空心结构板及其制造方法、制造装置以及吸音结构板的制作方法

文档序号:4415456阅读:273来源:国知局
专利名称:空心结构板及其制造方法、制造装置以及吸音结构板的制作方法
技术领域
本发明涉及空心结构板及其制造方法和装置,以及吸音结构板。
背景技术
诸如槽形塑料纸板(产品名称由Ube-Nitto Kasei有限公司制造的Danplate)、波纹塑料纸板、其中形成有圆柱形独立气室的塑料结构板(产品名称由Kawakami Sangyo有限公司制造的Plapearl)一类的塑料空心结构板重量轻,并具有优良的防水性、耐热性、耐化学性及其他性能,从而通常用于各种场合,例如建筑板、容器、各种箱子、以及比如用于房屋、建筑物、办公室和汽车的内部材料(例如,参见JP2000-326430A的蜂窝结构板)。
公知的是,在这些结构中,其中形成有圆柱形独立气室(下文称为“空心突出部”)的空心结构板相比波纹塑料纸板或槽形塑料纸板在竖向和水平向上的强度没有差别。
这类结构板可通过在减压条件下模制热塑性树脂片而获得。在这种结构中,当试图增加空心突出部的高度来增加厚度时,构成空心突出部的侧壁部分变成薄片,从而无法保持强度。如果为了解决该问题而增加树脂片的厚度,就会不可避免地增加重量,同时消弱轻质的特性。因此,JP2000-326430A中公开的技术已经成为本发明的传统技术。
在该技术中,一对树脂片的每一个中均突出有若干空心突出部,并且熔合树脂片材,空心突出部彼此相对,从而得到一空心结构板,通过贴附两个片材,厚度可做得比常规厚度大两倍,同时强度得以保持。接着,在形成空心突出部和贴附步骤之后,将光滑的平面板或类似物等层压在两个树脂片材的相对表面上,从而可得到具有轻质空心结构的板料产品。
上述公开文件中所公开的一种用于制造该结构的方法如下所述。在从其外圆周部分突出有多个销的一对压花辊之间供应由T型模具挤压出的两个树脂片材,并且降低和抽空压花辊内的压力,从而模制出两片树脂片以便在减压条件下制成销状。同时,利用压花辊的转动使销相互接触,以便使空心突出部的端面热熔成整体。在这种状态下,通过卷取辊卷取树脂片材,然后可得到整体式空心结构板。
但是,上述制造方法在形状或性能方面存在如下技术问题,并且实际上可能不适合制造。
首先,仅仅通过抽空压花辊的方式,树脂片经常不能粘附到压花辊上,并且经常出现抽空损失,以致于当所形成的空心突出部高度很高时,不可能模制成型。
第二,当将压花辊加热到树脂片的空心突出部能够模制的温度时,树脂片粘附在压花辊上,使得脱模困难。即使脱模顺利完成,但由于空心突出部的温度至少为熔点或更高,因此形状也改变了。相反,如果模压温度过低,则即使空心突出部的底面相互接触也不能熔化并连接在一起。在这种情况下,当弯曲荷载作用在所得到的空心结构板上时,树脂片在连接部处彼此分开,并且之后刚度降低。因此,为了获得高质量的空心结构板,必须对温度进行严格控制。
此外,当每个销的上基部与下基部之间的尺寸差(直径比)较小时,不仅脱模性能降低,而且存在如下问题在模制空心结构板中,用于空心突出部的树脂量增加,并且与其中形成非空心突出部的衬里部分的平衡破坏,以致于出现厚边并从而使得成型品质降低。
另外,由于销之间的间距较小而使得空心结构板的弯曲弹性梯度增加,但是仅仅减小销之间的间距更易形成空心结构板中的厚边,尤其是当销的上基部与下基部之间的尺寸差较小时。
此外,这种空心结构板的吸音性较差,而为了提高吸音性,必须附加例如聚氨酯泡沫板一类的多孔板形构件、无纺布、以及织物。此外,在常用的吸音材料中,吸音性在很大程度上取决于其厚度,因此,举例来说,当多孔板形构件的厚度变得较小时,尤其是低频或中频区域内的吸音性变得更差。此外,用作房屋的天花板材料或墙壁材料一类的石棉、石膏板等属于轻型材料,并具有良好的吸音性和隔热性时,但是刚度和防水性较差。
本发明解决了上述技术问题,并且其目的在于提供一种制造空心结构板的方法和设备,使得两个经挤压模制成的热塑性树脂片材的空心突出部工序和熔化连接工序在短时间内完成,并且便于控制温度。
此外,本发明解决了上述技术问题,并且其目的在于提供一种技术,其使得两个经挤压模制成的热塑性树脂片材的空心突出部工序和熔化连接工序在短时间内可靠地完成,并且便于控制温度,此外,能够制造出弯曲性良好的空心结构板。
此外,本发明的目的在于提供一种轻型空心结构板,其具有优良的强度、刚度、耐热性、抗水性和高吸音性,具有合适的厚度,不用附加例如聚氨酯泡沫一类的多孔板形构件、无纺布和织物。此外,本发明的目的在于提供一种空心结构板,其在将上述空心结构板和另一种吸音材料相结合的整个音频范围内具有高吸音性,并且不会抵消另一个的效果。

发明内容
(1)本发明的空心结构板是一种通过熔合若干空心突出部而形成的空心结构板,该突出部在两个热塑性树脂片材的每一个中突出,并且空心突出部彼此相对。空心突出部为截锥体形。每一空心突出部的下基部的总面积与圆周面的面积比,即空心突出部的下基部(开口)部分的总面积与其中未形成空心突出部的衬里部分的面积之间的比率范围为0.3~0.9。包含空心突出部的中轴的竖向平面内的每一空心突出部的侧面的上升角度在50度~70度的范围内。
(2)本发明的用于制造空心结构板的方法包括将两个热塑性树脂片材引入一减压室内;将树脂片材分别吸引并贴在一对上下压花辊的每一个的圆周面上,该压花辊可旋转地置于减压室内以便在每一个树脂片材上形成多个空心突出部,其形状与每一个压花辊上突出的销的形状一致;以及在压花辊的接触线,即接触点位置处热熔空心突出部的端面。引入导向装置分别布置于减压室的片材引入开口部上方和下方处,每一引入导向装置朝向每一压花辊的接触线,即接触点的方向倾斜。用于热熔的加热装置设置在引入导向装置之间,加热装置以非接触方式置于树脂片材之间。通过将减压室内的树脂片材的对置面保持在常压下,并减小与此处相对的表面的压力的方式,将每一树脂片材分别吸引并贴在减压条件下的每一压花辊的圆周面上。
在本发明中,可提供用于将每一树脂片材的横向相对侧部分沿压花辊的相对侧部分插入并导向的装置,和/或可随着空心结构板模制之后将一表面材料层压于空心结构板的上下表面上。
本发明的用于制造空心结构板的另一种方法包括将两个热塑性树脂片材引入一减压室内;将树脂片材分别吸引并贴在一对上下压花辊的每一个的圆周面上,该压花辊可旋转地置于减压室内以便在每一个树脂片材上形成多个空心突出部,其形状与每一个压花辊上突出的销的形状一致;以及在压花辊的接触线,即接触点位置处连续地热熔空心突出部的端面。使用满足如下条件的压花辊销为截锥体形;销的下基部的总面积与压花辊的圆周面的面积之比,即空心突出部的下基部(开口)部分的总面积和其中未形成空心突出部的衬里部分的面积之间的比率范围为0.3~0.9;以及包含销的中轴的竖向平面内的销的侧面的上升角度在50度~70度的范围内。
(3)本发明的用于制造空心结构板的设备包括一被抽空以减小内部压力的减压室;一对上下压花辊,在压花辊的圆周表面朝向减压室的前开口部分的状态下由轴承旋转地支承于减压室内;一设置于压花辊之一上的销与一设置于另一个上的销通过一树脂片材在接触线,即接触点位置处相接触;片材引入板,分别置于前开口部分的上方和下方,每一片材引入板朝向每一压花辊的接触线,即接触点的方向倾斜;若干可旋转地支承于减压室的相对侧部分的一内侧上的边缘辊;一对边缘辊接收和准密封构件,分别以一小间隙对置于边缘辊上,以及置于每一压花辊的两面上,以将压花辊的两面在减压室内准密封;朝向减压室的后开口部分延伸的后部板,每一后部板朝位于其后侧的每一压花辊的接触线,即接触点的方向水平布置;以及一置于引入板之间的用于加热的加热器。在这里,准密封的程度包含非常接近完全密封的程度,并且下文将描述到,优选减压室10内的减压程度约为300~2000mm水柱。
本发明的用于制造空心结构板的另一种设备包括一被抽空以减小内部压力的减压室;一对上下压花辊,在压花辊的圆周表面朝向减压室的前开口部分的状态下由轴承可旋转地支承于减压室内;一设置于压花辊之一上的销与一设置于另一个上的销通过两个热塑性树脂片材在接触线,即接触点位置处相接触;以及一置于前开口部分处的用于加热的加热器。每一压花辊的销为截锥体形。销的下基部的总面积与压花辊的圆周面的面积之比,即空心突出部的下基部(开口)部分的总面积和其中未形成空心突出部的衬里部分的面积之间的比率范围为0.3~0.9。包含销的中轴的竖向平面内的销的侧面的上升角度在50度~70度的范围内。
(4)本发明的吸音结构板包括一种通过将不透气板贴在芯构件的前后侧上构成的多层空心结构板,该芯构件通过在空心突出部彼此相对的条件下,将在两个热塑性树脂片材的每一个中突出的若干空心突出部进行熔合而得到。在多层空心结构板的前后侧的至少一侧上形成有在空心突出部之间,即在其中未形成空心突出部的衬里部分(片材形成之后看上去象凹槽的部分)开口的小孔。
在本发明的吸音结构板中,可将吸音材料,例如类似聚氨酯泡沫体板的多孔板、无纺布、和织物贴在空心结构板中的其上形成小孔的侧面上,和/或可提供Metsuke(单位面积重量)为700~3000g/m2的空心板。
附图简要说明

图1为示出了本发明的空心结构板的说明图。
图2(a)~2(d)示出了本发明的吸音结构板的优选实施方式。图2(a)为制造中间状态的剖视图;图2(b)为中间产品的空心结构板的剖视图;图2(c)为图2(b)的平面图;以及图2(d)为成品的吸音结构板的剖视图。
图3为实施例1~5频率和回响吸音系数的相关图。
图4为实施例6和7中频率和回响吸音系数的相关图。
图5为在对比实施例1和2中频率和回响吸音系数的相关图。
图6为实施例6和对比实施例2中频率和回响吸音系数的相关图。
图7为使用本发明的设备的整个结构的说明图。
图8为制造设备的侧面剖视说明图。
图9为沿附图的A-A线的剖视说明图。
图10为沿附图的B-B线的剖视说明图。
图11为附图的C部的放大图。
图12为一压花辊的透视图。
图13为图6的一部分压花辊的放大说明图。
图14为一设置于压花辊上的台阶的放大剖视图。
具体实施例方式
下面将参照附图详细描述本发明的优选实施方案。
如图1所示,本发明的空心结构板是通过熔合若干空心突出部(在实施例中称为“销(pin)”或“凸出销(emboss pin)”)112、112形成的,该突出部在两个热塑性树脂片材110、110A中突出(凸出),其端面相互连接,其特征如下销112、112为截锥体形;销112、112的下基部的总面积与圆周面的面积之比在0.3~0.9的范围内;以及包含销112、112的中轴的竖直面内的每个销112、112的侧面的上升角度(risingangle)在50度~70度的范围内。这种空心结构板还可通过将由热塑性树脂片材制成的不透气板(未示出)贴在其前后两个侧面上的衬里部分(即热塑性树脂片材110、110a中的销112、112之间的部分)114、114而构成。
作为本发明中所使用的树脂片材3,优选聚烯烃树脂片材,尤其是聚丙烯板,但是根据熔点、软化点以及玻璃转化温度或材料的性能,通常可使用其他热塑性树脂材料,并且可改变设备相关部分的设置。
-空心结构板的实施例1-将熔化状态下厚度为0.5mm、Metsuke(单位面积重量)为500g/m2的均丙烯(homopropylene)片材(熔点165℃,软化点120℃)置于宽度为70mm、长度为200mm的真空模塑板上,其中将高度为5mm、上基部11d直径为2mm且下基部11e直径为8mm的销11b布置成销间距(上升部分11g之间的间距)为2mm的交错格状排列,并且在脱机状态下完成真空模塑。将所得到的两个压花板按利用一超声波熔化装置对其销进行贴合的方式进行贴合。将此作为芯构件,将厚度为0.25mm、Metsuke为250g/m2的均丙烯板贴在该芯构件的正面和背面作为面材。这样便得到厚度为10.5mm、Metsuke为1500g/m2的空心结构板。之后,根据JIS K7203进行弯曲试验。至于弯曲弹性梯度,是指基于通过上述弯曲测量而得出的荷载-弯度曲线的直线部分而得出的出现1cm弯度时的荷载,并将此作为弯曲弹性梯度。
-空心结构板的实施例2-按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为200mm的真空模塑板,其中高度为5mm、上基部11d的直径为2mm、下基部11e的直径为6mm的销11b布置成销间距为2mm的交错格状排列。此后进行弯曲试验。
-空心结构板的实施例3-按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为400mm的真空模塑板,其中高度为5mm、上基部11d的直径为4mm、下基部11e的直径为6mm的销11b布置成销间距为4mm的交错格状排列。此后进行弯曲试验。
-空心结构板的实施例4-
按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为400mm的真空模塑板,其中高度为5mm、上基部11d的直径为4mm、下基部11e的直径为8mm的销11b布置成销间距为4mm的交错格状排列。此后进行弯曲试验。
-空心结构板的实施例5-按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为200mm的真空模塑板,其中高度为5mm、上基部11d的直径为2mm、下基部11e的直径为10mm的销11b布置成销间距为2mm的交错格状排列。此后进行弯曲试验。
-空心结构板的实施例6-将销构造成具有一台阶的形式。按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为200mm的真空模塑板,其中高度为5mm、上基部11d的直径、中间位置的内侧、中间位置的外侧、和下基部11e分别为1.5mm、3mm、5mm、和6mm的销11b布置成销间距为2mm的交错格状排列。此后进行弯曲试验。
-空心结构板的对比例1-按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为400mm的真空模塑板,其中高度为5mm、上基部11d的直径为4mm、下基部11e的直径为6mm的销11b布置成销间距为4mm的交错格状排列。此后进行弯曲试验。
-空心结构板的对比例2-按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为400mm的真空模塑板,其中高度为5mm、上基部11d的直径为4mm、下基部11e的直径为4mm的销11b布置成销间距为4mm的交错格状排列。此后进行弯曲试验。
-空心结构板的对比例3-按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为800mm的真空模塑板,其中高度为5mm、上基部11d的直径为8mm、下基部11e的直径为8mm的销11b布置成销间距为8mm的交错格状排列。此后进行弯曲试验。
-空心结构板的对比例4-按与实施例1相同的方式得到模子,使用宽度为70mm、长度为200mm的真空模塑板,其中高度为5mm、上基部11d的直径为2mm、下基部11e的直径为6mm的销11b布置成销间距为2mm的交错格状排列。出现厚边,并且得不到满意的空心结构板。
-空心结构板的对比例5-按与实施例1相同的方式得到空心结构板,使用宽度为70mm、长度为200mm的真空模塑板,其中高度为5mm、上基部11d的直径为2mm、下基部11e的直径为12mm的销11b布置成销间距为2mm的交错格状排列。此后进行弯曲试验。
-试验结果-表1示出了上述实施例和对比实施例的弯曲试验的结果。
表1

*1取压花片材的总面积(一面)为1。
*2销具有一台阶上述结果表明上述实施例具有本发明的效果,该效果与对比实施例显然相反。
本发明不仅使得两个经挤压模制而成的热塑性树脂片材的空心突出部工序和熔化贴附工序在短时间内可靠地完成,并且能够制造出弯曲性能良好的空心结构板。
图2(a)~2(d)示出了将空心结构板作为本发明的吸音结构板的优选实施方式。在这些附图中示出的吸音结构板设有一空心结构板140和一吸音材料150。空心结构板140通过将由热塑性树脂片材制成的不透气板130、130A贴在芯构件120的正面和背面两个侧面上的芯件衬里部分(即热塑性树脂片材110、110a中的空心突出部112、112之间的部分)114、114而构成。芯构件120是通过把在两个热塑性树脂片材110和110A中突出(凸出)的、端面彼此面对地相贴的若干空心突出部(亦称为“销”或“凸出销”)112、112熔合在一起而形成的。吸音材料150由贴在空心结构板140的正反两个面的至少一个面上的多孔材料制成。朝向空心结构板140中的封闭空间142、142开放的小孔114a、130a在热塑性树脂片材110的衬里部分114中形成,该热塑性树脂片材置于贴附吸音材料150的侧面上,并且仅在与衬里部分114相配的位置处的不透气板130中形成。
根据该实施例,较高频带的噪音可由吸音材料150吸收,较低频带的噪音可通过实现由小孔130a和114a开放的空心结构板140的空心部分(空气层)的回响吸收效果而被吸收。这样,可制得在整个音频范围内具有高吸音性的吸音结构板,而不抵消另一个的效果。
另外,由于热塑性树脂片材110、110A是主构件,吸音结构板为轻型板,并且此外,由于空心突出部112、112与彼此面对相贴的端面熔合,所以吸音结构板的强度和刚度较高。
芯构件120的原材料不限于热塑性树脂。但是,考虑到成本、成形性、性能及其他特性的因素,优选聚丙烯。贴在芯件的两面上的原材料不限于不透气片材。但是,考虑到成本、成形性、性能及其他特性的因素,优选聚丙烯。此外,可将诸如云母和滑石之类的填料或诸如用于提供耐火性的阻燃剂一类的改性剂添加到这些原材料中去。通过使用聚丙烯,吸音结构板可具有极好的回收性能。
优选地,空心结构板140的Metsuke(单位面积的重量)约为700~3000g/m2。如果Metsuke太小,空心突出部112、112的厚度就太小,并且它们可能成为薄膜,并因此不能得到足够的强度和刚度。反之,如果Metsuke太大,则会消弱重量轻的优点。根据使用场合的不同,优选厚度例如约为6~15mm。图中,构成空心结构板140的热塑性树脂片材110、110a的空心突出部112、112为空心锥形,但也可为空心圆柱形。
如图2(c)所示,不必在空心突出部112之间的每个间隔中设置小孔114a、130a,而是可按适当的节距进行设置。优选孔径为0.3~7.0mm。如果直径小于0.3mm,则难以进行操作,而如果大于7.0mm,则不仅操作困难,刚度也会降低,因为空心突出部112的支腿部分在打开孔的时候受到破坏。更为优选的直径为0.5~4.0mm。另外,对于小孔的数量和总面积没有限制。可选用上述范围内的孔径作为合适的孔径,并且根据使用场合的不同,可根据所要求吸收的具体频率对其进行调整。小孔可通过下述方法形成,该方法具有选择诸如钻孔、针刺、和穿孔等作为适当的加工性能。
在图2中,小孔114a、130a仅在位于贴在吸音材料的侧面上(图2中的上侧面)的热塑性树脂片材110的衬里部分114、以及与此相配的不透气片材130中形成,但是它们也可在热塑性树脂片材110的空心突出部112的端面和圆周面上形成。此外,小孔114a、130a也可在位于未贴附吸音材料的侧面(图2中的下侧面)上的热塑性树脂片材110A的衬里部分114中、以及与此相配的不透气片材130A中形成。在该实施例中,小孔114a、130a的位置可在空心结构板140的正面与背面之间匹配,或者不必匹配。本发明中的所有小孔114a、130a的孔径和/或节距不必相等,并且小孔的布置可规则或不规则。在该实施例中,通过将吸音材料150仅贴在空心结构板140的一面(小孔114a设置在热塑性树脂片材110的衬里部分114中形成的侧面)上而构成多层空心结构板。但是,吸音材料150也可贴在空心结构板140的另一面上举例来说,吸音材料150为诸如具有连续气泡的海绵构件一类的发泡构件,并且贴上诸如无纺布一类的多孔性材料可进一步增强吸音效果。
=实施例1=将熔化状态下厚度为0.5mm、Metsuke(单位面积重量)为500g/m2的均聚丙烯(homopolypropylene)板(熔点165℃,软化点160℃)置于长度为1000mm、宽度为1000mm的真空模塑板上,其中将高度为5.5mm、上基部直径为6mm、下基部直径为8mm的空心突出部(凸出销)布置成间距为2mm的交错格状排列,并且在脱机状态下完成真空模塑。将所得到的两个压花片材的突出部的端部进行热熔。将此作为芯构件,将厚度为0.25mm、Metsuke为250g/m2的均丙烯片材贴在该芯件的正面和背面上作为面材。这样便得到厚度为11.5mm、Metsuke为1500g/m2的空心结构板。此后,对空心结构板的衬里部分之一进行开孔操作,从而按0.36%的开孔率、以等节距形成φ1.0的开孔。在一小回响室(reverberant chamber)(由Nittobo Acoustic Engineering有限公司制造)中测量1×1m的这种穿孔空心结构板的吸音系数。
=实施例2=按与实施例1相同的方式得到空心结构板,然后对空心结构板的衬里部分之一进行开孔操作,从而按0.36%的开孔率、以等节距形成φ2.5mm的开孔。在一小型回响室中测量该穿孔空心结构板的吸音系数。
=实施例3=按与实施例1相同的方式得到空心结构板,然后对空心结构板的衬里部分之一进行开孔操作,从而按0.36%的开孔率、以等节距(pitch)形成φ4.0mm的开孔。在一小型回响室中测量该穿孔空心结构板的吸音系数。
=实施例4=按与实施例1相同的方式得到空心结构板,然后对空心结构板的衬里部分之一进行开孔操作,从而按0.19%的开孔率、以等节距形成φ2.5mm的开孔。在一小型回响室中测量该穿孔空心结构板的吸音系数。
=实施例5=按与实施例1相同的方式得到空心结构板,然后对空心结构板的衬里部分之一进行开孔操作,从而按0.66%的开孔率、以等节距形成φ2.5mm的开孔。在一小型回响室中测量该穿孔空心结构板的吸音系数。
=实施例6=按与实施例1相同的方法得到空心结构板,然后将厚度为6mm的软聚氨酯泡沫体作为吸音材料贴到具有该空心结构板的开孔的面上,从而制成多层空心结构板。然后在一小型回响室中测量吸音系数(t=1是指厚度为1mm)。
=实施例7-按与实施例2相同的方法制得空心结构板,然后将厚度为6mm的透气表面材料和软聚氨酯泡沫体(t=5)作为吸音材料贴到设有该空心结构板的开孔的面上,从而制得多层空心结构板。之后,在一小型回响室中测量吸音系数。
=对比实施例1=按与实施例1的方法制得空心结构板,在小型回响室中测量吸音系数。
=对比实施例2=在小型回响室中测量厚度为6mm的软聚氨酯泡沫体的吸音系数。
=对比实施例3=按与实施例1相同的方法制得空心结构板,并且通过贴附由泡沫材料制成的吸音材料制得多层空心结构板,除了未开孔外,贴附条件与实施例6相同。之后,再根据回响室法测量吸音系数。对比实施例3的一定频率内的吸音系数在表2中示出。
表2示出了实施例1~7和对比实施例1~3的回响吸音系数的测量结果,而表3示出了弯曲弹性梯度。
表2回响吸音系数的测量结果

表3

图3~6为实施例1~7和对比实施例1~3的频率和回响吸音系数的相关图。表2和3以及图3~6表示如下。
在实施例1~5中,经证实,较低频带中的噪音可被吸收。另外,经证明,通过改变小孔的尺寸以及开孔率等可改变自然频率,从而使得设计用于吸音材料的自由度很大。
对于诸如具有连续气泡的发泡材料、以及无纺布的多孔材料而言,厚度越大,吸音性越好。如果厚度有限制,吸音性便会降低,尤其是低频或中频范围内的吸音性会降低。因此,由于在实施例6和7中,多层空心结构板是通过将较薄多孔片材作为吸音材料贴在具有空心结构板的开孔的面上而制得的,因此两个构件相互之间的优点得以加强。从而已经证明,按这种方式,吸音性在很宽的频带范围内得到增强。
此外也证明,如对比实施例3所示的多层空心结构板的吸音系数基本上与对比实施例2的软聚氨酯泡沫材料的空心结构板相同,前一空心结构板是通过在空心结构板未开孔的条件下贴上表面材料和发泡材料而制得的。
此外,表3表明本实施例的吸音板的弯曲弹性坡度较大,并且显示出较高的强度。
根据上述说明清楚看到,根据本发明的吸音结构板,略微增加重量并且不降低刚度便可具备吸音性。此外,通过结合另一吸音材料可使得任一频带具备吸音性。而且,通过选择材料可使得吸音结构板易于回收。因此,该吸音结构板可优选作为建筑物或汽车的内部吸音材料。
上面所描述的本发明的空心结构板或吸音结构板可优选通过如下所述的制造方法、由如下所述的制造装置进行制造。
图7示出了使用本发明方法的装置的整体构造。在图7中,在平行布置的一对挤压机1的每一端设有T型冲模2。对于由T型冲模2挤出的热塑性树脂片材3而言,利用本发明的模制装置或制造装置(下文称为“制造装置”,但意思相同)模制树脂片材3的突出部并贴附片材,所述装置不仅进行突出部的模制操作,还进行贴附操作。然后,用层压装置5将表面材料6层压于其上下表面,并且层压板材由卷片装置7以预定的速度卷起。然后,用切割装置(未示出)连续切割板材,以形成产品。
在上述描述中,如图8~10所示,作为本发明主要部件的制造装置4设有一对减压室10,半分形成上部和下部;压花辊11,由减压室10中的轴承支承,并且其圆周面面向在减压室10的结合位置处开口的开口部10a的一侧;片材引入板12,置于开口部10a的上下内侧中,并朝压花辊11圆周面上的接触线、即接触点的方向倾斜(在下文中称为“接触点”);若干边缘辊15,可旋转地支承于减压室的相对侧内;一对边缘辊安装和准密封构件14,与边缘辊15以一小间隙对置,并且布置于各压花辊11的两个侧面上,以准密封减压室10中各压花辊15的两侧;后部板16,朝向接触点方向在压花辊12的背面水平布置,并且朝各减压室10的后开口部10b延伸;以及一用于加热的加热器17,置于引入板12之间,具有三角形断面。
在每一减压室10的上部和下部开有用于减压的吸入口10c。减压吸入口10c通过一未示出的软管与一同样未示出的真空泵相连,并且抽空减压室10以减小压力,以在朝向开口部分10a提供的两个树脂片材3之间产生常压,并且压花辊11侧面上的表面处于减压状态,从而压差使得两个树脂片材3被吸到两个压花辊11表面上并贴在该表面上。
在两个压花辊11上,如图11所示,大量的销11b以竖向和水平方向规则的方式在辊的表面11a上突出,该辊由诸如钢或铝模具铸件一类的金属制成。辊11a的轴部11c位于两个减压室10的外侧面上,并且与一齿轮或一定时皮带轮合作运行,以便朝树脂片材3的输送方向相对于彼此在相反的方向上转动。轴部11c之一由一未示出的电机驱动转动。该电机驱动各压花辊11以与卷片装置7的卷起速度同步的速度转动。
另外,在压花辊11上,在辊11a的凹部(除了销11b之外的平面部)中形成有直径例如约2mm(优选1~5mm)的开孔,以防在树脂片材3与压花辊11之间产生蓄气。这些开孔与减压室10的内部相连。这样,在减压室10的内部和压花辊11的内部之间的减压程度上没有差异,从而树脂片材3可被均匀地吸到压花辊11上。因此,压花辊11允许内部为空心。开孔可按如下比率进行设置,即每1.5至2个销11b形成一个开孔;比如,开孔可设置在每个由销11b形成的凹部上,或者可按若干凹部形成一个开孔的比率设置。
此外,销11b通过树脂片材3在上下压花辊11的接触点处成一行接触,使得可能通过在此位置处按压树脂片材3使其相互贴附而热融。
引入板12用于使开孔部10a与由此处引入的树脂片材6之间的间隙最小化,以及用于保持减压室10内的减压状态。
边缘辊安装和准密封件14用于通过其转动将树脂片材3输送到后面,同时使得树脂片材3的横向相对侧部分与边缘辊15合作,并保持将树脂片材3按压在压花辊11的状态。
加热用加热器17用于将两个树脂片材3的相对面加热至一温度,该温度高于它们的熔化和挤出温度,增加温度以便确保与压花辊11热熔。
在上文中,将从T形冲模2挤出的处于半熔化状态下的树脂片材3与上下压花辊11接触,并且将其吸引并贴附于其上,同时从制造装置4的上下表面抽空压力并使压力减小。结果形成与销11b的形状一致的许多空心突出部3a。然后,在压花辊11的接触点处,使相应的销11a通过树脂片材材3相接触,从而空心突出部3a的端面通过该接触经热压缩的方式进行热熔。换言之,在该位置处,由于接触面的热量被压花辊11夺去,所以两个树脂片材3的接触面冷却并硬化。反之,与其相对的表面由用于加热的加热器17加热并被熔化。这样可轻易地完成热熔。
同理,熔化之后,树脂片材材可轻易地从销11b上取下,并且当由后部板16引导并进一步冷却时,从减压室的后开口部10b取出。
对用于上述模子的树脂片材3来说,优选聚烯烃树脂片材,尤其是聚丙烯片材,但是根据熔点、软化点以及玻璃转化温度或材料的性能,仅通过改变设备相关部分的设置可使用其他热塑性树脂材料。
举例来说,当选用均聚丙烯(熔点165℃,软化点120℃)作为挤压成型材料时,靠近前开口部10a的表面在挤压之后的温度优选为约150~200℃的凝固温度。当温度小于凝固温度时,材料难以成形,从而无法在减压条件下完成模制操作。反之,如果温度大于凝固温度的上限,则材料会软化,从而降低了供应时树脂片材3的形状保持性能。因此,将温度设置在上述范围内。
优选温度为280℃~320℃,并且用于加热的加热器17设置在与两个树脂片材3相距0.1mm~2mm处,优选0.3~1.2mm,从而可防止树脂片材粘在压花辊上。
减压室10内的减压程度为300~2000mm水柱,优选为400~600mm水柱,以便于在减压条件下冲模。
优选地,为了保持减压状态,板12、16与压花辊11之间的缝隙应经可能地小,并且可设定为小于等于1mm,优选为约0.2mm。但是,该数值的设置是为了防止板12、16与压花辊11接触,并尽可能地确保减压程度,因此,根据机器的精密程度情况,缝隙可更小。
如图所示,压花辊11的各销11b为截锥体形。具体尺寸优选如下上基部与下基部之间的尺寸差为2mm;销的直径为5~10mm;高度为3~6mm;以及销的节距为5~15mm。这样,按这种尺寸模制完成的空心结构厚度为6~12mm,重量为500~2,000g/m2,平面抗压强度为0.5~1.5MPa,弯曲断裂荷载为30~100N,弯曲弹性梯度为80~200N/cm。这样,可得到对于其厚度和重量具有高强度的空心结构。应当指出的是,平面抗压强度根据JIS Z 0401进行测量,而弯曲破坏荷载根据JIS K 7203进行测量。至于弯曲弹性梯度,是指基于通过上述弯曲测量而取得的荷载-弯度曲线的直线部分而得出出现1cm的弯度时的荷载。
紧接着,如图7所示,层压装置5包括用于将粘合剂连续传送至由贮料辊6a出来的表面材料6上的砑光辊20,以及置于模制空心结构的输送路径上的上下部上的一对层压辊21。可选择使用粘结剂、热粘附或其他粘附装置作为合适的装置,而不是使用层压装置。
只要可用于封闭空心突出部3a,可使用任何材料作为表面材料6。比如,可使用为同类材料的聚丙烯片材,当空心结构板用作例如车辆的顶棚材料一类的内部材料时,可使用各种用于装饰的片材材料。
上述层压装置5并不总是必须设置,并且在制造装置4中模制的空心结构可由卷片装置7卷起,并制成中间产品。
因此,空心结构通过如下方式进行模制,即选择均聚丙烯(熔点165℃、软化点120℃)作为挤压成型材料,将每一树脂片材的厚度定为0.25mm,将减压室10的前开口部附近处的挤压后表面温度定为约180℃。将加热器的温度加热至300℃,并将其放置在距离两个树脂片材3为0.7mm的位置处,以防树脂片材粘到压花辊上。减压室10的减压程度为500mm水柱,并且卷片装置的卷起速度为1.0m/秒。
模制完成的空心结构的厚度为11.0mm,重量为1,000g/m2,平面抗压强度为1.0MPa,弯曲破坏荷载MD为52N,TD为47N,弯曲弹性梯度MD为102N/cm,TD为92N/cm。这样,可得到对于其厚度和重量具有高强度的空心结构。
反之,当所使用的树脂材料和条件相同、但是在操作过程中省去用加热器17加热的步骤来模制空心结构时,上下片材不会贴附或成一体,因此不能得到所需要的空心结构。
这样,根据本发明,可在短时间内可靠地完成两个经挤压模制而成的热塑性树脂片材的空心突出部工序和熔接工序。此外,每个通过使用本发明的技术制造的空心突出部的上部树脂可轻易地制得比侧边厚,从而与上部由薄树脂制成的空心突出部相比,空心结构的上部可坚固地贴附并连接。
在上述制造装置中,如图13所示,压花辊11的销11b为截锥体形(平截头圆锥体)。设置于压花辊11的圆周面11a上的销11b的下基部11e的总面积与压花辊的圆周面11a的面积之比在0.3~0.9的范围内。另外,包含销11b的中轴11h的竖直面中的销侧面11f(在图13中为片材平面)的上升角度θ(即与辊圆周面11a的接触点在销11b的上升部11g处形成的角度)在50度~70度的范围内。
换言之,当销的高度为5mm上基部11d与下基部11e之间的尺寸差约为3~5mm;上基部与下基部之间的直径比为3∶5~1∶5的范围内,尤其是在1∶2~1∶4的范围内;并且形成销的突出部11j的角度为钝角。
对于销之间的间距并无限制,但间距越小,则抗弯刚度越好。在上述销角度范围中(50~70°),考虑到生产成本(当间距小时,需要大量的销)、二次加工(当在吸音板上进行开孔程序时)等因素,销之间的间距优选设定在0~4.0mm的范围内,更优选为1.5~2.5mm。
根据上述描述,树脂片材3从压花辊11上脱模的性能提高,并且即使销的间距减小也不会出现厚边。另外,空心结构板制品的弯曲特性(尤其是弯曲弹性梯度)得到提高。
此外,如图14所示,销11b可形成具有一台阶的形状。换言之,销11b的形状使得在其侧面11f上具有一凹槽11k。在这种情况下,优选地,在销侧面11f上形成的突出部11j和凹槽11k均为钝角。通过这种方式,所制得的空心突出部和衬里部分之间的厚度差减小。从而空心结构板制品的弯曲特性进一步得到提高。
应当指出的是,也可设置多个台阶。另外,在本发明中,可将位于包含销的中轴的竖直面中的销的侧面设置为曲线形。
权利要求
1.一种空心结构板,通过熔合若干个空心突出部而形成,所述突出部在两个热塑性树脂片材的每一个中突出,并且空心突出部彼此相对,其中,所述空心突出部为截锥体形,其中,每一个所述空心突出部的一下基部的总面积与一圆周面的面积比在0.3~0.9的范围内,并且其中,包含空心突出部的中轴的竖向平面内的每一所述空心突出部的一侧面的上升角在50度~70度的范围内。
2.一种用于制造空心结构板的方法,包括将两个热塑性树脂片材输入一减压室中;将树脂片材分别吸引并贴到一对可旋转地置于所述减压室内的上下压花辊的每一个的圆周面上,以便在每一个树脂片材上形成多个空心突出部,其形状与每一个压花辊中突出的销的形状一致;以及在所述压花辊的一接触线的位置处连续热熔所述空心突出部的端面;其中,引入导向装置分别布置在所述减压室的一片材引入开口部上方和下方处,每一所述引入导向装置朝向每一压花辊的接触线的方向倾斜;其中,用于热熔的加热装置设置于引入导向装置之间,所述加热装置以非接触方式置于所述树脂片材之间;以及其中,通过将减压室内的所述树脂片材的对置面保持在常压处,并减小与此处相对的表面的压力的方式,将每一树脂片材分别吸引并贴在减压条件下的每一压花辊的圆周面上。
3.根据权利要求2的用于制造空心结构板的方法,其特征在于,设有用于沿所述压花辊的相对侧部分将每一个所述树脂片材的横向相对侧部分插入并对其导向的装置。
4.根据权利要求2或3所述的用于制造空心结构板的方法,其特征在于,所述空心结构板模制之后,接着将一表面材料层压在所述空心结构板的上下表面上。
5.一种用于制造空心结构板的方法,包括将两个热塑性树脂片材输入一减压室中;将树脂片材分别吸引并附加至一对可旋转地置于所述减压室内的上下压花辊的每一个的圆周面上,以便在每一个树脂片材上形成多个空心突出部,突出部形状与每一个压花辊中突出的销的形状一致;以及在所述压花辊的一接触线的一位置处连续热熔所述空心突出部的端面;其中,使用满足下列条件的压花辊所述销为截锥体形;所述销的下基部的总面积与所述压花辊的圆周面面积之比在0.3~0.9的范围内;以及包含销的中轴的竖向平面内的销的侧面上升角在50度~70度的范围内。
6.一种用于制造空心结构板的装置,包括一被抽空以减小内部压力的减压室;一对上下压花辊,在压花辊的圆周表面面向所述减压室的前开口部分的状态下由轴承旋转地支承于减压室内;一设置于压花辊之一上的销与一设置于另一个上的销通过一树脂片材在接触线的一位置处相接触;树脂片材引入板,分别置于所述前开口部分的上方和下方,每一所述片材引入板朝向每一所述压花辊的接触线方向倾斜;若干可旋转地支承于所述减压室的相对侧部分的一内侧上的边缘辊;一对边缘辊接收和准密封构件,分别与所述边缘辊相对,在其之间具有一小间隙,且这对边缘辊接收和准密封构件置于每一压花辊的两面上,以将所述压花辊的两面在所述减压室内准密封;连续朝向所述减压室的后开口部分延伸的后部板,每一所述后部板朝位于其后侧的每一所述压花辊的接触线的方向水平布置;以及一置于所述引入板之间的用于加热的加热器。
7.一种用于制造空心结构板的装置,包括一被抽空以减小内部压力的减压室;一对上下压花辊,在压花辊的圆周表面面向所述减压室的前开口部分的状态下由轴承可旋转地支承于减压室内;一设置于压花辊之一上的销与一设置于另一个上的销通过两个热塑性树脂片材在接触线位置处相接触;以及一置于所述前开口部分处的用于加热的加热器;其中,每一所述压花辊的所述销为截锥体形;其中,所述销的下基部的总面积与所述压花辊的圆周面面积之比在0.3~0.9的范围内;并且其中,包含销的中轴的竖向平面内的销的侧面的上升角在50度~70度的范围内。
8.一种吸音结构板,包括一空心结构板,通过将不透气板贴到一芯构件的正面和背面上而构成,所述芯构件通过熔合在两个热塑性树脂片材的每一个中突出的若干空心突出部而得到,其中,空心突出部彼此相对;其中,形成有在所述空心结构板的正面和背面的至少一面上的空心突出部之间开口的一小孔。
9.根据权利要求8所述的吸音结构板,其中,一吸音材料贴在所述空心结构板内的其上形成所述小孔的侧面上。
10.根据权利要求8或9所述的吸音结构板,其中,所述空心结构板的Metsuke为700~3000g/m2。
全文摘要
在减压室(10)的片材引入开口部上方和下方设置引入导向装置(12),以及在引入导向装置之间设置加热装置(17)。通过减小压力使每一树脂片材(3)被分别吸引并贴在相应压花辊(11)的圆周面上。压花辊(11)的销(112)为截圆锥体形。销(112)的下基部的总面积与压花辊的圆周面面积之比大于等于0.5。销的侧面在包含销(112)的中轴的竖向平面内的上升角在50度~70度的范围内。另外,将不透气片材(130)贴在芯构件的正面和背面上而形成多层空心结构板(140),该芯构件是通过将两个热塑性树脂片材中的空心突出部(112)熔接在一起而得到的。在其正面和背面的至少一面上设有吸音材料(150),并且在衬里部分(114)以及仅在与衬里部分(114)相配的位置处的不透气片材(130)中形成在多层空心结构板中开口的小孔(114a)。
文档编号B29C51/22GK1649724SQ0380955
公开日2005年8月3日 申请日期2003年3月26日 优先权日2002年3月26日
发明者中岛雅彦, 宫崎雄士, 织田隆幸, 小塚键次 申请人:宇部日东化成株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1