轴状复合构件的制造方法与流程

文档序号:11537934阅读:168来源:国知局
轴状复合构件的制造方法与流程

本发明涉及一种具有弯曲部的轴状复合构件的制造方法。



背景技术:

例如,在专利文献1中公开一种使用了纤维强化预成型料的管状构件的成形方法。在该成形方法中,对缠绕于心轴(芯)的纤维强化树脂材料进行预热来形成半固化状态的管状构件,并将该管状构件配置于模具,施加内压并加热,由此使该管状构件固化,成形有所期望的管状构件。

纤维强化树脂材料中存在将纤维沿一个方向拉齐的ud(uni-directional)材料(单向强化材料)、将纤维在相互正交的两个方向上拉齐的45°材料等。其中,由45°材料形成的管状构件的弯曲部相对于扭转具有高刚性,与之相反,如图10所示,相对于来自与管状构件100的轴向垂直的方向的弯曲载荷输入而刚性降低。另一方面,由ud材料形成的管状构件如图11所示,若纤维的延伸方向相对于管状构件的轴向的角度(纤维取向角)为大约0°~10°左右,则相对于弯曲载荷输入具有高刚性。因此,优选使用ud材料来成形具有弯曲部的管状构件(例如为悬架臂、稳定器)。

在先技术文献

专利文献

专利文献1:日本特开平7-276521号公报

然而,在专利文献1所公开的管状构件的成形方法中,在相对于模具的凹部装配半固化状态的管状构件时,与在模具中形成的弯曲部的形状匹配地弯曲管状构件。

在管状构件的弯曲部中,在其内周侧的长度与外周侧的长度之间产生长度的差异。因此,在使用了板状、带状的纤维强化树脂材料的情况下,无法追随其弯曲形状,从而在弯曲部的内周侧,因该长度的差异而产生褶皱等。该褶皱有可能损害ud材料的性能(相对于弯曲载荷输入的刚性)。



技术实现要素:

本发明是鉴于上述点而作出的,其目的在于提供一种适当地处理了弯曲部的轴状复合构件的制造方法。

用于解决课题的方案

为了实现上述目的,本发明提供一种轴状复合构件的制造方法,该轴状复合构件具有弯曲部,其特征在于,所述轴状复合构件的制造方法具有如下工序:相对于模具的弯曲成形部,将由ud材料构成的多个热固化性的纤维强化树脂材料以与型腔的轴向平行地并列的状态进行装配;通过所述模具,形成具有所述ud材料层的管状构件;以及通过使所述管状构件热固化,由此得到具有所述弯曲部的轴状复合构件,所述各纤维强化树脂材料的与轴向正交的截面为圆形。

根据本发明,在制造轴状复合构件时,将多个ud材料以相对于弯曲成形部平行地并列的状态进行装配,因此能够吸收弯曲部的内外周差,并且通过使热固化性的纤维强化树脂材料的与轴向正交的截面为圆形,由此与截面矩形相比较,弯曲部处的纤维强化树脂材料的追随性变高,能够抑制相对于弯曲部的褶皱的产生。另外,通过使用热固化性的纤维强化树脂,能够进一步抑制弯曲部处的褶皱的产生。其结果是,在本发明中,能够抑制轴状复合构件的弯曲部处的弯曲刚性及扭转刚性的降低。

另外,本发明的特征在于,所述轴状复合构件的制造方法具有如下工序:在通过所述各纤维强化树脂材料形成最外侧的ud材料层之后,进一步将所述各纤维强化树脂材料以与所述型腔的轴向平行地并列的状态粘贴于所述ud材料层的内侧,由此形成层叠的多个ud材料层。

根据本发明,层叠ud材料层而形成为多层,由此能够构成为,例如位于最外侧的第一层的内侧的第二层的纤维进入该第一层的纤维之间。在本发明中,由此能够填埋层叠的多个ud材料层之间的间隙,能够进一步提高轴状复合构件的弯曲部的刚性。

而且,本发明的特征在于,所述层叠的多个ud材料层在相邻的内外层之间,内侧的层的所述纤维强化树脂材料的截面外径比外侧的层的所述纤维强化树脂材料的截面外径小。

根据本发明,构成内侧的层的纤维强化树脂材料的截面外径比外侧小,由此ud材料层之间的纤维强化树脂材料的填充率变高,能够进一步提高轴状复合构件的弯曲部的刚性。

发明效果

在本发明中,由于适当地处理了弯曲部,因此能够得到相对于弯曲载荷输入具有所期望的刚性、强度的轴状复合构件。

附图说明

图1是用于本发明的实施方式的轴状复合构件的制造方法的纤维强化树脂材料的配置装置及模具的立体图。

图2是从背面侧观察图1所示的配置装置的立体图。

图3是将按压部相对于限制构件及终端引导构件分解后的分解立体图。

图4(a)是表示通过配置部而装配在模具的型腔内的各纤维强化树脂材料的示意图,图4(b)是图4(a)所示的b部的放大图。

图5是表示通过按压部而粘贴于型腔的各纤维强化树脂材料的示意图。

图6是表示形成有最外侧的层即ud材料层l1之后进一步将各纤维强化树脂材料粘贴于该ud材料层l1的内侧的状态的示意图。

图7是表示将外侧的ud材料层的线强化树脂材料的外径和内侧的ud材料层的纤维强化树脂材料的外径构成为不同直径的变形例的示意图。

图8(a)是表示在模具的型腔内装配有两个开合构件的状态的示意图,图8(b)是表示对装配的开合构件施加内压并使其热固化后的状态的示意图,图8(c)是表示将两个开合构件彼此结合为一体的状态的示意图。

图9是作为完成件的轴状复合构件的立体图。

图10是用于说明相对于管状构件的弯曲输入的图。

图11是表示ud材料的纤维取向角与刚性的关系的特性图。

附图文字说明

12、12a纤维强化树脂材料

50模具

52型腔

54弯曲成形部

70弯曲部

s轴状复合构件

d、d1、d2截面外径

l1、l2ud材料层

具体实施方式

接着,适当参照附图,对本发明的实施方式进行详细说明。图1是用于本发明的实施方式的轴状复合构件的制造方法的纤维强化树脂材料的配置装置及模具的立体图,图2是从背面侧观察图1所示的配置装置的立体图。

如图1及图2所示,纤维强化树脂材料12的配置装置10(以下,仅称作配置装置10)具备:多个绕线管14,它们分别供纤维强化树脂材料12(未固化·半固化)卷绕,且能够独立旋转,该纤维强化树脂材料12具有纤维束而成且在表面具有粘接性;引导部20,其将从多个绕线管14拉出的各纤维强化树脂材料12沿着模具50的凹部并列配置;以及按压部40,其将通过引导部20配置的各纤维强化树脂材料12向模具50按压。

配置装置10作为末端执行器而安装于未图示的驱动装置、例如多轴机器人的臂前端。多轴机器人沿着预先通过规定的程序进行示教的移动路径,使配置装置10例如沿着图1的箭头a方向移动。

纤维强化树脂材料12是用于制造轴状复合构件s(参照后述的图9)的中间成形体即管状构件的材料,是由在成为强化材料的“纤维”中浸渍成为粘结剂的“树脂”而成的多个纤丝构成的丝束预成型料(towprepreg)。另外,各纤维强化树脂材料12的与轴向正交的截面为“圆形”(参照图4(b))。通过使截面为圆形,由此在使用了形成为带状的纤维强化树脂材料12的情况下,能够产生层叠时的厚度。由此,能够削减层叠次数,并且能够提高配置作业性。

作为“纤维”,使用碳纤维、玻璃纤维、硼纤维、铝纤维、碳化硅纤维、氮化硅纤维等无机纤维、或者芳香族聚酰胺纤维、聚芳酯纤维、聚乙烯纤维等有机纤维。另外,也可以使用钛纤维、非晶纤维、不锈钢纤维等金属纤维。还可以将多种纤维组合使用。作为“树脂”,使用环氧树脂、不饱和聚酯树脂、聚氨基甲酸乙酯树脂、邻苯二甲酸二烯丙酯树脂、酚醛树脂、聚酰亚胺树脂等热固化性树脂。由热固化性树脂构成的纤维强化树脂与由热塑性树脂构成的纤维强化树脂相比较,在成形前的状态(常温)下向模具的追随较为容易,因此能够抑制成形时的褶皱的产生。由此,能够实现成形体的刚性的降低。

如图1及图2所示,纤维强化树脂材料12以能够拉出的状态分别卷绕于多个绕线管14(在图1、图2中,排列成横向一列的绕线管14)。各绕线管14被穿过绕线管14的中心的轴构件15支承为能够旋转。轴构件15在彼此对置的一对支承构件16之间横向架设。

即,多个绕线管14配置成,在与配置装置10的移动方向垂直的方向上沿一个方向并列设置。各绕线管14经由轴构件15被一对支承构件16支承,且设置成能够以轴构件15为中心而独立旋转。需要说明的是,供轴构件15穿过的各绕线管14的孔的内径形成得比轴构件15的外径大。由此,各绕线管14处于相对于轴构件15能够旋转的自由状态。

支承构件16的下端固定于在俯视下由矩形构成的板18的一面(上表面)18a。如图2所示,在板18上形成有从其一面18a贯通到相反侧的另一面(下表面)18b的多个贯通孔18c。上述多个贯通孔18c沿着板18的长度方向呈直线状地配置成一列。从绕线管14拉出的纤维强化树脂材料12从一面18a侧朝向另一面18b侧穿过各贯通孔18c。

在板18的另一面18b侧设有引导部20。该引导部20由柱状构件22、中间引导构件24、限制构件26及终端引导构件28构成。柱状构件22的上端固定于板18的另一面18b。

中间引导构件24是安装于柱状构件22的下端侧的矩形的板状的构件。在中间引导构件24上形成有从一面(上表面)24a贯通到其相反侧的另一面(下表面)24b的多个贯通孔24c。如图2所示,多个贯通孔24c沿着中间引导构件24的长度方向呈直线状配置成两列并排。

从绕线管14拉出且经由板18的贯通孔18c的纤维强化树脂材料12从一面24a侧朝向另一面24b侧穿过各贯通孔24c。中间引导构件24将通过板18的贯通孔18c而扩宽成一列的纤维强化树脂材料12集中为两列,并朝向终端引导构件28进行引导。

在此,对按压部40和构成引导部20的限制构件26及终端引导构件28进行说明。图3是将按压部相对于限制构件及终端引导构件分解后的分解立体图。

如图1及图3所示,限制构件26和终端引导构件28配置在柱状构件22的另一端(下端)。其中,限制构件26分别向柱状构件22的径向的一个方向和其相反方向突出。限制构件26通过使该限制构件26的下表面与模具50的分割面51抵接,从而限制模具50的型腔52中的终端引导构件28的位置。

如图3所示,终端引导构件28具有配置部32和橡胶安装部34。配置部32是进入到模具50的型腔52的构件,局部地形成有与型腔52的截面形状大致相同的截面形状。在本实施方式中,为半圆板状的构件。

配置部32的外周曲面32a与模具50的型腔52的内周曲面56(参照图1)对置。在配置部32的外周曲面32a上,从配置部32的一面(背面)32c到另一面(表面)32d形成有与配置部32的轴线方向平行的多个槽32b。各槽32b的截面形状与纤维强化树脂材料12的截面形状对应而形成为圆弧状。从绕线管14拉出且经由板18的贯通孔18c及中间引导构件24的贯通孔24c的纤维强化树脂材料12从一面32c侧朝向另一面32d侧穿过槽32b。

需要说明的是,在配置部32中,优选另一面(表面)32d的表面积比一面(背面)32c的表面积小。即,优选配置部32的外周曲面32a从另一面32d侧向一面32c侧倾斜。

橡胶安装部34具有形成为与配置部32的另一面32d共面的橡胶安装面34a。在橡胶安装面34a上设有一对突起36。另外,跨过橡胶安装部34的橡胶安装面34a和配置部32的另一面32d而设有圆环状的突出部38。

按压部40为圆板状的橡胶制构件。按压部40的圆弧形成为比配置部32的外周曲面32a的圆弧稍小的小径。在按压部40的周缘设有朝向半径外侧方向突出的小片40a。在按压部40的中央形成有贯通孔40b。小片40a嵌插于在橡胶安装部34设置的一对突起36之间。在橡胶安装部34及配置部32上设置的圆环状的突出部38嵌插于贯通孔40b。由此,将按压部40固定于橡胶安装部34及配置部32。

用于本实施方式的轴状复合构件的制造的配置装置10及模具50基本上如以上那样构成,接下来说明其作用效果。

对使用配置装置10将纤维强化树脂材料12装配在模具10的型腔52内的方法进行说明。

图4(a)是表示通过配置部装配在模具的型腔内的各纤维强化树脂材料的示意图,图4(b)是图4(a)所示的b部的放大图,图5是表示通过按压部粘贴于型腔的各纤维强化树脂材料的示意图,图6是表示形成最外侧的层即ud材料层l1之后进一步将各纤维强化树脂材料粘贴于该ud材料层l1的内侧的状态的示意图。

首先,将图1所示的引导部20的终端引导构件28送入模具50的型腔52内。此时,将经由配置部32的各槽32b的各纤维强化树脂材料12的端部粘贴于模具50的内周曲面56。然后,驱动未图示的多轴机器人,如图1的箭头a所示那样使配置装置10沿着模具50的表面移动,由此使配置部32沿着型腔52的形状移动。

各纤维强化树脂材料12的端部粘贴于模具50的内周曲面56,因此伴随着配置装置10的移动而从绕线管14拉出的纤维强化树脂材料12对卷绕于绕线管14的纤维强化树脂材料12进行拉拽。于是,对绕线管14施加旋转力,使绕线管14以轴构件15为旋转中心进行旋转。其结果是,从绕线管14拉出规定长度的纤维强化树脂材料12。

如图4(a)所示,从绕线管14拉出的纤维强化树脂材料12经由板18的贯通孔18c、中间引导构件24的贯通孔24c及配置部32的槽32b而被装配于模具50的内周曲面56。此时,纤维强化树脂材料12以与型腔52的轴向平行地并列的状态被装配。

如图5所示,在装配纤维强化树脂材料12时,各纤维强化树脂材料12被按压部40朝向模具50的型腔52的内周曲面56按压。由此,形成开合构件60(参照图1)。开合构件60是将纤维强化树脂12沿一个方向拉齐而成的ud材料。需要说明的是,在开合构件60的完成时,各纤维强化树脂材料12的与轴向正交的截面被保持为圆形。

模具50的弯曲成形部54(参照图1)是与作为完成件的轴状复合构件s的弯曲部70(参照后述的图9)对应的形状,具有内外周差。在弯曲成形部54中外周比内周长。配置部32在弯曲成形部54上移动时,各绕线管14的旋转速度各不相同。在弯曲成形部54的外周侧装配的卷绕有纤维强化树脂材料12的绕线管14旋转得比在弯曲成形部54的内周侧装配的卷绕有纤维强化树脂材料12的绕线管14多,因此纤维强化树脂材料12的拉出量变大。

这样,根据配置装置10,能够形成准确反映弯曲成形部54的内外周差的开合构件60,因此能够抑制在开合构件60的弯曲成形部54产生褶皱的情况。

在以上那样形成最外侧的层即ud材料层l1之后,进一步将从绕线管14拉出的各纤维强化树脂材料12在该ud材料层l1的内侧粘贴成与型腔52的轴向平行地并列的状态(参照图6)。粘贴在ud材料层l1的内侧的各纤维强化树脂材料12被按压部40朝向外侧的ud材料层l1按压。由此,通过粘贴于ud材料层l1的内侧的各纤维强化树脂材料12形成ud材料层l2(参照图9)。其结果是,构成由内外双层形成的通过ud材料层l1及ud材料层l2层叠而成的开合构件60。

例如,将从绕线管14进一步拉出的各纤维强化树脂材料12依次向内侧层叠,由此得到由多层的ud材料层l1、l2、…ln(n:自然数)构成的开合构件60。需要说明的是,优选由2层~4层的ud材料层进行层叠。

图8(a)是表示在模具的型腔内装配两个开合构件后的状态的示意图,图8(b)是表示对装配的开合构件施加内压并使其热固化后的状态的示意图,图8(c)是表示将两个开合构件彼此一体地结合后的状态的示意图,图9是作为完成件的轴状复合构件的立体图。

使用配置装置10、一对模具50形成两个开合构件60之后,如图8(a)所示,将两个开合构件60以对合为截面圆形的状态装配在内含有气球状的内压施加机构(未图示)的一对模具80的型腔内。接下来,如图8(b)所示,在将一对模具80合模的状态下一边施加内压p(参照空心箭头)一边使其热固化。其结果是,平行配置的各纤维强化树脂材料12彼此无间隙地充分相连,并且两个开合构件60通过其对合面结合为一体,由此形成轴复合构件s(例如为悬架臂、稳定器)(参照图8(c))。如图9所示,该轴状复合构件s例如由直线部68和弯曲部70构成。

在本实施方式中,通过使热固化性的纤维强化树脂材料12的与轴向正交的截面为圆形(参照图4(b)),由此与设为截面矩形的情况相比较,弯曲部70处的纤维强化树脂材料12的追随性变高,能够抑制相对于弯曲部70的褶皱的产生。其结果是,在本实施方式中,能够抑制轴状复合构件s的弯曲部70处的弯曲刚性及扭转刚性的降低。

在本实施方式中,层叠ud材料层而形成为多层,由此能够构成为,例如位于最外侧的第一层的内侧的第二层的纤维进入该第一层的纤维之间。在本实施方式中,由此能够填埋层叠的多个ud材料层之间的间隙,能够进一步提高轴状复合构件s的弯曲部70的刚性。

换言之,在现有的轴状复合构件的弯曲部中,在其内周侧的长度与外周侧的长度之间产生长度的差异,但在本实施方式中,通过使热固化性的纤维强化树脂材料12的与轴向正交的截面为圆形,且通过多个ud材料层进行层叠,由此能够顺畅地吸收该长度的差异。其结果是,能够抑制轴状复合构件s的弯曲部70处的褶皱的产生而提高弯曲部70处的弯曲刚性及扭转刚性。

图7是表示将外侧的ud材料层的线强化树脂材的外径和内侧的ud材料层的纤维强化树脂材料的外径构成为不同直径的变形例的示意图。需要说明的是,图7表示形成最外侧的层即ud材料层l1之后进一步将不同直径的各纤维强化树脂材料粘贴在该ud材料层l1的内侧的状态。

在上述实施方式中,例示了在相邻的多个内外层之间均匀地形成各层的纤维强化树脂材料12的外径d(参照图4(b))的情况,但不限于此。例如,在相邻的内外层之间,可以使内侧的层的纤维强化树脂材料12a的截面外径(d2)比外侧的层的纤维强化树脂材料12的截面外径(d1)小(d1>d2)(参照图7)。

换言之,随着从最外侧的层即ud材料层l1朝向内侧的ud材料层l2…,可以使内侧的各层的纤维强化树脂材料12的外径d逐渐减小。例如,在由内外三层的ud材料层构成的情况下,相对于外侧的ud材料层l1的纤维强化树脂材料12的外径d1,减小位于ud材料层l1的内侧的ud材料层l1的纤维强化树脂材料的外径d2。另外,相对于外侧的ud材料层l2的纤维强化树脂材料12的外径d2,减小位于ud材料层l2的内侧的ud材料层l3的纤维强化树脂材料12的外径d3(d1>d2>d3)。

在图7所示的变形例中,使构成内侧的层的纤维强化树脂材料12a的截面外径d2比构成外侧的层的纤维强化树脂材料12的截面外径d1小(d1>d2),由此纤维强化树脂材料12a的填充率变高,能够进一步提高轴状复合构件s的弯曲部70的刚性。

需要说明的是,作为使用两个开合构件60来制造作为完成件的轴状复合构件s的方法,没有特别限定,考虑各种制造方法。在本实施方式中,说明了在模具80的由凹形状构成的型腔内装配两个开合构件60、并施加内压并使其热固化的方法(参照图8(a)~图8(c)),但不限于此。例如,也可以使用在具有弯曲部的轴状的模(凸形状的模)的外周与模的轴向平行地装配两个开合构件60并使其热固化的方法等。另外,轴状复合构件s的与轴垂直的方向上的截面不限于圆管状,例如,也可以是中空的方管状、椭圆形。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1