磁极防护层柔性模塑成型工艺及成型系统的制作方法

文档序号:12226395阅读:327来源:国知局
磁极防护层柔性模塑成型工艺及成型系统的制作方法与工艺

本发明涉及电机技术领域,具体涉及一种磁极防护层柔性模塑成型工艺及成型系统。



背景技术:

请参考图1-1~1-2,图1-1为永磁电机磁极防护层成型系统的示意图;图1-2为图1-1中磁钢处的细节示意图。

图1中,磁钢16设于外转子的磁轭15的内壁,通过压条压紧于磁轭15,并通过螺栓紧固,另外还在磁钢16表面注胶形成防护层142。具体过程是:

首先,在磁钢16表面以此覆盖增强材料142(例如是玻璃纤维布)、脱模布143、导流网141,然后使用轻质、柔性的真空袋17来封闭覆盖,则真空袋17和磁钢16及其压条、磁轭15的内壁形成密闭系统,真空袋17与磁轭15内壁之间通过密封条19密封。

然后,借助真空泵18,通过对密闭系统内抽真空压实增强材料142,产生浸渍液体(例如树脂、粘接剂等)所需的驱动压力梯度。真空袋17封闭后,形成有注胶口171和排出口172。树脂体系罐12内存储有树脂,树脂在真空泵18作用下从输入管路131经注胶口171进入密闭系统内,少量树脂可能经排出口172进入输出管路132,进入树脂收集器11。树脂收集器11位置设有真空表计111,真空泵18设有驱动电机182以及调节阀181。

借助增强材料142增强树脂柔性模塑成型过程工艺去填充磁钢16与磁钢16之间固定压条的缝隙、灌注磁钢16与磁轭15内壁之间缝隙、覆盖磁钢16及其压条,增强材料142固化后,揭开脱模布143,则形成整个磁极填充固定的防护层。

上述方式进行浸渍液体时,转子竖直放置,浸渍并且固化后,正视磁轭14内壁下三分之一区域尚有一些“空泡”,即空穴qp,使用疏密不同的玻璃纤维布时,虽然结果也有所区别,但空穴qp依然存在。如图2所示,图2为磁极防护层中的气泡位置示意图。

固化后形成空穴,会影响防护层的性能和使用寿命,因此,亟待针对目前的注胶工艺进行改进,以减少固化之后的防护层中存在的空穴。



技术实现要素:

为解决上述技术问题,本发明提供一种磁极防护层柔性模塑成型工艺及成型系统,可以减少防护层中的空穴,改善磁极部件的性能。

本发明提供一种磁极防护层柔性模塑成型工艺,进行:

组装磁钢于磁轭一侧壁面的相应位置,依次敷设增强材料、所述真空袋于所述磁钢和所述磁轭的一侧壁面,所述真空袋与所述磁钢、所述磁轭的所述一侧壁面形成密闭系统;

进行浸渍工艺:对所述密闭系统抽真空以便浸渍液体注入所述密闭系统内,并实现浸润、浸渍;

进行浸渍工艺时,同时对所述密闭系统进行加热和/或发射超声波;

浸渍工艺之后,进行固化工艺,所述浸渍液体和所述增强材料固化形成防护层。

可选地,进行浸渍工艺时,对所述磁轭的内侧和外侧均发射超声波。

可选地,防护层固化成型后,获取所述防护层的空穴位置,并对所述防护层浅层的空穴位置发射超声波,以击碎空穴位置处的表面的防护层,并对击碎位置进行防腐涂层处理。

可选地,在对击碎位置进行防腐涂层处理之前,先对所述防护层进行升温处理;

或,对所述防护层进行升温处理的同时,还对所述防护层的表面空气附层进行除湿处理。

可选地,在对击碎位置进行防腐涂层处理之前,将所述防腐材料进行真空脱气泡工艺处理,并升温至与所述防护层大致相同的温度。

可选地,预设所述空穴的尺度阈值和/或所述空穴分布的密度阈值,当获取的所述空穴实际尺度超过所述尺度阈值,和/或实际分布的密度超过所述密度阈值时,进行击碎处理。

可选地,获取所述防护层的所有空穴位置,然后根据所述空穴位置的分布,进行击碎处理。

可选地,通过发射超声波探测获取所述空穴的位置。

可选地,在浸渍工艺前,对所述密闭系统进行脱附处理工艺,脱附时同时对所述密闭系统进行加热和/或发射超声波。

可选地,进行固化工艺时,对所述密闭系统进行加热。

可选地,加热方式包括如下方式中的至少一者:

向所述密闭系统内发射微波;

向所述密闭系统内发射远红外线;

对所述磁轭另一侧壁面进行热传导加热。

可选地,浸渍液体注入所述密闭系统之前,对所述浸渍液体进行预加热处理。

可选地,浸渍液体注入所述密闭系统之前,对所述浸渍液体进行搅拌和/或超声波脱泡处理。

可选地,发射超声波时,进行强弱超声波交替发射。

本发明提供一种磁极防护层柔性模塑成型工艺,其特征在于,进行:

组装磁钢于磁轭一侧壁面的相应位置,依次敷设增强材料、所述真空袋于所述磁钢和所述磁轭的一侧壁面,所述真空袋与所述磁钢、所述磁轭的所述一侧壁面形成密闭系统;

依次对密闭系统进行脱附处理工艺、浸渍工艺以及固化形成防护层工艺;

以上三工艺步骤中至少一者同时对所述密闭系统进行加热处理;脱附处理工艺和浸渍工艺中,至少一者同时向所述密闭系统发射超声波。

本发明还提供一种磁极防护层柔性模塑成型系统,包括磁轭,所述磁钢安装于所述磁轭一侧壁面的相应位置,所述磁轭、所述磁钢的所述一侧壁面依次敷设增强材料、所述真空袋,所述真空袋,与所述磁钢和所述磁轭的所述一侧壁面形成密闭系统,所述磁极防护层柔性模塑成型系统还包括超声波发射装置和/或加热装置,以在向所述密闭系统注入浸渍液体以进行浸润、浸渍时,向所述密闭系统发射超声波和/或投入所述加热装置对所述密闭系统进行加热。

可选地,磁轭的内侧和外侧均设有所述超声波发射装置。

可选地,磁轭的内侧和外侧均布有若干所述超声波发射装置,且若干所述超声波发射装置能够旋转。

可选地,防护层对应的转子为外转子,所述磁轭外侧的所述超声波发射装置具有内凹喇叭形发射机,所述磁轭内侧的所述超声波发射装置具有外凸喇叭形发射机,以分别与所述磁轭的外周或内周匹配。

可选地,所述磁轭外侧设有环形外壳,所述环形外壳与所述磁轭形成环形腔体,所述磁轭外侧的所述超声波发射装置设于所述环形腔体内,并安装于所述环形外壳。

可选地,还设有密封屏蔽绝热盖,密封屏蔽绝热盖封盖所述磁轭以及所述环形腔体的两端。

可选地,所述加热装置包括微波装置、远红外热源以及热传导加热装置中的至少一者。

可选地,所述微波装置包括用于输入微波的辐射式加热器,所述辐射式加热器朝向所述密闭系统的内侧表面设有吸波材料。

可选地,所述辐射式加热器具有喇叭式壳体,所述吸波材料设于所述喇叭式壳体的内侧表面。

可选地,所述热传导加热装置包括电热膜,所述电热膜敷设于所述磁轭的外侧。

可选地,所述磁轭壁面的电热膜之外还敷设保温层。

可选地,还包括检测所述密闭系统温度的温度传感器,所述温度传感器为光纤传感器。

可选地,还设有微波预加热装置,设于装载浸渍液体的体系罐与所述密闭系统之间,以对输入所述密闭系统之前的浸渍液体进行微波加热。

可选地,所述微波预加热装置设有树脂腔室,所述微波预加热装置的微波输入至所述树脂腔室中;所述体系罐内的浸渍液体进入所述树脂腔室内加热。

可选地,所述树脂腔室内设有非金属筛板,所述筛板上设有若干筛孔,浸渍液体经所述筛孔后由微波加热。

可选地,还包括环形的第一汇流母管,所述树脂腔室连通所述第一汇流母管,所述第一汇流母管设有若干连通所述密闭系统的出口。

可选地,所述第一汇流母管各所述出口与所述密闭系统之间设有调节阀。

可选地,还包括环形的第二汇流母管,所述微波预加热装置具有若干所述树脂腔室,若干所述树脂腔室的出口连通所述密闭系统对应的若干入口,所述树脂腔室的入口连通所述第二汇流母管的出口,所述第二汇流母管的入口连通所述体系罐。

可选地,还包括装载浸渍液体的体系罐,所述体系罐内设有搅拌所述浸渍液体的搅拌器。

可选地,所述体系罐包括相连通的树脂搅拌罐和树脂输出罐,所述树脂搅拌罐位于所述树脂输出罐的上游,所述搅拌器设于所述树脂搅拌罐内;所述树脂输出罐中还设有超声波消泡振动棒。

可选地,所述树脂搅拌罐设有第一出气口,所述树脂输出罐设有第二出气口,所述第一出气口连通真空泵,所述第二出气口连通所述真空泵或大气。

可选地,所述搅拌器内设有加热电阻,以在搅拌的同时加热所述浸渍液体。

可选地,所述搅拌器由电动机驱动,所述电动机设有空心轴,所述空心轴底端设有所述搅拌器的搅拌桨叶;所述电动机绕组的引出线沿所述空心轴延伸并形成电气回路,所述引出线能够为所述加热电阻供电。

可选地,所述搅拌器由电动机驱动,所述电动机设有空心轴,所述空心轴底端设有所述搅拌器的搅拌桨叶;所述空心轴的底部还设有超声波高频振动发射头。

本发明提供的磁极防护层柔性模塑成型系统以及成型工艺,在浸渍工艺步骤中,进行加热处理和/或发射超声波,加热时,固体被加热,可以降低浸渍液体注入时的接触角,便于液体浸渍、浸润;发射超声波时,机械波有助于液体填满所有间隙,提高液体浸渍、浸润的效果,从而减少气泡,以使最后形成的防护层中空穴位置能够减少。

在脱附过程中加热,可以降低气体吸附量,从而减少气泡,超声波的机械波的激发振荡作用,也有助于密闭系统内的气泡溢出而实现脱附,减少有可能在防护层中形成的空穴位置;固化时加热可促进固化剂和树脂反应凝胶固化,保证固化效果,也在一定程度上减少空穴的最后形成。

附图说明

图1-1为永磁电机磁极防护层成型系统的示意图;

图1-2为图1-1中磁钢处的细节示意图;

图2为磁极防护层中的气泡位置示意图;

图3为永磁电机磁极部件及其防护层的结构示意图;

图4为图3中A部位的局部放大示意图;

图5为图3中压条压紧磁钢于磁轭壁面的示意图;

图6为图5中磁钢安装于磁轭壁面的表面展开图;

图7为本发明所提供柔性模塑成型系统中真空脱附系统的结构示意图;

图8为磁极部件固体表面空气吸附量随着固体表面温度升高的变化关系图;

图9为本发明所提供柔性模塑成型系统中中真空浸渍工艺系统的结构示意图;

图10为图9中微波预加热装置与密闭系统连通的第二种结构示意图;

图11为图9中微波预加热装与密闭系统连通的第三种结构示意图;

图12为浸渍时安装超声波发射装置的环形壳体与密闭系统的配合示意图;

图13为浸渍时超声波发射装置的分布示意图。

图1-1~2中附图标记说明:

11树脂收集器、12树脂体系罐、142增强材料、141导流网、143脱模布、15磁轭、16磁钢、17真空袋、171注胶口、172排出口、18真空泵、181调节阀、182驱动电机、19密封条、qp气泡

图3-12中附图标记说明:

21磁轭、22磁钢、231输入管路、232输出管路、233流量计、241导流网、242增强材料、242’防护层、243脱模布、25真空袋、251注入口、252排出口、26压条、27定子铁心、28螺栓、29磁极堵头、a斜面接触面、b垂直接触面;

31电热膜、32保温层、33密封屏蔽绝热盖、34远红外热源、35辐射式加热器、36超声波发射装置、361超声波发射头、362发射腔;

41温度传感器、42压力传感器;

51空气加热器、52空气入口过滤器;

60出口空气过滤器、61脱附工艺测量装置;

70真空泵、71真空泵调节阀、72驱动电机;

81厚度测量装置、82填充进度测量装置;

90树脂收集器、91真空表计;

101树脂搅拌罐、102树脂输出罐、103a第一调节阀、103b第二调节阀、104超声波消泡振动棒、105第二出气口、106电动机、106a超声波高频振动发射头、106b搅拌桨叶、106c空心轴、106d加热电阻;

200微波预加热装置、201控制单元、202微波源、203环流器、204短截线调谐器、205树脂腔室、206冷却系统、207水负载、208第一汇流母管、209调节阀、210第二汇流母管;

300环形壳体、qp空穴。

具体实施方式

为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。

请参考图3-6,图3为永磁电机磁极部件及其防护层的结构示意图;图4为图3中A部位的局部放大示意图;图5为图3中压条压紧磁钢于磁轭壁面的示意图;图6为图5中磁钢安装于磁轭壁面的表面展开图。

图3示出的磁极部件为外转子结构以及匹配的定子铁心27,外转子磁轭21的内壁通过压条26压紧有磁钢22,防护层242’敷盖磁钢22和磁轭21的内壁,以及压条26。压条26具体通过螺栓28固定于磁轭21。图3为从永磁磁极部件的外转子磁轭21径向视图,螺栓28的螺栓头在压条26内,磁轭21的内壁设有螺纹,螺栓28借助螺纹紧固压条26,通过将压条26固定在磁轭21的内壁来间接固定磁钢22。一列磁钢22,的两端均通过磁极堵头29封堵,安装完毕的磁钢22呈倾斜排列,倾斜角度α,如图6所示。

图5中,每块磁钢22与相邻的压条26之间有两个接触面,如图所示的竖直接触面b和斜面接触面a。受按压的磁钢22厚度高于梯形斜面的角部,从磁钢22的两端“角落”部分进入上表面,从弹性力学角度分析观察,前后发生了一个“质”的变化,磁钢22能够承受的按压强度也发生了变化。对于磁钢22来讲,在被压条26按压“固定”后的“运动”、电机磁极工作运行过程中,磁钢22端部由于受力应力造成断裂的危险减小。但是螺栓28依然存在持久持续作用后产生松弛、断裂、脱落的隐患,磁钢22在受到发电机定子电枢的沿径向脉动的磁拉力作用和磁轭21内壁圆周方向的转矩作用,磁钢22在相邻两件压条26之间由单纯的振动必然变成窜动,先对磁钢22接触面局部应力作用产生裂纹、导致局部碎裂。面对以上结构确实存在的隐患,需要改进工艺,提高浸渍液体的填充、粘接、固化一体化效果。

如背景技术所述,树脂柔性模塑成型工艺过程需要借助增强材料242,(图7,增强材料242注入浸渍液体后形成图4中的防护层242’)而玻璃纤维布类增强材料242,与磁钢22、磁轭21的壁面之间往往具有空隙,而且增强材料242本身属于多孔材料制成的编织物,也具有空隙。

这些空隙中吸附着空气、水蒸气,水可以使异氰酸酯基团的胶料固化,并伴随有二氧化碳的释放,导致泡沫聚合物的形成,实际上携带的水分在真空环境下,达到43℃就会气化,产生气泡。

另外,磁极部件的上三分之二充满浸渍液体后,内外真空压差接近真空度,但是在下三分之一处,越靠近浸渍液体的注入口251(请参考图7),在注入后期这一区域内外压差小于上部,外表面对增强材料242的压力实际上弱于上部区域,在真空注胶时,下三分之一处材料中携带的空气、水蒸气也就更不容易排出,而在下三分之一处出现较多的空穴。

再请查看图5并结合图6,磁钢22和压条26接缝处、螺栓28头部、磁钢22和磁轭21间的间隙,包括磁极堵头29与压条26、磁钢22之间的间隙,均容易产生气泡。各种未被消除的气泡在防护层242’固化成型后,成为防护层242’中的空穴qp(空穴qp除了由气泡形成,在浸渍过程中,还可能存在浸渍液体流速不一致包围而形成的空穴)。

经研究发现,防护层242’内形成后的空穴相当于“微水袋”,一旦进入水分,“微水袋”内渗透压增大导致界面脱粘,水在粘结体表面吸附替代已吸附的树脂粘结剂,水可以对树脂起化学作用,断裂、降解,水尤其对玻璃纤维表面的化学腐蚀明显,当水进入玻璃纤维表面时,使玻璃纤维表面的碱金属溶于其中,水溶液变成碱性,加速了表面的腐蚀破坏,导致玻璃的二氧化硅骨架的解体,纤维强度下降,复合材料性能减退,则防护层242’强度会降低,甚至剥离。这种空穴的存在尤其对于竖立于海边的风力发电机而言,损坏更为严重,损失非常巨大。

针对如何减少浸渍液体注入后形成的防护层242’中的空穴,基于上述分析的原因,本方案主要是为了减少防护层242’形成过程中存在的气泡,包括脱附处理工艺、浸渍工艺、固化成型工艺三个工艺步骤。

请参考图7,图7为本发明所提供柔性模塑成型系统中真空脱附系统的结构示意图。

该实施例中,磁钢22设置于磁轭21的内壁,然后依次敷设增强材料242、脱模布243以及导流网241、真空袋25。真空袋25与磁轭21之间形成密闭系统,并形成所需的注入口251和排出口252,注入口251可以作为浸渍液体注入使用,排出口252同样可以排出浸渍液体,本方案中还作为脱附的入口和出口。

此时,真空袋25、磁轭21形成与外界分开的密闭系统,密闭系统的容积实际上是由真空袋25、导流网241、脱模布243、增强材料242、磁轭21、磁钢22、压条26之间的间隙,以及与外界连接的管路(包括与真空泵70相连接的管路以及图中所示的与空气过滤器连接的管路,即输入、输出管路)串联形成,此时的密闭系统相当于一个真空容器,则真空泵70和此密闭系统形成的真空容器构成真空系统。

经研究进行了升温脱附试验。请参考图8,图8为磁极部件固体表面空气吸附量随着固体表面温度升高的变化关系图。从图中可看出,永磁电机的磁极部件防护层242’的增强材料242、磁钢22、磁轭21的壁面以及固定磁钢22的压条26,固体表面随着温度的升高,固体表面对空气的吸附量均在降低,因此,本发明可对密闭系统进行加热脱附,即通过提高温度,以使空气的吸附量降低,从而从源头上减少气泡。

从附图8还可以看出,四种不同材料的吸附能力不同,有一致性大小区别。由于增强材料242为纤维多孔材料,空气不易脱附增强材料242,因此,在脱附工艺实施过程以对增强材料242的脱附为合格最低限度。即温度应当满足增强材料242的脱附要求,相应地也就满足了其他三种结构的脱附要求。

请继续参考图7,如图所示,进行加热脱附的装置有多种,图中示出三种加热结构,分别是电热膜31加热、远红外加热、微波加热。

图中,转子为外转子结构,电热膜31敷设于磁轭21的外壁,借助电热膜31紧密接触磁轭21外壁实施加热,电热膜31加热均匀,适合对磁轭21进行加热。另外,在电热膜31的外壁还可以设置有保温层32,保温层32使得磁轭21的加热更为节能。磁轭21被加热的同时,磁轭21内侧的磁钢22以及增强材料242等基于热传导同样被加热,实现空气的升温脱附。

图中还示出远红外热源34,远红外热源34设于外转子的内腔,以对敷设于内侧磁钢22的真空袋25的外表面实施加热,真空袋25选用适宜红外线穿透的材质,选择穿透率较高的真空袋25,选取对真空袋25内的导流网241和脱膜布吸收率较高的波长进行发射。在实施远红外加热过程中,可调整热源热辐射的射线频率,适应选择性吸收,利于吸收率最高效率。射线频率可通过试验确定,实验方法:根据真空袋25使用的材料进行光谱辐射,获得真空袋25内侧表面选择性吸收的结果,考虑真空袋25内部导流网241对吸收率的影响,获得真空袋25、导流网141对热辐射吸收率大小,获得在树脂填充、浸渍、浸润、开始固化以及整个固化过程整个防护层242’的等效的“吸收系数”。根据这个吸收系数去决定远红外热源34的辐射功率和辐射加热规律。此措施的价值在于,避免远红外热源34功率过大造成制造浪费,功率过小、功率不足影响固化过程效率。

微波装置,包括微波控制器、辐射式加热器35(即输入微波的加热结构,图中呈喇叭形)以及蓄水海绵,磁轭21的上下两端设置密封屏蔽绝热盖33,实现密封绝热处理,一方面防止微波泄漏,保证安全性,另一方面防止热量散失,保证加热效果。微波输入向真空袋25表面发射微波,对其内部进行加热处理。

磁轭21、磁钢22具有金属表面,微波发射至磁轭21、磁钢22后,会回弹,此处在辐射式加热器35的内侧设置蓄水海绵,蓄水海绵中的水分具有较强的吸收微波的特性,在辐射式加热器35的喇叭形壳体上设置蓄水海绵,将有助于吸收回弹的微波,以免回弹的微波损伤微波发射头,当然也可以采用其他吸波材料。

理论上,结合磁轭21、磁钢22与微波发射头的距离,通过微波控制器设置好微波的频率、波长,也可以避免微波损伤发射头,而且增强材料242、导流网141也能吸收一部分微波。图中辐射式加热器35呈喇叭状设置,便于蓄水海绵吸收回弹的微波,当然,辐射式加热器35并不限于该结构。辐射式加热器35输入的微波,相较于其他加热方式,可以实现更好的脱附效果,因为液体对于微波有较强的吸收特性,微波加热水分及时迅速,水分在微波作用下将会快速汽化脱附。

除了上述远红外加热、微波加热或是电热膜加热,还可以通过超声波装置提高脱附效果。超声波装置可向真空袋25内输入超声波,此时,密闭系统设置的注入口251此时可以作为超声波输入口使用,超声波装置也可以直接向真空袋25表面发射超声波,此时,最好是密闭系统已经建立了真空环境,以便超声波作用于真空袋25表面时可以传递至磁钢22、磁轭21位置。超声波可以起到一定的激发振荡作用,便于密闭系统内的气泡溢出而实现脱附。当超声波超过一定频率时,也可以起到一定的加热脱附效果。

上述四种脱附方式,可以单独进行,也可以至少两种结合进行,可以根据实际工况决定,并结合成本、控制等因素。

请继续参考图7,图7中注入口251还连接空气入口过滤器52和空气加热器51,真空泵70可以抽入加热和过滤后的干燥空气进入密闭系统内。通入洁净的干燥空气,能够带出可能的残留杂质、水蒸气等,以使脱附更为彻底,而且热空气通入可以使整个密闭系统较好地加热,为后续的浸渍液体注入做好准备。

在输出口与真空泵70之间可进一步设置出口空气过滤器60,以避免抽吸出的杂质或水蒸气等会对真空泵70的性能产生不利影响。另外,对于抽吸出的空气可以进行脱附工艺测量,如图7所示的脱附工艺测量装置61,可以设于出口空气过滤器60的位置,该装置可以测量流经空气的杂质和水蒸气(主要是水蒸气),从而监控脱附工艺的效果,当水蒸气含量降低到一定值时,则表明达到所需的脱附目标,脱附完成,继而可以进行下一步的浸渍液体注入工作。脱附工艺测量装置61具体可以是水蒸气含量分析仪,简单的装置例如将水蒸气进行冷凝,然后由试纸检测。

本方案中,通入热空气的步骤可以与上述微波加热、远红外加热、电热膜加热、超声波发射的步骤同步进行。

上述方案表述了如何实现浸渍液体注入前的脱附工艺,以尽量减少浸渍液体注入时可能产生的气泡。下述实施例在上述方案基础上,继续论述浸渍液体的注入过程。

请参考图9,图9为本发明所提供柔性模塑成型系统中中真空浸渍工艺系统的结构示意图。

在此实施例中,注入的浸渍液体为树脂和固化剂的混合液。树脂存储于树脂体系罐中,与固化剂按照比例混合配备后待用,树脂体系罐具体包括相连通的树脂搅拌罐101和树脂输出罐102,树脂搅拌罐101位于树脂输出罐102的上游,树脂搅拌罐101内设有搅拌器。系统中还设有电动机106,电动机106可驱动搅拌器转动,对树脂注入前进行搅拌,搅拌过程有利于树脂搅拌罐101内树脂中可能包含的气泡溢出,避免气泡输入密闭系统内。树脂搅拌罐101和树脂输出罐102之间设有连通管,搅拌后的树脂流入树脂输出罐102中,连通管可以设置第一调节阀103a,以调节进入树脂搅拌罐101内的树脂量。第一调节阀103a关闭时,可以隔断搅拌罐101和输出罐102。

为了提升气泡的溢出速度以及溢出量,上述的搅拌器可以是加热搅拌器,即边加热边搅拌,根据能够反应气体在液体中溶解度规律的亨利定律,温度提升可以减小气体在树脂内的溶解度,从而加快气泡的溢出。

具体地,如图9所示,该电动机106的输出轴为空心轴106c,电动机106的绕组引出线自空心轴106c的中空腔向下延伸,并形成电气回路。对于三相绕组而言,对应于三个搅拌桨叶106b,在搅拌桨叶106b的内加设加热电阻106d,可以由引出线作为加热电阻106d的电源,则电动机106启动时,可实现加热功能。该结构中,巧妙地将电动机106的绕组电线“拉长”,延伸至电动机106之外作为电源,从而将电动机106的电能引入至下端搅拌桨叶106b位置,在较为限制的空间内实现了搅拌桨叶106b的电加热功能。

此外,为了进一步便于气泡的排出,还设有超声波高频振动发射头106a,如图10所示,电动机106携带有超声波发射装置,超声波发射装置同样通过电动机106的空心轴106c,将动力传递至位于空心轴106c底部的超声波高频振动发射头106a,发射的超声波有助于激发气泡,使其排出,并且可以减少树脂在搅拌桨叶106b上的积聚,保证搅拌桨叶106b的使用寿命。电动机106产生交流电,为了使其能够驱动高频振动发射头106a,在空心轴106c内设置微型变频器,即电能处理模块,其电压、输出频率可调,以使供给高频振动发射头106a的执行机构的电源频率、电压可调。此时,上述的引出线连接至微型变频器后则形成回路,由微型变频器输出电能至搅拌桨叶106b以及高频振动发射头106a。

在树脂输出罐102中还设有超声波消泡振动棒104,原理与树脂搅拌罐101中的超声波高频振动发射头106a原理相同,也是为了进一步加强消泡效果。

另外,树脂搅拌罐101上部,具体是顶部设有第一出气口,第一出气口与真空泵70连通,具体可与图中所示的空气过滤器连通,则搅拌和加热后溢出的空气可由真空泵70抽吸带走,加快树脂搅拌罐101内气体的排出。第一出气口与出口空气过滤器60之间可以设置第二调节阀103b。这里,第二调节阀103b可以隔断搅拌罐101和真空泵70,例如,在浸渍结束后,或者浸渍液体准备完成后,不需要再抽吸,可以截断此处的通路。树脂输出罐102设有第二出气口105,也是便于超声波振动后进一步溢出的气体排出,实际上,第二出气口105也可以与真空泵70连通。当然,此处第二出气口105不与真空泵70连通,而是直接连通大气,有利于建立压差,便于输出罐102内的浸渍液体被抽吸而输入至密闭系统内。

经上述消泡后的树脂经过输入管路231由注入口251注入密闭系统中,本实施例还对输入管路231中的树脂进行进一步预加热,以使其具有适宜的温度(一般是30-35度)后再进入密闭系统中,具有适宜的粘稠度,实现较好的浸渍效果。

本实施例中对输入管路231中的树脂进行预加热的装置为微波预加热装置200,微波预加热装置200包括微波源202、波导管、短截线调谐器204、圆柱高频发热电极、环流器203、水负载207及其冷却系统206、微波控制单元201,该微波预加热装置200的工作原理可以参照现有技术理解。

微波预加热装置200中设有树脂腔室205,输入管路231连通经过树脂腔室205,微波预加热装置200的微波向树脂腔室205内发射,树脂腔室205即微波加热电极,设置树脂腔室205有利于微波的安全加热。此处,需要特别说明的是,本实施例中优选地在树脂腔室205内设置非金属筛板,筛板上设有若干筛孔,树脂经由输入管路231进入树脂腔室205后,继续流动时经过该筛板,并从筛孔穿过。如此,当树脂流经树脂腔室205时,会被筛板筛分成若干滴状树脂,微波射向多个滴状树脂时,各滴状树脂能够被加热,相较于其他加热方式,该种加热方式使得树脂的加热非常均匀,有助于后续浸渍过程的顺利进行。

图中所示的微波自树脂腔室205的侧面射入,显然并不限于此结构,也可以朝向树脂进入的方向射入,与滴状树脂相对,加强加热效果。输入管路231中的树脂可以自上向下输入密闭系统,也可以自下向上输入。

请参考图10、11,图10为图9中微波预加热装置与密闭系统连通的第二种结构示意图;图11为图9中微波预加热装与密闭系统连通的第三种结构示意图。

图10中,微波预加热装置200与密闭系统之间设置环形的第一汇流母管208,微波预加热装置200的树脂腔室205连通第一汇流母管208,第一汇流母管208设有若干连通密闭系统的出口,即经过树脂腔室205统一预热后的浸渍液体可以从若干出口流向密闭系统,从而有助于从密闭系统周向均匀地注入。

此时,第一汇流母管208各所述出口与密闭系统之间可以设有调节阀209。则根据密闭系统内整体的浸渍液体注入进度情况,可以调整调节阀209的开度,以使整体的注入进度保持一致。

也可以如图11所示,还可以设置环形的第二汇流母管210,位于体系罐和微波预加热装置200之间,此时微波预加热装置200可以设置若干树脂腔室205,若干所述树脂腔室205的出口连通所述密闭系统的不同入口。即密闭系统开设多个入口,可以沿周向均布,各入口进入的浸渍液体可以分别加热,加热更为均匀。当然,图10所示实施例仅设置一树脂腔室205,成本更低,更环保。

经微波加热后的树脂继续进入输入管路231,此时可以设置流量计233,以检测树脂运输速度,根据运输速度的快慢,调节树脂的粘稠度,例如调节微波加热强度,图9中流量计233的测量结果反馈至微波预加热装置200的控制单元201,以便控制单元201根据运输速度调节微波强度。

该浸渍工艺系统中,密闭系统的输出口连接输出管路232,输出管路232连接至真空泵70,输出管路232中可以设置树脂收集器90,真空泵70抽吸产生浸渍液体的注入压力,在注入过程中,树脂可能从输出口吸出,而进入树脂收集器90内,树脂收集器90的设置可避免树脂吸入真空泵70内而影响真空泵70的性能。

注入浸渍液体过程中,真空泵70进行真空抽吸以建立树脂填充的压力梯度,本方案进一步的改进是对注入过程进行“变压”控制。本方案中,真空泵70在抽吸时,真空泵70的驱动电机72将通过变频调速器进行变频调节,改变转速,以调整真空泵70的平均抽气体积流量,使密闭系统内的压力呈大小变化。即,真空泵70平均抽气体积流量可以增大预定时间后,再减小预定时间,上述的增大再减小过程重复若干次,实现“变压”控制。浸渍液体在一段时间内会发生固化,一般需要在20-30分钟内完成浸渍液体的注入,进行上述“变压”控制时,增大和减小的预定时间可以以总的浸渍时间段为基础,进行设定,具体可根据实际情况确定,以有利于充分浸渍为目的。

真空泵70在抽吸时,产生较低的压力时,可以短时间带动树脂流动进入密闭系统内,但压力较低持续时间较长时,增强材料242会紧紧地贴附于磁钢22、磁轭21,此时密闭系统体积很小,流动会产生滞止,即虽然建立了低压,产生了压力梯度,但后续会出现流动性较差的现象。因此,本方案在以较大转速抽吸一段时间后,再减小真空泵70转速,以达到解除束缚的松懈作用,之前注入的浸渍液体在重力作用下自垂,从而使得下方基于浸渍液体流动超越现象而导致的未被填充的空片区域得以填补,相当于增加“回流”。然后,再一次提高转速时,又进行低压建立,驱赶引流,具有提拔作用,而且,真空袋25再次进一步吸紧时,相应地产生一定的径向力,即真空袋25会对浸渍液体进行径向挤压,从而有利于浸渍液体填充增强材料242和磁钢22、磁轭21内壁之间的缝隙,消除气泡。

由此可见,本方案在浸渍液体注入过程中采取“变压”控制,可以较好地减少空片区域,使浸渍液体尽可能地充满所有的缝隙,为较佳的实施例。可以设置填充进度测量装置82,以监测磁钢22与磁轭21内壁间隙的填充进度,另外还可以设置防护层242’的厚度测量装置81,二者可以辅助判断浸渍液体注入步骤是否完成。填充进度测量装置82具体可以是在增强材料242位置设置若干传感器,建立电桥,以监测浸渍液体的注入程度,例如是否存在未被注入的空隙;厚度测量装置81具体可以是测厚仪。

另外,在浸渍工艺步骤中,可以继续向密闭系统内发射超声波、微波、远红外以及进行电热膜31加热,远红外、微波以及电热膜31,可以参照脱附过程的描述。加热使得增强材料242以及磁钢22、磁轭21受热,浸渍液体注入时的接触角可以降低,从而更易于浸渍液体的充分浸润、浸渍。

在浸渍步骤中采用微波加热,微波的电磁波能够较好地将磁钢22、磁轭21金属表面加热,但金属接受电磁波时可能产生火花,故采用微波加热金属的方式目前鲜有应用。但如之前所述,本方案中借助增强材料242等吸收一部分反弹的电磁波,并且还可以设置蓄水海绵,从而使得微波能够加热金属,又可以保证安全。

浸渍时采用超声波时,超声波可以如图7脱附过程中从注入口251注入,还可以采用其他方式,请继续参考图9,并结合图12、13理解,图12为浸渍时安装超声波发射装置的环形壳体与密闭系统的配合示意图;图13为浸渍时超声波发射装置的分布示意图。

该实施例中,浸渍步骤中采用超声波时,可以在转子的内侧和外侧均设有超声波发射装置36。如之前图5的分析,磁钢22和磁轭21之间间隙,磁极堵头29与磁轭21之间的间隙,均可能出现气泡,浸渍时,只向转子的内侧发射超声波,超声波作为机械波,其能量并不容易到达磁钢22的背面,而在外侧同样布置超声波发射装置36后,转子被“内外夹击”,从而对所有间隙内的气泡都会产生作用,助其溢出,并且利于浸渍液体浸润、浸渍,填满所有间隙。

转子的内侧和外侧可以均布若干所述超声波发射装置36,且若干超声波发射装置36能够旋转。图13中沿转子周向均布有四组超声波发射装置36,内侧超声波发射装置36与外侧超声波发射装置36之间的连线表示超声波通道,超声波可以内外传播,也可以分别独立设置超声波发射机。若干超声波发射装置36可以更为均匀地发射超声波,提高浸润、浸渍效果,浸润意指液体与固体的接触铺展,浸渍更注重进入、渗透。

本方案中的浸渍工艺步骤,是将浸渍液体注入密闭系统中,注入过程中,伴随着一定的浸润和浸渍(与增强材料242、磁钢22、磁轭21),但浸渍和浸润过程主要是在注入完毕后,尤其是抽真空继续进行,但浸渍液体不再流动的时间段内,浸渍液体浸润增强材料242、磁钢22以及磁轭21等,实现充分接触,然后是深一步的浸渍,整个浸渍工艺过程,注入时间实际上只占据小部分。可见,在浸渍工艺中,尤其是主要的浸润、浸渍阶段,超声波的波能量输入对于浸润、浸渍的充分有着重大意义。

上述实施例中的转子为外转子,则转子外侧的超声波发射装置36可以具有内凹喇叭形发射机,转子内侧的超声波发射装置36可以具有外凸喇叭形发射机,以分别与转子的外周或内周匹配,以力度更均匀地发射超声波。若干超声波发射装置36可以旋转,则超声波可更为全面地作用于转子内外表面。图9中,内侧的超声波发射装置36设有若干朝向真空袋25外侧的超声波发射头361,超声波装置36的壳体与真空袋25之间形成超声波的发射腔362。

具体地,转子外侧设有环形外壳300,如图12所示,环形外壳300与转子形成环形腔体,转子外侧的超声波发射装置36设于环形腔体内,并安装于环形外壳300。环形外壳300的设置便于外侧超声波发射装置36的安装定位,也有助于旋转设置。整个转子磁极以及环形外壳300、超声波发射装置36均可以置于操作平台上,底座设置为可旋转即可。

上述的转子密封屏蔽盖33,在采用微波加热时,可以屏蔽微波,还可以绝热。而采用超声波时,转子密封屏蔽绝热盖33还可以屏蔽超声波,以免超声波对车间内易碎设备(例如玻璃制品)等可能造成的损坏。转子密封屏蔽绝热盖33封盖转子以及所述环形腔体的两端。

浸渍时,超声波的发射也可以采用变频控制,例如正弦波交替控制,实现脉动的能量控制。与上述的抽真空“变压”控制原理类似,强弱交替的超声波,对浸渍液体的机械波作用在松懈加强之间交替变换,从而有助于浸渍液体充分填充各种缝隙、间隙。

浸渍液体注入步骤结束后,将进入固化工序。

固化时,需要加热,如上所述,注入树脂时,树脂温度保持在30-35度,固化阶段,温度一般会保持在80-120度。与上述的加热脱附装置类似,在固化阶段进行加热时,也可以采用远红外加热、微波加热、电热膜31加热,如图9所示。

固化工序实际上包括三个温控阶段,分别为升温、恒温、降温,呈阶梯式温控。升温即从树脂注入温度提升至所需的固化温度,如上所述由30-35度提升至80-120度,升温至所需温度后恒温一段时间,以促进固化剂和树脂反应凝胶固化,最后进入降温阶段。降温一段时间后,真空泵70相应地也停止抽吸,本方案中,真空泵70的平均抽气体积流量逐渐减小,即固化成型后进行“滑压控制”,以免突然的降温导致的应力突变而影响防护层242’的寿命,整个固化阶段的时间可以控制在7-8个小时。

对于固化工艺,可以设置压电传感器,以获得固化过程防护层242’在磁钢22表面、压条26表面造成的热应力变化,获得适合树脂结合增强材料242固化的最佳的(热应力最小)升温速率。这就要求图9中的转子外围的两类热源:一是转子磁轭21外壁的保温层32内的“柔性热源”电热膜31,二是磁轭21内侧热源(远红外热源34)。“柔性热源”是凭借与转子接触以“热传导”方式向转子外侧传递热量的。磁轭21的外侧热源(远红外热源34)是以辐射(电磁波)方式向转子外壁传递热量。因此,转子外侧不论以哪种方式授予热量,均存在与转子内侧远红外热源34匹配的问题。解决该问题实施方式:使防护层242’两侧的温度一致,即维持真空袋25内侧的温度传感器41与磁钢22表面的温度传感器43在固化阶段一致(7-8小时),降温松弛过程(5-6小时)一致。温度传感器41、43采用光纤传感器,以避免受到微波的干扰。温度传感器41、43不仅在固化阶段传递数据给整个系统的控制装置,在其他阶段也进行检测,以便掌控脱附、浸渍阶段的温度变化情况。

对于微波加热,作进一步如下原理说明,以便利理解在本方案工艺中采用微波装置的突出有益效果。

采用微波加热,浸渍液体吸收微波能是液体中极性分子与微波电磁场相互作用的结果。在外加交变电磁场作用下,液体物料内极性分子极化并随外加交变电磁场极性变更而交变取向,如此众多的极性分子因频繁转向(约每秒l0次)而相互闯摩擦损耗.使电磁能转化为热能根据德拜理论,极性分子在极化弛豫过程中的弛豫时间r与外加交变电磁场极性改变的圆频率m有关,在微波频段时有ωτ=1的结果.以我国工业微波加热设备常用的两种微波工作频率915MHz和2450MHz的情况计算.得到r约为l0-11~10-10s数量级.因此,微波能在物料内转化为热能的过程具有即时特征。

微波加热的即时性给微波加热带来如下特点:

(1)对物料加热无情性,即只要有微渡辐射,物料即刻得到加热.反之,物料就得不到微波能量而停止加热.这种使物料能瞬时间得到或失去加热动力(能量)来源的性能,符合工业连续自动化生产加热要求,具体到本方案中,加热及时性有利于脱附、预加热、浸渍、固化的进行;

(2)加热过程中无需对热介质、设备等作预加热过程,从而避免了预加热额外能耗;

(3)本实施例中,形成密闭系统的磁轭21、磁钢22为金属材料制成,故腔壁吸收微渡的损耗仅占总耗散功率的极小部分.因此,进入密闭系统的绝大部分微渡能量被充填介质吸收耗散,从而形成能耗较集中于被加热物料上的能量高利用率的加热特征,微波固化不同于传统的热固化由表及里的传导式加热方式,它是极化介质在电磁场中由于介电损耗而将微波能直接转化为材料的热能,从而加速反应使复合材料快速固化,有利于防护层242’的固化。

微波辐射下复合材料吸收的能量可以表示为:P=2πfε0ε″(T)E2

式中,f为微波辐射频率(Hz);

E为电场强度(V/m);

ε0为自由空间的电容率(8.854×10-12F/m);

ε″(T)为介电损耗因子。

由上式可知,介质介电损耗因子越大,则对微波的吸收能力越强。可见,微波加热方式与热辐射、热传导加热方式不同,使用微波加热可以使树脂内部受热更为均匀,有利于浸渍液体的预加热。

脱附、浸渍、固化,形成防护层242’形成后,可以通过超声波发射装置36对防护层242’输入波能量,可以对防护层242’实施“空化作用”,破碎防护层242’内遗留的气体、树脂携带的气泡而形成的空穴qp,从而降低气泡的残留量。

具体地,可以通过超声波发射装置36获取防护层242’的空穴qp位置,并对防护层242’表面的空穴qp位置发射超声波,以击碎空穴qp位置的浅层的防护层242’,并对击碎位置进行防腐涂层处理,例如涂上防腐漆。此步骤是最后的补救措施,在经过上述步骤处理后,如果依然可能在防护层242’中滞留有空穴qp,则可以将表面的浅层的空穴qp击碎,尽量减少空穴qp的存在,浅层以内的空穴qp位置不作处理,避免影响整个防护层242’的稳定性能。

进一步地,可以预设空穴qp的尺度阈值和/或空穴qp分布的密度阈值,当获取的所述空穴qp实际尺度超过所述尺度阈值,和/或实际分布的密度超过所述密度阈值时,进行击碎处理。即,对于浅层的空穴qp,也只对密度相对密集,或者尺寸较大的空穴qp位置进行击碎处理。因为,空穴qp较小,密度较低时,不容易由此诱发延伸性断裂,此时不作处理可以避免为了击碎非常小的空穴qp而增大超声波功率,而可能造成的材料内部新的不期望的隐性断裂。

具体在进行超声波击碎处理时,可以先获取所述防护层242’的所有空穴qp位置分布图,即立体分布,包括周向位置、高度、深浅程度,获取分布图之后,超声波发射装置36再按照空穴qp分布位置以及需要进行击碎的需求判断,依次进行击碎操作。相较于边探测边击碎而言,该击碎方式有助于击碎更为高效地进行。

在对击碎位置进行防腐涂层处理之前,可先对所述防护层242’进行升温处理,升温处理有助于使防护层242’表面的湿空气蒸发脱离,以保证防腐涂层处理后,防腐涂层的性能稳定,升温的具体温度可以高出环境温度10摄氏度左右。或,升温的同时,还对防护层242’的表面空气附层进行除湿处理,表面空气附层可以是防护层242’表面2mm左右的空气层。当环境温度较高时,单一的升温处理可能湿空气蒸发的效果并不明显,可以一并进行专门的除湿工艺,确保湿度满足要求,比如降到20%左右。

在对击碎位置进行防腐涂层处理之前,可以将所述防腐材料进行真空脱气泡工艺处理,真空脱气泡处理,类似于上述的树脂体系罐内进行浸渍液体的脱气泡处理方式,以尽量使防腐材料在涂覆前无气泡,并将防腐材料升温至与所述防护层242’大致相同的温度,以使防腐材料能够更好地与防护层242’发生粘连。

上述实施例中,均以外转子的磁轭21为例进行说明,设计为内转子时,相应地做径向对调即可。例如,内转子时,防护层242’形成于磁轭21的外壁,真空袋25等均设置于外壁。

上述实施例中,依次进行了密闭系统脱附、向密闭系统注入浸渍液体以浸润浸渍、浸渍液体固化形成防护层242’步骤,并且在三个步骤中均进行了加热处理,包括微波加热、远红外加热以及电热膜31加热。可知,在脱附处理工艺阶段,加热便于气体脱附;浸渍工艺阶段加热,固体被加热,便于液体浸渍、浸润;固化工艺阶段加热,可以提高固化效果。应知,优选的方案是脱附、浸渍、固化步骤均进行加热,当然,仅一个步骤或两个步骤进行加热也可以达到一定的技术效果。另外,在浸渍和脱附时,至少一者进行超声波振动,有助于液体浸渍、浸润以及气体的脱附,最终目的均是减少气泡的产生,以使最后形成的防护层242’中空穴qp位置能够减少。

以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1