中空树脂容器及其制造方法

文档序号:4485776阅读:346来源:国知局
专利名称:中空树脂容器及其制造方法
背景技术
以前,日本国特开平5-229015号公报登载有装在汽车上的油箱等中空树脂容器及其制造方法。
如图36所示,在该中空树脂容器的制造方法中,首先是将熔融的高温状态的树脂122对应模具尺寸而挤出放置于凸模146上。然后,用真空装置140把能与该凸模146对合的凹模130内壁132上所设置的吸附孔134抽为真空状态,把和树脂122为相同材质并具有防止汽油渗透的气体隔离层的薄膜(片材)142加热,并贴紧在凹模130的内壁132上。然后将凸模146与凹模130合模并热压缩,而后开模。将这样制造并保持有高温状态的凹形半成品件的凹模130与同样制造并保持有高温状态的凹形半成品件的其它凹模进行合模并热压缩。这样,在高温状态下熔敷凹形半成品件的接合部,所以提高了接合强度。
但是,在这样的中空树脂容器及其制造方法中,在半成品件的接合部,如果片材142相互间没有被确切接合,则接合部处的汽油渗透率增大,降低防止透气性能。因此难以得到确保在接合部处的防止透气性能的中空树脂容器。
另外,与本发明有关的技术有日本国特开昭63-260424号公报公布的吹塑成形的多层树脂构造的燃料罐,日本国特开平6-278223号公报、日本国特开平6-278224号公报公布的将2个凹状树脂容器的周围进行熔敷的燃料罐,以及日本国特开昭58-202112号公报公布的把由树脂层和金属箔构成的2个容器的周围进行熔敷的燃料罐。
因此,考虑到上述实际情况,本发明的目的是提供能够提高在半成品件相互间的接合部处的防止透气性能的中空树脂容器及其制造方法。
发明的公开本发明是把由片材与树脂层至少两层所构成的至少两个半成品件的边缘部分重合而形成的中空树脂容器,其特征是把前述片材相互熔敷,并且将前述树脂层相互熔敷。由此,片材在2个半成品件的各边缘部分相重合的接合部处被确切地相互熔敷,所以能够提高半成品件相互间的接合部的防止透气性能。
另外,本发明的特征是具有以下工序形成由片材与树脂层至少两层所构成的凹状半成品件的半成品件成形工序、把前述半成品件的边缘部分重合并将片材相互熔敷的片材熔敷工序、将前述半成品件的树脂层相互熔敷的树脂层材熔敷工序。由此而能制造在2个半成品件接合部具有良好防止透气性能的中空树脂容器。
附图的简单说明

图1A是表示本发明第1实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图1B是表示本发明第1实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图1C是表示本发明第1实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图1D是表示本发明第1实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图1E是表示本发明第1实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图1F是表示本发明第1实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图2是本发明第1实施形式的中空树脂容器制造方法中,在树脂层熔敷工序将袋状气体隔离片内部减压时的装置与容器的剖面图。
图3是本发明第1实施形式的中空树脂容器制造方法中所使用的气体隔离片的局部放大剖面图。
图4是本发明第1实施形式的中空树脂容器制造方法中的附属件(断流阀)设置部的局部放大剖面图。
图5是本发明第1实施形式的中空树脂容器制造方法中的附属部件(导管)设置部的放大剖面图。
图6是本发明第1实施形式的中空树脂容器制造方法中的气体隔离片与树脂层熔敷状态的气体隔离片与树脂层的局部放大剖面图。
图7是本发明第1实施形式的中空树脂容器制造方法中的热板附近的热板以及气体隔离片与树脂层的接合部的放大剖面图。
图8是使用本发明第1实施形式的中空树脂容器制造方法所制造的中空树脂容器的立体图。
图9是表示本发明第2实施形式的中空树脂容器制造方法中的气体排出工序的装置与容器的剖面图。
图10是表示本发明第2实施形式的中空树脂容器制造方法中的气体排出工序结束后的装置与容器的剖面图。
图11是表示用本发明第2实施形式的中空树脂容器制造方法制造的容器的示意剖面图。
图12是本发明第3实施形式的中空树脂容器制造方法中的热板附近的热板以及气体隔离片与树脂层的接合部的放大剖面图。
图13是本发明第3实施形式变形例的中空树脂容器制造方法中的热板附近的热板以及气体隔离片与树脂层的接合部的放大剖面图。
图14A是表示本发明第4实施形式的中空树脂容器制造方法中的片材配合部在配合前状态的放大剖面图。
图14B是表示本发明第4实施形式的中空树脂容器制造方法中的片材配合部在配合后状态的放大剖面图。
图15是表示用本发明第4实施形式的中空树脂容器制造方法制造的容器的分解立体图。
图16A是表示本发明第4实施形式的变形例的中空树脂容器制造方法中的片材配合部在配合前状态的放大剖面图。
图16B是表示本发明第4实施形式的变形例的中空树脂容器制造方法中的片材配合部在配合后状态的放大剖面图。
图17A是表示本发明第4实施形式的其它变形例的中空树脂容器制造方法中的片材配合部在配合前状态的放大剖面图。
图17B是表示本发明第4实施形式的其它变形例的中空树脂容器制造方法中的片材配合部在配合后状态的放大剖面图。
图18是表示本发明第5实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图19是表示本发明第6实施形式的中空树脂容器制造方法中的气体隔离片与树脂层的接合部的放大剖面图。
图20A是表示本发明第6实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图20B是表示本发明第6实施形式的中空树脂容器制造方法中一个工序的装置与容器的剖面图。
图21A是表示本发明第6实施形式的中空树脂容器制造方法中的气体隔离片的接合部在熔敷前状态的放大剖面图。
图21B是表示本发明第6实施形式的中空树脂容器制造方法中的气体隔离片的接合部在熔敷后状态的放大剖面图。
图22是表示用本发明第6实施形式的中空树脂容器制造方法制造的容器的示意剖面图。
图23A是在本发明第6实施形式变形例的中空树脂容器制造方法中使用的热板的示意剖面图。
图23B是在本发明第6实施形式其它变形例的中空树脂容器制造方法中使用的热板的示意剖面图。
图24是表示本发明第7实施形式的中空树脂容器制造方法中的热板附近的热板与气体隔离片及树脂层的接合部的放大剖面图。
图25是沿图24的25-25线的剖面图。
图26是表示本发明第8实施形式的中空树脂容器制造方法中的树脂注入孔热板附近的装置与容器的剖面图。
图27是表示本发明第9实施形式的中空树脂容器制造方法中的零件配合部的装置与容器的剖面图。
图28是表示本发明变形例的中空树脂容器制造方法中的形状修正工序的夹具与容器的局部剖面图。
图29是表示本发明变形例的中空树脂容器制造方法中的形状修正行程的夹具与容器的局部剖面图。
图30是表示本发明变形例的中空树脂容器制造方法中的气体隔离片成形工序的装置与容器的剖面图。
图31是表示本发明变形例的中空树脂容器制造方法中的树脂层成形工序的装置与容器的剖面图。
图32是表示本发明变形例的中空树脂容器制造方法中的附属件成形工序的装置与容器的剖面图。
图33是表示本发明变形例的中空树脂容器制造方法中的树脂层成形工序的装置与容器的剖面图。
图34A是表示本发明变形例的中空树脂容器制造方法中的树脂层及气体隔离片的接合部熔敷前的状态的放大剖面图。
图34B是表示本发明变形例的中空树脂容器制造方法中的树脂层及气体隔离片的接合部熔敷后的状态的放大剖面图。
图35A是表示本发明变形例的中空树脂容器制造方法中的树脂层及气体隔离片的接合部熔敷前的状态的放大剖面图。
图35B是表示本发明变形例的中空树脂容器制造方法中的树脂层及气体隔离片的接合部熔敷后的状态的放大剖面图。
图36是以往实施形式的中空树脂容器的制造方法的局部示意剖面图。
实施发明的最佳形式参照图1~图8详细说明本发明的中空树脂容器(例如汽车用油箱)制造方法的第1实施形式。
首先,如图1A所示,用具有加热器的热板12和压板14夹住作为片材的气体隔离片10的边缘。另外如图3所示,气体隔离片10的构造是用与母材树脂相同材料的树脂层10B夹住具有防止透气性能的气体隔离层10A。气体隔离层10A也称为耐透气层,是由乙烯二醇(EVOH)层或尼龙(注册商标)层构成。树脂层10B是由和母材树脂(例如聚乙烯树脂)为同类材料的高密度聚乙烯(HDPE)层构成。这种构造的气体隔离片10有例如三菱树脂株式会社制造的Dyer-Millon MF(注册商标)。HDPE有日本聚烯烃株式会社制造的F6040V(注册商标)。由气体隔离层10A提高了气体隔离片10的耐透气性,而由树脂层10B则提高了气体隔离片10与母材的相贴紧性能。
然后,如图1B所示,从外侧(在形成为容器的状态下,外侧是指相对容器内部)把气体隔离片10盖在断流阀16等附属件上的状态下,将气体隔离片10和断流阀16等附属件放在母材(以下称为树脂层36)成形用的下模18上。这种场合,通过把气体隔离片10的下模18减压,可以很容易地将气体隔离片10贴紧在下模18的表面上。在这种状态下把上模20放在下模18上,从而在气体隔离片10与上模20的内面之间形成模腔22。
如图8、图4及图5所示,在通过注入管30将燃料注入由下部件24与上部件26所构成的作为中空树脂容器28的油箱时,由断流阀16把存留在油箱内上部的气体排出,当燃料上升至阀位置时,断流阀16为关闭状态,而当燃料液面下降至阀位置以下时,断流阀16成为打开状态。另外,从断流阀16排出的气体由穿过燃料泵安装开口部32的导管33排出到外部。
即,因为构造是把气体隔离片10盖在断流阀16等件上,所以,在气体隔离片10上不穿设孔,可以提高断流阀16等件的设置部位的防止透气性能。
然后,如图1C所示,在气体隔离片10的外侧由注射成形而形成树脂层36。即,熔融树脂通过上模20的孔40流入模腔22,通过冷却固化而形成树脂层36。在树脂层36固化后,卸下压板14,从而形成凹状且具有开口边缘部分的半成品件38(半成品件成形工序)。另外,热冲压成形的场合是把加热的母材树脂片材配置在气体隔离片材上,用冲压机进行冲压成形而形成树脂层。
如图6所示,由注射成形而形成树脂层36的场合及由热冲压成形而形成树脂层36的场合,均因为受到树脂层36的热而使气体隔离片10的外侧树脂层(HDPE层)10B软化成凝胶状,所以在其熔融层37,树脂层36与气体隔离片10的外侧树脂层的分子链聚合,树脂层36与气体隔离片10紧贴成为一体。
如图7所示,在热板12上开有孔42,将熔融树脂通过孔42导至气体隔离片10,由此而把气体隔离片10与热板12接触的部分保持在热板12上,以使气体隔离片10与热板12接触的部分不产生皱纹。因为在以下的工序中,气体隔离片10与热板12接触的部分是与气体隔离片10相互间的接合部分相当的部位,所以,由于该部分不产生皱纹,从而提高了气体隔离片10相互熔敷的可靠性。
另外,如图1D所示,形成在油箱下部件24上作为附属件的液位平衡器44及隔板46是整体成形,液位平衡器44以及隔板46是由HDPE构成而不含EVOH,所以在成形树脂层36时可与树脂层36成形为整体。
然后如图1D所示,将半成品件38以及与该半成品件组合的另外至少一个半成品件38的开口边缘部分、气体隔离片10的边缘部分重合而进行组合(片材熔敷工序)。另外,在该状态下已从半成品件38卸下压板14。
然后,如图1D所示,将组合的半成品件38的各个热板12加热到大约240℃,使组合的半成品件38的气体隔离片10与热板12接触的部分以及树脂层36与热板12接触的部分软化而成为凝胶状,把组合的半成品件38的各个气体隔离片10相互熔敷,从而形成气体隔离片材袋。
然后,如图1E所示,在组合的半成品件38的各个与热板12接触的树脂层部分软化的状态下,把组合的半成品件38的各个热板12以及在这些热板之间的气体隔离片10部分一同拔出。
然后,如图1F所示,将熔敷冲压机的一对模具50(上模)和52(下模)靠近,由此而将被组合的半成品件38相互压紧,把组合的半成品件38的树脂层36的边缘部分相互熔敷(树脂熔敷工序)。
此时,必须是在树脂层36与热板接触部分软化成凝胶状的状态下进行树脂层36的边缘部分相互的熔敷,所以在拔出热板后必须立即进行熔敷。
而且,为了相对半成品件38至少可以在两个方向(例如4个方向)拔出热板12,沿周向可分割成多个热板12。
而且,为了能把气体隔离片10位于热板12间的部分从袋状部分断开而与热板12一起拔出,在热板12的内周端部形成固定刃12A(参照图7),用于把气体隔离片10位于热板12之间的部分从袋状部分断开,当用一对热板12夹住气体隔离片10时,气体隔离片10位于相对的固定刃12A之间的部分产生颈缩,在拔出热板12时,由于该颈缩部分而容易切断气体隔离片10。
另外,由于各半成品件38的气体隔离片10位于固定刃12A的部分受到比其它部分更大的压力,因此气体隔离层10A间的熔融树脂层10B被挤开,而气体隔离层10A相互咬入,气体隔离层10A相互间产生分子链的组合,气体隔离层10A相互紧密接合。因此,气体隔离片10紧密接合,从而形成袋状的气体隔离片10。
而且,在树脂熔敷工序中,当从图1E的工序过渡到图1F的工序时,气体隔离片10的接合部会弯曲,为了使其弯曲部分不进入相对向的树脂层之间,而把成为袋状的气体隔离片10的内部减压,如图1F所示,使气体隔离片10的弯曲部分向中空树脂容器(油箱)28的内部突出。
另外,此时的减压导管可以利用中空树脂容器(油箱)28的附属件的导管,将导管通过燃料泵安装用开口32及注入管用开口30等这些在中空树脂容器上形成的不可缺少的开口引导到容器外。在导管上连接减压泵,可以将容器内减压。
其次说明本第1实施形式的中空树脂容器制造方法的作用。
在本第1实施形式的中空树脂容器的制造方法中,用防止透气性的气体隔离片10从外侧覆盖附属件16,因此,不象以往那样按照附属件16的部位在气体隔离片10以及树脂层36上开孔。从而极大地提高了容器在附属件16部位的防止透气性能及其可靠性。而且,用上述方法制造的中空树脂容器28是将2个半成品件38的各树脂层36和气体隔离片10各自相互熔敷,所以,在接合部的气体隔离片10相互之间不会剥离,其防止透气性能及其可靠性高。而且,不是像以往的制造方法那样具有开孔工序以及附属件与容器的熔敷工序,所以减少了那些分工序,降低了制造成本。
而且,使将气体隔离片10及树脂层36的接合部贴紧在热板12上,所以,热板12与气体隔离片10及树脂层36能够高效率地进行热的传递,提高了半成品件38相互间熔敷的接合强度以及气密性的可靠性。而且,是在刚性大的热板12之间夹住各个半成品件38的气体隔离片10来进行熔敷,所以抑制了接合部的翘曲变形,提高了各个半成品件38的气体隔离片10的熔敷接合强度及气密性的可靠性。
而且,在热板12上开有孔42,从该孔42注入熔融树脂,使树脂层36和气体隔离片10同热板12接触的部分相连接,因此,加强了气体隔离片10以及树脂层36同热板12的贴紧,防止气体隔离片10与热板12的接触部产生皱纹。而且,由于加强了气体隔离片10与热板12的接触部分同热板12的接合,所以,在拔出热板时,气体隔离片10位于热板12间的部分(飞边)能够确切地与热板12一起被拔出而从袋状部分切离。
而且,在树脂层36相互熔敷时,袋状气体隔离片内部减压的场合能够防止气体隔离片10的弯曲部分进入树脂层36的熔敷面之间,在拔出热板12后,能够确切地把半成品件38的树脂层36相互熔敷,可以提高树脂层36的熔敷强度与熔敷可靠性。
另外,中空树脂容器28的上部件26的气体隔离片10的气体隔离层10A的厚度或材质与中空树脂容器28的下部件24的气体隔离片10的气体隔离层10A的厚度或材质相比,也可以使用成形性好的厚度或材质。另外,这种情况下,中空树脂容器28的上部件26的气体隔离片10的气体隔离层10A的厚度或材质与中空树脂容器28的下部件24的气体隔离片10的气体隔离层10A的厚度或材质相比,也可以使用防止透气性差的厚度或材质。这样可以提高隆起大的中空树脂容器28的上部件26的成形性,而且能够抑制容易透气的中空树脂容器28的下部件24的透气。
以下参照图9~图11详细说明本发明的中空树脂容器制造方法的第2实施形式。
另外,与第1实施形式相同的构件用同一符号表示,并省略其说明。
如图9所示,在本第2实施形式中,使熔敷冲压机的一对模具50(上模)和52(下模)靠近,由此而将组合的半成品件38相互压紧,使组合的半成品件38的树脂层36的边缘部分相互熔敷(树脂熔敷工序),此时在树脂层36的接合部设置作为连通树脂层36内外的通路的导管54。
其次,如图10所示,在导管54上连接省略图示的减压泵,排出气体隔离片10与树脂层38之间的气体,使突出到中空树脂容器(油箱)28内部的气体隔离片10的弯曲部分与树脂层38接触(气体排出工序)。
此时,可以靠树脂层38的温度将气体隔离片10熔敷在树脂层38上。
最后,闭塞气体排出用的导管54,把导管54从中空树脂容器(油箱)28突出的部位用切刀等切断而除去,如图11所示,把中空树脂容器(油箱)28从熔敷冲压机的一对模具50(上模)和52(下模)中卸下。
其次说明本第2实施形式的中空树脂容器制造方法的作用。
在本第2实施形式的中空树脂容器的制造方法中,在气体排出工序中(参照图9),因为通过设在树脂层36接合部的连通树脂层36内外的导管54而将气体隔离片10与树脂层36之间的气体排出,所以,在气体隔离片10与树脂层36之间没有气体存留,因而可以防止减小中空树脂容器(油箱)28的容量。
而且,在本第2实施形式的中空树脂容器的制造方法中,在气体排出工序中(参照图9),靠树脂层38的温度将气体隔离片10熔敷在树脂层38上,所以可确切地保持气体隔离片10。而且,不需要另外再加热气体隔离片10或者树脂层38,从而提高了生产性。
另外,在本第2实施形式中虽然说明的是注射成形的情况,但本发明也可以适用于注射冲压成形、热泡沫填充成形、片材泡沫填充成形。
以下参照图12以及图13详细说明本发明的中空树脂容器制造方法的第3实施形式。
另外,与第1实施形式相同的构件用同一符号表示,并省略其说明。
如图12所示,在本第3实施形式中,在半成品件成形工序中使用的上模20与树脂层36边缘部分接触的部位设置冷却部64,在冷却部64与上模20之间设置绝热材料66。另外,例如可用通冷却水的管子构成冷却部64。
因此,树脂层36边缘部分的温度由于冷却部64而下降,由此可以抑制气体隔离片10的边缘部分的升温,因而能够提高气体隔离片10的可靠性。而且,沿着树脂层36的边缘部分形成树脂层36与气体隔离片10的非熔敷部68。
因为在树脂熔敷工序中,沿树脂层36的边缘部分形成与气体隔离片10的非熔敷部68,所以,气体隔离片10在该非熔敷部68可以弯曲。因此,由于气体隔离片10不受热的影响,所以能够抑制气体隔离片10的局部伸长。这样可以提高气体隔离片10的可靠性。
其次说明本第3实施形式的中空树脂容器制造方法的作用。
在本第3实施形式的中空树脂容器的制造方法中,由于在上模20形成的冷却部64而使树脂层36边缘部分的温度下降,由此而能抑制气体隔离片10的边缘部分的升温,因而可以提高气体隔离片10的可靠性。而且,因为沿树脂层36的边缘部分形成树脂层36与气体隔离片10的非熔敷部68,所以,在使气体隔离片10的弯曲部分向中空树脂容器(油箱)28的内部突出时,气体隔离片10能够在非熔敷部68弯曲。因此,气体隔离片10不受到热的影响,因而能抑制气体隔离片10的局部伸长,可以提高气体隔离片10的可靠性。
另外,例如图13所示,也可以预先在气体隔离层10的边缘部分设置与树脂层36不熔敷的聚四氟乙烯绝缘带70,该绝缘带70与树脂层36的边缘部分接触,由此来抑制气体隔离片10的边缘部分的升温,而且,通过由聚四氟乙烯绝缘带70形成的树脂层36的边缘部分与气体隔离片10的边缘部分的非熔敷部,能抑制气体隔离片10的伸长。
而且,在本第3实施形式中虽然说明的是注射成形的场合,但本发明也可以适用于注射冲压成形、热泡沫填充成形、片材泡沫填充成形。
以下参照图14~图17详细说明本发明的中空树脂容器制造方法的第4实施形式。
另外,与第1实施形式相同的构件用同一符号表示,并省略其说明。
如图14A所示,在本第4实施形式中,预先在各气体隔离片10边缘部分的接合部10C形成作为配合部的摁扣形状的配合凹部74和配合凸部76,如图15所示,由冲压加工等沿各自边缘部分以一定间隔整体形成上述配合凹部74和配合凸部76,如图14B所示,在这些配合凹部74和配合凸部76相互配合之后,将各气体隔离片10的边缘部分的接合部10C熔敷(片材熔敷工序)。
因此,在用该制造方法制造的中空树脂容器(油箱)28中,在气体隔离片10的边缘部分以所定的间隔分别形成配合凹部74与配合凸部76。
其次说明本第4实施形式的中空树脂容器制造方法的作用。
在本第4实施形式的中空树脂容器的制造方法中,在片材熔敷工序中,是把各气体隔离片10边缘部分的接合部10C的必要部分上预先形成的配合凹部74和配合凸部76相互配合之后,将各气体隔离片10边缘部分的接合部10C熔敷而形成袋状,所以,在制造时能够抑制由于气体隔离片10边缘部分产生弯曲而引起的气体隔离片10的接合部的皱纹。这样提高了气体隔离片10的可靠性,而且也提高了气体隔离片10的气密性。并且还提高了气体隔离片10边缘部分的熔敷加工性。
另外,例如图16A及图16B所示,也可以把配合凹部74与配合凸部76的形状作成箭头形状等其它形状。而且,如图17A及图17B所示,也可以作成下述结构,即将作为其它件的配合凹部74与配合凸部76,分别嵌入或者固定在各气体隔离片10的边缘部分的接合部10C上。
而且,在本第4实施形式中虽然说明的是注射成形的场合,但本发明也可以适用于注射冲压成形、热泡沫填充成形、片材泡沫填充成形。
以下参照图18详细说明本发明的中空树脂容器制造方法的第5实施形式。
另外,与第1实施形式相同的构件用同一符号表示,并省略其说明。
如图18所示,在本第5实施形式中,在气体隔离片10上形成作为补强层的聚酰胺树脂(PA)层78。该聚酰胺树脂层78是预先形成于气体隔离层10上与贯通设置在上模20的树脂注入孔40相对向的部位10A及其周围的位置上。
其次说明本第5实施形式的中空树脂容器制造方法的作用。
在本第5实施形式的中空树脂容器的制造方法中,当从穿设在成形用的上模20上的树脂注入孔40,把熔融树脂注入到配置在成形用的下模18上的气体隔离片10上时(图26的箭头表示熔融树脂的流动),气体隔离片10上的相对树脂注入孔40的部位10A及其周围受到由于来自树脂注入孔40的剪力而上升的熔融树脂的热和来自熔融树脂的摩擦力的影响。
在本第5实施形式中,此时由于气体隔离片10上相对树脂注入孔40的部位10A及其周围所设置的不会被注入树脂熔融的聚酰胺树脂层78,从而能够防止气体隔离片10的熔融。结果可以提高气体隔离片10的可靠性。
另外,补强层并不限定聚酰胺树脂层78,也可以使用不会被注入树脂熔融的金属箔等其它构件。而且,也可以在气体隔离层10的整个面上形成补强层。
以下参照图19~图23详细说明本发明的中空树脂容器制造方法的第6实施形式。
另外,与第1实施形式相同的构件用同一符号表示,并省略其说明。
如图20A及图20B所示,在本第6实施形式中,被组合的各半成品件38的各气体隔离片10的边缘部分的长度L1与长度L2互不相同。
而且,在气体隔离片10上形成凸部10A,所以,在气体隔离片10的外侧由注射成形而形成树脂层36时,在气体隔离片10被热板12与压板14夹住部位的附近,即,在树脂层36与气体隔离片10的连接部端部,形成气体隔离片10的凸部10A和树脂层36的凹部36A的配合部39。
而且如图21A所示,热板12的剖面形状为楔子形状。因此,在热熔敷气体隔离片10的边缘部分时,如图21B所示,能够挤出被夹在各气体隔离层13之间的树脂层15,可以将各气体隔离层13相互间熔敷。结果形成有利于防止透气的构造,即,可以使气体隔离层13成为无缝隙的袋状,所以能够使透气量最小。
另外,在该状态下,已经从半成品件38上卸下压板14。
而且,在本第6实施形式中,如图19所示,因为在树脂层36与气体隔离片10的连接部80的端部80A形成气体隔离片10的凸部10A与树脂层36的凹部36A的配合部39,所以,在将成为袋状的气体隔离片10的内部减压而拉进气体隔离片10时,在气体隔离片10上产生的应力是作为气体隔离片10的拉力(图19的箭头F1)作用于配合部39上,而不作为树脂层36与气体隔离片10的连接部80的剥离力(图19的箭头F2)来作用。因此,能够防止气体隔离片10从树脂层36上剥离或者是成为容易剥离的状态,可以提高气体隔离片10的可靠性。
另外,为了在靠近各半成品件38的配合部39的接合部侧的部位82处,剥离力也不作用于树脂层36与气体隔离片10的连接部80上,也可以预先将该部位82作为非熔敷部。
而且,在本第6实施形式中,如图20A所示,组合的各半成品件38的各气体隔离片10的边缘部分的长度L1和L2互不相同,所以如图19所示,气体隔离片10相互间的接合部10B及由拉进而产生的气体隔离片10的弯曲部10C的各位置错开。结果,由拉进而产生的应力不会集中在气体隔离片10相互间的接合部10B。
因此,如图22所示,用该制造方法制造的中空树脂容器(油箱)28中,在树脂层36与气体隔离片10的连接部端部形成气体隔离片10的凸部10A与树脂层36的凹部36A的配合部39。
其次说明本第6实施形式的中空树脂容器制造方法的作用。
在本实施形式的中空树脂容器中,因为在树脂层36与气体隔离片10的连接部80的端部80A形成气体隔离片10的凸部10A与树脂层36的凹部36A的配合部39,所以在制造工序中,在把成为袋状的气体隔离片10的内部减压而拉进气体隔离片10时,在气体隔离片10上产生的应力是作为气体隔离片10的拉力(图19的箭头F1)作用于配合部39上,而不作为树脂层36与气体隔离片10的连接部80的剥离力来作用。因此能够提高气体隔离片10的可靠性。
而且,在本第6实施形式中,如图20A所示,组合的各半成品件38的各气体隔离片10的边缘部分的长度L1、L2互不相同。因此如图19所示,气体隔离片10相互间的接合部10B及由拉进而产生的气体隔离片10的弯曲部10C的各位置错开,因此,由拉进而产生的应力不会集中在接合部10B,能够进一步提高气体隔离片10的可靠性。
而且,在本实施形式中,如图21A所示,因为把热板12的剖面形状作成楔子形状,所以在热熔敷气体隔离片10的边缘部分时,如图21B所示,可以把夹在各气体隔离层13之间的树脂层15挤出,能够将各气体隔离层13相互熔敷,因而能够使透气量最小。
另外,在本第6实施形式中,是把热板12的剖面形状作成楔子形状,但热板12的剖面形状并不限定于此,也可以作成其它的凸起形状,例如图23A及图23B所示,作成具有圆形凸起12A的剖面形状,由该凸起12A挤出夹在各气体隔离层之间的树脂层。
而且,在本第6实施形式中虽然说明的是注射成形的场合,但本发明也可以适用于注射冲压成形、热泡沫填充成形、片材泡沫填充成形。而且,作为薄膜的熔敷方法也可以使用高频熔敷。
以下参照图24及图25详细说明本发明的中空树脂容器制造方法的第7实施形式。
另外,与第1实施形式相同的构件用同一符号表示,并省略其说明。
如图24所示,在本第7实施形式中,在热板12的气体隔离片10侧的端部,沿气体隔离片10形成缺口100,该缺口100与气体隔离片10的接合部10C相反一侧的开口部100A为小直径部分。而且,如图25所示,缺口100的剖面为半圆形状。
因此,在半成品件成形工序中,把树脂层36的一部分从和其它半成品件的接合部36C延长,从而形成到达气体隔离片10的接合部10C的延伸部36B。
其次说明本第7实施形式的中空树脂容器制造方法的作用。
在本第7实施形式的中空树脂容器中,在半成品件成形工序中,通过树脂层36的延伸部36B使气体隔离片10的接合部10C受到拉伸,由此而能抑制气体隔离片10的接合部10C的皱纹。另外,在树脂层36的接合部36C互相熔敷时,延伸部36B由于缺口100的开口部100A所形成的颈部37而容易折弯,与气体隔离片10一同被牵引到容器内部。
以下参照图26详细说明本发明的中空树脂容器制造方法的第8实施形式。
另外,与第1实施形式相同的构件用同一符号表示,并省略其说明。
如图26所示,在本第8实施形式中,在半成品件成形工序中,上模20的树脂注入孔40附近的模腔22内部的间隙H1比其它部位的间隙H2大。
其次说明本第8实施形式的中空树脂容器制造方法的作用。
在半成品件成形工序中,当从穿设在成形用的上模20上的树脂注入孔40把熔融树脂注入到配置在成形用的下模18上的气体隔离片10上时(图26的箭头表示熔融树脂的流动),气体隔离片10上的相对树脂注入孔40的部位10A及其周围受到由于来自树脂注入孔40的剪力而上升的熔融树脂的热的影响及来自熔融树脂的摩擦力的影响。
此时,在本第8实施形式中,因为气体隔离片10上的树脂注入孔40附近的模腔22内部的间隙H1比其它部位的间隙H2大,所以能够抑制熔融树脂的流动速度。这样可以防止气体隔离片10的熔融,能够提高气体隔离片10的可靠性。
以下参照图27详细说明本发明的中空树脂容器制造方法的第9实施形式。
另外,与第1实施形式相同的构件用同一符号表示,并省略其说明。
如图27所示,在本第9实施形式中,在断流阀16等附属件与气体隔离片10的配合部110中,附属件侧的配合部110A形成为凹状。因此,在半成品件成形工序中,用气体隔离片10覆盖断流阀16等附属件时,附属件侧的配合部110A形成为凹状,气体隔离片10侧的配合部110B形成为凸状。
其次说明本第9实施形式的中空树脂容器制造方法的作用。
在本第9实施形式中,如图27所示,在配合部110,因为断流阀16等附属件侧的配合部110A为凹状,所以与图1B所示的断流阀16等附属件侧的配合部形成为凸形状的情况相比,在半成品件形成工序中,能够减小配合部100所受的来自熔融树脂(图27的箭头表示熔融树脂的流动)的热和摩擦力。这样,在附属件与气体隔离片10的配合部100不会产生由于蓄热而引起的熔断,能够提高气体隔离片10的可靠性。
以上就特定的实施形式对本发明进行了详细说明,但本发明并不仅限定于这样的实施形式,对于使用者应明确在本发明的范围内可以有其它各种实施形式。例如,虽然上述的中空树脂容器22是以汽车用燃料罐为例,但并不是将中空树脂容器仅限定为汽车用燃料罐。而且,气体隔离片10的材料、树脂层36的材料也不是仅限定于上述说明的材料。
而且,为了提高半成品件38的树脂层36边缘部分相互间接合部的强度、气密性以及外观等,如图28所示,也可以在将成形冷却后的树脂层36加热之后或者是在成形后趁热,将其放在夹具112上来进行接合部(边缘部)36C的形状修正。另外,如29所示,此时也可以使用吸真空形状修正机114等对树脂层36施加外力。而且,如果在组合的半成品件38的树脂层36的边缘部分相互熔敷(树脂熔敷工序)时也作用此外力,则效果更好。
而且,如图30所示,也可以通过注射成形在下模18与上模116之间形成气体隔离层10A(图30的箭头表示熔融树脂的流动),而后,如图31所示,将上模116换为上模20,通过注射成形在上模20与气体隔离层10A之间形成树脂层36(图31的箭头表示熔融树脂的流动)。由此而提高生产性以及成形性。而且,因为能够根据中空树脂容器的上部、下部或者前部、后部等来改变气体隔离层10A的膜厚及材质,所以能够确保最佳的防止透气性能、强度、成形性。而且,液位平衡器44及隔板46等内部构件与气体隔离层10A整体成形,由此而能效率良好地制造气体隔离层10A无缝隙的中空树脂容器。而且,作为制造气体隔离层10A无缝隙的中空树脂容器的方法,如图32所示,也可以在下模18上设置树脂注入口118,从该树脂注入口118向中间模具120的模腔注入树脂122(图32的箭头表示熔融树脂的流动),由此而形成与气体隔离层10A接合的液位平衡器44以及隔板46等内部构件。
而且,如图33所示,为了提高生产性能,在由注射成形而形成树脂层36时(图33的箭头表示熔融树脂的流动),也可以把放置在下模18上的隔板46等内部构件及放置在上模20上的弓形卡124等同时熔敷。此时,在熔敷于气体隔离层10A上的隔板46等内部构件上使用了具有气体隔离性能的树脂,所以能够防止气体隔离层在熔敷时的破坏。
而且,如图34A、图34B及图35A、图35B所示,为了提高生产性能,在将树脂层36相互熔敷时,也可以利用树脂层36的热量将气体隔离片10相互熔敷。
工业上的利用可能性如上所述,本发明的中空树脂容器以及其制造方法,可用于汽车用燃料罐及其制造上,特别是可用于提高汽车用燃料罐的半成品件相互间接合部的防止透气性能。
权利要求
1.一种中空树脂容器,是把由片材与树脂层至少两层所构成的至少两个半成品件的边缘部分重合而形成的中空树脂容器,其特征在于把前述片材相互熔敷,而且将前述树脂层相互熔敷。
2.一种中空树脂容器的制造方法,其特征在于本发明的中空树脂容器的制造方法是由以下工序构成形成由片材与树脂层至少两层所构成的凹状半成品件的半成品件成形工序、把前述半成品件的边缘部分重合并将片材相互熔敷的片材熔敷工序、将前述半成品件的树脂层相互熔敷的树脂层材熔敷工序。
3.如权利要求2所述的中空树脂容器的制造方法,其特征在于在前述半成品件成形工序中,在片材的外侧设置树脂层,而且在前述树脂层材熔敷工序中,从外部降低成为袋状的片材内的压力,将前述树脂层相互熔敷。
4.如权利要求3所述的中空树脂容器的制造方法,其特征在于具有气体排出工序,在前述树脂层相互间的接合部设置连通前述树脂层内外的连通部,把前述片材与前述树脂层间的气体排出。
5.如权利要求4所述的中空树脂容器的制造方法,其特征在于通过前述树脂层熔敷时的温度而将前述片材熔敷在前述树脂层上。
6.如权利要求1所述的中空树脂容器,其特征在于在前述树脂层的边缘部分设置与前述片材的非熔敷部。
7.如权利要求6所述的中空树脂容器,其特征在于在前述非熔敷部设置与前述树脂层不熔敷的构件。
8.如权利要求2所述的中空树脂容器的制造方法,其特征在于在前述树脂层的边缘部分设置与前述片材的非熔敷部。
9.如权利要求8所述的中空树脂容器的制造方法,其特征在于在前述半成品件成形工序中使用的模具的树脂层边缘部分设置冷却部。
10.如权利要求1所述的中空树脂容器,其特征在于在前述片材相互间的接合部设置相互配合的配合部。
11.如权利要求2所述的中空树脂容器的制造方法,其特征在于在前述片材相互间的接合部形成互相配合的配合部,在将前述片材相互配合后,把前述片材相互熔敷。
12.如权利要求2所述的中空树脂容器的制造方法,其特征在于在前述片材上的至少与树脂注入孔相对的部位上,设置不因注入树脂而熔融的补强层。
13.如权利要求1所述的中空树脂容器,其特征在于在前述树脂层与前述片材的连接端部具有前述树脂层与前述片材的配合部。
14.如权利要求6所述的中空树脂容器的制造方法,其特征在于在前述熔敷工序中,将前述树脂层与前述片材的连接端部相互配合。
15.如权利要求1所述的中空树脂容器,其特征在于前述片材相互间的接合部和各个片材与树脂层的连接部的距离各不相同。
16.如权利要求3所述的中空树脂容器的制造方法,其特征在于在前述片材熔敷工序中,使前述片材相互间的接合部和各个片材与树脂层的连接部的距离各不相同地进行熔敷。
17.如权利要求1所述的中空树脂容器,其特征在于前述半成品件分割为上下2个,上侧半成品件的片材与下侧半成品件的片材相比,成形性好而防渗透性差。
18.如权利要求2所述的中空树脂容器的制造方法,其特征在于在前述半成品件成形工序中,设有从前述树脂层与其它半成品件的接合部延伸而到达前述片材与其它半成品件的接合部的延伸部。
19.如权利要求2所述的中空树脂容器的制造方法,其特征在于在前述半成品件成形工序中,使前述树脂注入孔附近模腔内部的间隙比模腔内部其它部位的间隙大。
20.如权利要求1所述的中空树脂容器,其特征在于在所安装的构件与前述片材的配合部上,前述构件形成为凹状。
21.权利要求2所述的中空树脂容器的制造方法,其特征在于在前述半成品件成形工序中,在所安装的构件与前述片材的配合部上,将前述构件制成凹状而形成树脂层。
全文摘要
一种中空树脂容器的制造方法以及用该制造方法制造的中空树脂容器。在用热板(12)和压板夹住具有气体隔离层的气体隔离片(10)的状态下,在模具和模具之间设置作为附属件的液位平衡器(44)及隔板(46),而且在合模后注射成形树脂而形成树脂层(36)。而后,用热板(12)一边加热、一边将半成品件(38)和与其成为一对的半成品件(38)进行熔敷。
文档编号B29C65/20GK1200694SQ97191224
公开日1998年12月2日 申请日期1997年7月4日 优先权日1996年7月9日
发明者木户克之, 石丸洋一, 寺田真树, 芹野洋一, 鬼头诚 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1