使得可以抑制颈部形状在随后的热处理步骤和二次吹塑成型步骤中变形。在一次吹塑成型步骤中,将拉伸杆插入预制品中,将其端部推到预制品底部的中心部分上以沿轴向张力拉伸(tension-stretch)该预制品。同时,将流体吹送至预制品内以沿周向膨胀拉伸该预制品。在此情况下,可以在与拉伸杆同心的底部侧上设置加压杆(pressingrod),从而在张力拉伸时通过拉伸杆和加压杆保持预制品底部的中心部分,以使该预制品底部的中心部分位于成型的一次成型品的中心。金属模具的底部具有大曲率半径的粗略凸圆形状以促进一次成型品底部的高度拉伸。此处,如图3所示,期望在底部中心处形成平坦部。期望地,一次成型品底部的直径大至最终容器的体部和底部的直径的约1.1至约1.5倍。此外,根据本发明,将不包括底中心部分的所得一次成型品的底部相对高度地拉伸,定向和结晶以致具有20%以上、更优选24%以上的结晶度,并具有降低至1mm以下、更优选0.8mm以下的厚度。期望在一次吹塑成型步骤中的拉伸比率为沿轴向为2至5倍、特别为2.2至4倍,沿周向为2.5至6.6倍、特别为3至6倍。作为承压流体(pressurizedfluid),可以使用室温空气或加热空气,或任意其它气体如氮气、碳酸气或水蒸汽,它们具有通常在10至40kg/cm2表压(gauge)、特别是15至30kg/cm2表压范围内的压力。[热处理步骤]热处理步骤中,设置一次成型品以使除颈部以外的部分面对红外线加热体,由此除颈部以外的部分通过来自该红外线加热体的红外线加热并沿高度方向和沿轴向收缩,从而转化为二次成型品,该二次成型品具有能够在二次吹塑金属模具中保持且为最终成型品形状的形状。为了更可靠地防止颈部加热收缩,如图3(B)所示安装了屏蔽板26。此处,如上所述在本发明中,重要的是一次成型品比常规两段吹塑成型法的收缩量更多的加热收缩,并期望加热收缩一次成型品以致由最终成型品的体积比表示的加工量在20至40体积%的范围内。这使得可进一步改进耐压性。如果加工量超过上述范围,由于过度拉伸而产生白化或断裂,成型倾向于变得有缺陷。期望二次成型品的底部形状尽可能接近于二次吹塑金属模具的底谷部,从而有助于最终成型品足部的成形。在此情况下,二次成型品的底部形状如前所述起到重要的作用。期望加热温度在体部为120至210°C,所得二次成型品经历了收缩,并将其热定形和结晶化。也期望在与体部温度相同的温度下加热底部。在此情况下,一次成型品的底部处于相对高度拉伸的状态,几乎不由于加热而白化。红外线辐射体由具有相对大的表面积、特征为相对优良的辐射效率且在约400至约1000°C下加热的球面的组合而构成。作为红外线加热体,可以具体使用固体表面如碳钢或不锈钢的金属表面,氧化铝、氧化镁或氧化锆的陶瓷表面,或陶瓷和碳的复合材料表面,或者通过燃烧气体获得的气体表面(gaseoussurface)0将红外线加热体的固体表面通过埋入其中的电加热器或依赖于高频感应加热在预定温度下加热。[二次吹塑成型步骤]在二次吹塑成型步骤中,将二次成型品对其除嘴部以外的部分成形为最终成型品的形状。即,将流体吹送至二次成型品内以进行二次吹塑成型,从而获得具有预定谷部和足部(优选,5至6个足)的最终成型品的底部形状。因为由于通过热处理结晶而增加弹性,所以期望通过使用通常为15至45kg/cm2的承压流体用高流体压力成形二次成型品。已将颈部成形为最终成型品的形状且几乎不拉伸。在如图中所示的本发明的耐热压性聚酯瓶中,底部具有包括预定谷部和足部的所谓花瓣形状。然而,并不仅限于此,底部可采用耐压性瓶底部迄今为止已采用的任意形状,如具有其底部中心向内凹陷且其周围形成基面(groundingsurface)的所谓原野形状(champaignshape)。在本发明中,在二次吹塑成型步骤中并不必须进行热定形,二次吹塑金属模具的温度可以为15至60°C。将由此获得的最终成型品高度拉伸,从而具有降低的厚度,和将该最终成型品包括其颈部和底部在内热定形,其特征为优良的耐热压性。实施例(试验方法)[结晶度]基于通过密度梯度管法测量的密度,按照下式计算结晶度。结晶度=[pc(p-pa)]/[pX(pc-pa)]X100其中,p测量的密度(g/cm3)pa无定形区域的密度(=1.335g/cm3)p。结晶区域的密度(=1.455g/cm3)如图4所示从瓶的各个部分获取待测样品。然而,在实施例3中,将外聚对苯二甲酸乙二酯层剥离并测量。[填充/灭菌处理]将瓶填充以调节至气体体积(GV)为3.3并保持在5°C下的500ml碳酸水(carbonatedwater),并密封。接着,以将冷部位(coldspot)在65°C下持续24分钟的方式将该瓶放置在热水淋浴中,并将该瓶通过冷水淋浴冷却至室温。在实施例3和比较例1中,还在65°C下持续30分钟的条件下评价该瓶。注满容量(full-filledcontent)的变化通过下式来表示,体积变化=(处理后的体积-填充前的体积)/处理后的体积X100填充线(内容物的液面)的高度变化通过填充后即刻的值和处理后的值之间的差来表不。[吸湿试验]根据上述程序填充和灭菌处理在30°C、80%RH下保存7天后的瓶和在40°C、90%RH下保存7天后的瓶。通过从瓶体部切出样品并通过计算干燥前后的重量差来计算吸湿率。(实施例1)通过使用注塑成型机,将用作原材料的均聚对苯二甲酸乙二酯(固有粘度,0.78dL/g)成型为重量33g并具有满足螺丝帽的形状的嘴部的预制品。将该预制品在110°C下加热并在25°C的颈部的金属模具温度及120°C的体部的金属模具温度下一次吹塑成型,从而获得在其体部具有直径72mm的一次成型品。将一次成型品通过加热以使一次成型品的体部温度为170°C来加热收缩,从而获得二次成型品,将该二次成型品在25°C的金属模具温度下立即进行二次吹塑成型。成型为最终成型品的瓶,其具有除了嘴部以外的瓶高度210mm、颈部长度44mm、体部直径65mm、注满容量530ml、体部厚度0.3mm和在距离底部中心朝向谷部15mm的位置处的底部厚度0.8mm。加工量为23%。(实施例2)除了将一次成型品体部的直径设定为76mm之外,以与实施例1相同的方式成型相同形状的瓶。加工量为19%。(实施例3)除了以下之外,以实施例1相同的方式来成型相同形状的瓶使用包含1.3摩尔%间苯二甲酸组分的共聚聚对苯二甲酸乙二酯(固有粘度,0.80dL/g)作为内外层,并使用5重量%的包含聚酰胺树脂作为基材的吸氧性树脂作为中间层,并通过使用共注塑成型机来成型多层预制品。加工量为23%。(比较例1)通过使用与实施例1相同的均聚对苯二甲酸乙二酯作为原材料,通过注塑成型重量35g的预制品,依赖于一步吹塑成型法通过在温度110°C下及在120°C的金属模具温度下加热预制品,来成型具有与实施例1相同外观的瓶。然而,调节底部的厚度轮廓以使在距离底部中心朝向谷部15mm的位置处的底部厚度为2.0mm。<table>tableseeoriginaldocumentpage11</column></row><table>表1示出在65°C持续24分钟下的填充/灭菌处理的结果。在30°C、80%RH、7天的吸湿条件下,在所有实施例中,吸湿率小于3000ppm,体积的变化小于3.O%,液面变化小于20mm。即使在其中吸湿至接近平衡状态(约6000士IOOppm)的40°C、90%RH、7天的条件下,在实施例2和3中,也能够抑制体积的变化至约3.5%,液面变化略超过20mm。关于用于评价的形状的瓶,如果液面变化超过22mm,液面就从鹤颈部消失并下降至肩部。在比较例1中,甚至在30°C、80%RH、7天的条件下,液面变化也超过25mm,该瓶不适于用作商用制品用。表2<table>tableseeoriginaldocumentpage12</column></row><table>填充灭菌条件65°C"30分钟吸湿条件30V-80%RH7天表2示出将瓶在30°C、80%RH下保存7天的实施例3和比较例1的瓶在65°C下进行填充/灭菌处理30分钟的结果。即使当经受上述严酷的填充/灭菌条件时,也证实实施例3的瓶显示体积变化为4.0%以下,液面变化为21mm以下,并具有足够程度的耐热压性。权利要求一种耐热压性聚酯瓶,其包括嘴部、颈部、肩部、体部和底部,并通过双轴拉伸成型聚酯树脂预制品获得,其中所述颈部长度在除了所述嘴部之外的瓶高度的10至40%的范围内,所述颈部的结晶度在20至35%的范围内,所述体部的结晶度在35至50%的范围内。2.根据权利要求1所述的耐热压性聚酯瓶,其中在温度30°C和湿度80%RH的条件下保存7天后,所述体部的吸湿率为3000ppm以下。3.根据权利要求1所述的耐热压性聚酯瓶,其中在填充有调节至气体体积(GV)为3.3的碳酸溶液且此后在65°C条件下灭菌30分钟后,体积的变化为4.0%以下。4.一种耐热压性聚酯瓶的生产方法,其包括以下步骤通过双轴拉伸吹塑成型聚酯树脂预制品获得一次成型品的一次吹塑成型步骤,通过热处理所述一次成型品获得加热收缩的二次成型品的热处理步骤,和通过双轴拉伸吹塑成型所述二次成型品而获得最终成型品的二次吹塑成型步骤,其中所述一次吹塑成型步骤双轴拉伸所述一次成型品的颈部至与所述最终成型品颈部几乎相同的尺寸,和所述热处理步骤不导致所述二次成型品的颈部加热收缩。5.根据权利要求4所述的耐热压性聚酯瓶的生产方法,其中在所述二次吹塑成型步骤中由所述最终成型品的体积比表示的加工量为20至40体积%。6.根据权利要求4所述的耐热压性聚酯瓶的生产方法,其中相应于在所述一次吹塑成型步骤中所述一次成型品颈部的部分的金属模具温度在15至60°C的范围内,同时相应于所述一次成型品其它部分的金属模具温度在60至150°C的范围内。7.根据权利要求4所述的耐热压性聚酯瓶的生产方法,其中在所述热处理步骤中所述体部的加热温度在120至210°C的范围内。8.根据权利要求4所述的耐热压性聚酯瓶的生产方法,其中在所述二次吹塑成型步骤中金属模具温度在15至60°C的范围内。全文摘要一种耐热压性聚酯瓶的生产方法,其包括以下步骤其中使聚酯树脂预制品进行双轴拉伸吹塑成型,从而获得一次成型品的一次吹塑成型步骤;其中将所述一次成型品热处理并加热收缩,从而获得二次成型品的热处理步骤;以及其中使所述二次成型品进行双轴拉伸吹塑成型,从而获得最终成型品的二次吹塑成型步骤。在所述一次吹塑成型步骤中,进行双轴拉伸以使所述一次成型品的颈部具有与所述最终成型品的颈部几乎相同的尺寸。此外,进行热处理步骤以使所述二次成型品的颈部不经历加热收缩。因此,能够提供一种耐热压性聚酯瓶,其中所述颈部长度在瓶高度的10至40%的范围内,所述颈部具有20至35%的结晶度,所述体部具有35至50%的结晶度。它具有细长颈部,即,它是长颈瓶,并适于用作啤酒容器。所述由聚酯树脂制成的瓶不损害常规玻璃瓶装啤酒给予的印象。文档编号B65D1/02GK101808801SQ20078010006公开日2010年8月18日申请日期2007年6月26日优先权日2007年6月26日发明者佐藤友纪,冈部高规,大久保隆弘,小宫温申请人:东洋制罐株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1