空调系统的制作方法

文档序号:14628654发布日期:2018-06-08 18:25阅读:101来源:国知局
空调系统的制作方法

本申请涉及环境领域,特别涉及一种能够相对独立地控制温度和湿度的空调系统。



背景技术:

当前,人们对于生活或居住环境的要求越来越高,因此越来越多的空间中配备有多联机的空调系统,以能够使人们在活动空间内的舒适度得以提升。为了获得较高的环境舒适度,不仅需要调控环境的温度,还需要调控环境的湿度。因此,对于空调系统来说,如何独立地调控温度和湿度成为需要解决的技术问题。



技术实现要素:

本申请的目的在于提供一种能够独立的调控温度和湿度的技术方案。

为了实现本申请的目的,提供了一种空调系统,该空调系统包括:新风模块,该新风模块包括流体连接的压缩机、冷凝器和蒸发器,该蒸发器用于对新风的温度和/或湿度进行调控;和温度模块,该温度模块的流路与所述新风模块的流路进行热交换但不连通,所述温度模块用于对使用侧的温度进行调控,所述温度模块包括:热交换器,该热交换器用于与所述新风模块的穿过该热交换器的流路进行热交换;热辐射器,该热辐射器位于所述使用侧内并与所述热交换器连接形成封闭的流路;泵,该泵串联在所述封闭的流路中;其中所述新风模块包括双向闪蒸器,该双向闪蒸器包括:第一连接管,该第一连接管连通于所述冷凝器且伸入所述闪蒸器下部;第二连接管,该第二连接管连通于所述蒸发器且伸入所述闪蒸器下部;以及第一连接口和第二连接口,该第一连接口位于所述闪蒸器的下部,该第二连接口位于所述闪蒸器的上部,所述第一连接口通过第一单向阀连接于所述热交换器的进水口,而所述热交换器的出水口通过电磁阀连接于所述第二连接口。

优选地,所述温度模块包括新风处理器,该新风处理器与所述热辐射器并联连接,用于对所述新风的温度和/或湿度进行调控。

优选地,所述新风处理器和/或所述热交换器串联有调节阀。

优选地,所述压缩机包括串联的第一压缩机和第二压缩机,所述第一压缩机和第二压缩机分别连接有四通阀,以可选择地向所述冷凝器或蒸发器输送流体介质。

优选地,所述双向闪蒸器的上部设置有气相出口,该气相出口连接于所述第一压缩机和第二压缩机之间的流路上。

优选地,所述冷凝器和蒸发器分别串联有第一和第三节流阀。

优选地,该空调系统包括换热旁路,该换热旁路并联于所述蒸发器,并且穿过所述热交换器,以能够进行热交换。

优选地,所述换热旁路中串联有第二单向阀和/或第二节流阀。

优选地,在所述新风的流向中,所述新风处理器和所述蒸发器从上游向下游依次排列。

在本申请的技术方案中,由于新风模块主要负责温度和/或湿度的调控,而不连通于新风模块的温度模块用于负责温度的调控,二者之间相对独立,因此,温度模块能够实现使用侧的温度调节,新风模块能够对新风进行湿度 (和/或温度)调节,温度模块和新风模块相对独立,从而能够消除冷热抵消现象,提高机组性能。

附图说明

构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施方式及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:

图1a为根据本申请实施方式一的空调系统的连接结构的示意图;

图1b为图1a所示的空调系统在夏季工况下的运行原理图;

图1c为表示夏季工况下运行过程中制冷剂状态变化的压焓图;

图1d为图1a所示的空调系统在冬季工况下的运行原理图;

图1e为表示冬季工况下运行过程中制冷剂状态变化的压焓图;

图2a为根据本申请实施方式二的空调系统的连接结构的示意图;

图2b为图2a所示的空调系统在夏季工况下的运行原理图;

图2c为图2a所示的空调系统在冬季工况下的运行原理图;

图3a为根据本申请实施方式三的空调系统的连接结构的示意图;

图3b为图3a所示的空调系统在夏季工况下的运行原理图;

图3c为图3a所示的空调系统在冬季工况下的运行原理图;

图4a为根据本申请实施方式四的空调系统的连接结构的示意图;

图4b为图4a所示的空调系统在夏季工况下的运行原理图;

图4c为图4a所示的空调系统在冬季工况下的运行原理图;

图4d为根据本申请的另一种实施方式的示意图。

具体实施方式

以下详细描述本申请的具体实施方式。需要说明的是,在不冲突的情况下,本申请中的实施方式及各个实施方式中的特征可以相互组合。

如附图所示,本申请提供了一种空调系统,该空调系统包括:新风模块,该新风模块包括流体连接的压缩机、冷凝器11和蒸发器12,该蒸发器12 用于对新风的温度和/或湿度进行调控;和温度模块,该温度模块的流路与所述新风模块的流路进行热交换但不连通,所述温度模块用于对使用侧的温度进行调控。

新风模块用于将经过净化的室外新鲜空气引入到室内,从而保持室内空气具有足够的洁净度。为了确保室内环境具有良好的舒适度,利用主要包括压缩机、冷凝器和蒸发器的新风模块(作为空调装置),对引入的新风(新鲜空气流)的温度和/或湿度进行调控。当然,为了实现空调的功能,新风模块也可包括其他辅助部件,如节流阀、制冷剂存储器等,这里不再详细描述,可以参考利用传统的空调装置的组成结构和运行原理来实现。由于新风模块的空调功能,能够对新风的温度和/或湿度进行调控,尤其是能够对新风的湿度进行调控,从而实现空间内的湿度的调控。

同时,本申请的技术方案中还设置有温度模块,主要是对使用侧的温度进行调控,该温度模块的流路与新风模块的流路不连通但相互之间能够进行热交换,以对使用侧空间内温度的调控。所谓使用侧是指待调控温度和/或湿度的空间,如楼宇空间、会议室等人们居住活动的场所,尤其是空间内的(多个)房间和/或(多个)末端。

在传统的空调系统中,为了满足除湿的要求,需要降低蒸发温度;另一方面,为了满足温度的要求,则需要通过再热,提高送风温度。这样,不仅由于蒸发温度较低而使空调系统性能下降,还会产生冷热抵消现象,浪费了能源。

而在本申请的技术方案中,由于新风模块主要负责温度和/或湿度的调控,而不连通于新风模块的温度模块用于负责温度的调控,二者之间相对独立,因此,温度模块能够实现较高的蒸发温度,以调节温度,新风模块能够实现低蒸发温度进行湿度(和/或温度)调节,以消除冷热抵消现象,提高机组性能。也就是说,本申请的技术方案中,能够在节能的基础上实现温度和湿度的独立控制。

下面分别对本申请的空调系统的各个模块进行详细描述。

一、温度模块

如附图所示,温度模块包括:热交换器20,该热交换器20用于与所述新风模块的穿过该热交换器的流路进行热交换;热辐射器21,该热辐射器 21位于所述使用侧内并与所述热交换器20连接形成封闭的流路;泵22,该泵22串联在所述封闭的流路中。

热交换器20可以为根据工况而选择合适的换热器,如板式换热器。在该换热器20中,新风模块的流路与温度模块的流路邻近设置,但不连通,从而实现热量的交换。因此,在下文中,当描述新风模块而引用热交换器20 时,通常可以理解为新风模块通过热交换器20的流路;当描述温度模块而引用热交换器20时,可以理解为温度模块通过热交换器的流路。当然,在这里热交换器20是指实现热交换的整体装置。

泵22用于给温度模块流路内的制冷剂(该制冷剂可以为载冷/热剂,在下文中对于制冷剂可以做同样地理解)提供驱动力,以使得温度模块的流路内的流体介质(如制冷剂或水)按照预定状态保持可流动性。一方面能够通过热交换器20与新风模块的流路进行热交换,另一方面使经过热交换后的介质流动到热辐射器20。泵22可以根据工况而选择具有合适工业参数的泵装置,如齿轮泵、柱塞泵等。

热辐射器21位于所述使用侧内,由于热辐射器、泵和热交换器20连接形成封闭的流路,因此当经过热交换后的介质流动到热辐射器20后,能够通过该热辐射器20对使用侧的空间进行温度调控,既能够使得使用侧内的温度升高,也能够使得使用侧内的温度降低,以达到预定的温度水平。热辐射器20可以是冷辐射吊顶或干式风机盘管等。

在温度模块的流路中,为了通过介质的流动状态来控制温度模块的运行参数,可以设置有用于实现节流或通断的阀装置。或者,所述泵22的流量也是可以调节的。

如上所述,新风装置的主要作用是对新风进行温度和/或湿度的调控,但在优选情况下,也可以利用温度模块对新风进行温度调控。如附图所示,所述温度模块包括新风处理器23,该新风处理器23与所述热辐射器21并联连接,用于对所述新风的温度和/或湿度进行调控。

由于新风处理器23与热辐射器12并联连接,因此,当介质经过热交换后一路流向热辐射器21,从而对使用侧的温度进行调控;而另一路介质则进入新风处理器23,对新风的温度进行调控。随后该两路介质又汇聚流向泵 22。优选地,为了使温度模块适应于不同的工况,如附图所示,所述新风处理器23和/或所述热交换器20串联有调节阀。所述新风处理器23可以为表冷器或散热器等。通过空调系统中阀的配合,温度模块可以相对独立。

以上对温度模块的连接关系和基本的运行过程进行了详细地描述。下文中还将结合各个附图对其不同工况下的运行过程做详细描述。

二、新风模块

如上所述,新风模块的主要作用是利用空调装置对新风的温度和/或湿度进行调控。在本申请的技术方案中,除了采用传统的空调装置之外,针对新风模块提供了不同的实施方式,如各个附图所示。对于传统的空调装置这里不再详细描述,下面将结合附图对新风模块的不同实施方式以及相应的整个空调系统的不同实施方式进行详细地描述。另外,需要指出的是,上述温度模块适用于如下所有的实施方式。

2.1实施方式一

图1a至图1e描述了实施方式一的技术方案。

如图1a、图1b和图1d所示,所述新风模块包括流体连接的压缩机、冷凝器11和蒸发器12,所谓流体连接是指相互之间能够实现直接和/或间接地流体交互。在实施方式一中,所述新风模块还包括双向闪蒸器13,该双向闪蒸器13包括:第一连接管131,该第一连接管131连通于所述冷凝器11且伸入所述闪蒸器13下部;第二连接管132,该第二连接管132连通于所述蒸发器12且伸入所述闪蒸器13下部;以及第一连接口133和第二连接口134,该第一连接口133位于所述闪蒸器13的下部,该第二连接口134位于所述闪蒸器13的上部,所述第一连接口133通过第一单向阀139连接于所述热交换器20的进水口,而所述热交换器20的出水口通过电磁阀140连接于所述第二连接口134。

所谓双向是指第一连接管和第二连接管均可作为输入管和输出管,因此能够通过第一连接管和第二连接管向两个方向输送制冷剂介质。

当一定压力下的液态制冷剂介质通过第一连接管和第二连接管中的一者进入到双向闪蒸器13后,由于压力的变化发生闪蒸,从而在双向闪蒸器 13内腔的顶部形成介质蒸汽,而底部在积聚介质液体。随后,液态的介质通过第一连接管和第二连接管中的另一者流出双向闪蒸器。

对于位于下部的第一连接口133来说,通过该第一连接口133能够将液态的介质通过第一单向阀139而引导至热交换器20。在该热交换器与温度模块的流路完成换热后,再通过第二连接口134回流至双向闪蒸器。如图1a 和图1b所示,第二连接口134串联有电磁阀140,以控制该第二连接口134 处流路的通断。第一单向阀139仅允许液体介质从双向闪蒸器13流出,而不允许流体流向双向闪蒸器。阀140和第一单向阀139的作用还能够满足实施方式一的流路适应于不同的工况场合,这将在下文中详细描述。

压缩机可以为一个或多个,但优选情况下,如图1a、图1b和图1d所示,压缩机包括串联连接的第一压缩机101和第二压缩机102,所述第一压缩机 101和第二压缩机102分别连接有四通阀,以可选择地向所述冷凝器11或蒸发器12输送流体介质(如载热/冷剂)。

四通阀的作用在于,在不同的工况下,串联连接的第一压缩机和第二压缩机可以利用四通阀向冷凝器11或蒸发器12输送压力介质。例如,当进行制冷工作时,需要将来自于蒸发器12的介质经过压缩后输送至冷凝器11;而当进行制热工作,需要将来自于冷凝器11的介质经过压缩后输送至蒸发器12。不同的工作模式将在下文中详细描述。四通阀可以选择常用的结构形式,这里不做详细描述。

第一压缩机和第二压缩机可以根据工况而选择合适工业参数范围的压缩机。优选情况下,第一压缩机和第二压缩机具有不同的工业参数,如容积、流量、吸气压力、排气压力等。优选情况下,第一压缩机的额定功率大于第二压缩机的额定功率。

利用双压缩机的设计,能够方便地将制冷剂介质压缩至更多的物理状态,从而获得良好的工作效果。

优选情况下,如图1a和图1b所示,双向闪蒸器13的上部设置有气相出口135,该气相出口135连接于所述第一压缩机101和第二压缩机102之间的流路上,从而在预定的情况下可以将气态的介质补充至主流路中。

优选地,如图1a和图1b所示,所述冷凝器11和蒸发器12分别串联有第一节流阀EEV1和第三节流阀EEV3。节流阀的作用是控制制冷剂介质的流量,同时能够调整制冷剂介质的物理状态,如能够控制制冷剂介质的压力,从而调整焓量。

优选地,所述空调系统包括换热旁路,该换热旁路中串联有所述热交换器20,从而使热交换器20并联于所述蒸发器12。进一步优选地,所述换热旁路中串联有第二单向阀136和/或第二节流阀EEV2,以控制制冷剂介质的流向和流量。

下面描述实施方式一的技术方案的在不同工况下的工作原理。

2.1.a夏季工况

在夏季工况中,主要实现的功能是温湿度独立控制,既达到室内环境的设置要求,又能够提高系统的性能,降低能耗。其中,系统中的使用侧可以是多个房间多个末端。

如图1b和图1c所示,低压制冷剂气体先经过第二压缩机102压缩到中间状态点2,然后与来自双向闪蒸器的中压(状态点6’)的制冷剂气体混合至状态点3,再由第一压缩机压缩至状态点4,输出高温高压制冷剂气体。

高温高压制冷剂气体经过冷凝器11,冷凝成高压制冷剂液体,经过EEV1 节流至中间状态点6,进入双向闪蒸器13。

在双向闪蒸器13内,上部分聚集中间压力的制冷剂气体,下部分聚集中间压力的制冷剂液体。该双向闪蒸器下部分的制冷剂液体分为两股:一股依靠重力供液方式通过第一连接口133经由第一单向阀139向热交换器20 供液,以较高的蒸发温度(中间温度)制取高温冷水,蒸发后产生的饱和制冷剂气体通过第二连接口134流回至双向闪蒸器13内;另一股经过节流阀 EEV3的二次节流,进入蒸发器12(室内机换热器),以较低的蒸发温度对室外新风进行除湿,然后经过四通阀回到压缩机中。

而双向闪蒸器上半部的中压制冷剂气体,又补充至压缩机被压缩成高温高压的气态制冷剂。

通过热交换器20所制取的高温冷水,一部分流向新风处理器23用于再热除湿后的新风,另一部分进入到室内的热辐射器21,为室内进行降温,此时室内可以使多个房间和/或多个末端同时工作。

通过上述描述可知,在夏季工况中,通过采用温度模块制取高温冷水,供给热辐射器为室内进行降温;同时,利用蒸发器12对室外新风进行除湿。因此,采用了双蒸发温度实现温湿度独立控制,从本质上实现了空调系统(如多联机制冷系统)的性能提升。

2.1.b冬季工况

在冬季工况中,空调系统主要实现的功能是迅速使室内的温度达到采暖设定要求,提高用户的舒适度体验。同时能够提高空调系统的运行性能。

如图1d和图1e所示,低压制冷剂气体先经过第一压缩机101压缩到中间状态点2,然后与来自双向闪蒸器的中压(状态点6’)制冷剂气体混合至状态点3,再由第二压缩机102压缩至状态点4,排出高温高压制冷剂气体。

高温高压制冷剂气体分为两股:一股用于预热进入房间内的新风至状态点5,然后经过EEV3节流到状态点6;另一股进入热交换器20,制取辐射采暖用热水至状态点5,然后通过节流阀EEV2节流至状态点6,与另一路的制冷剂混合后,进入双向闪蒸器13。

双向闪蒸器13内上部分聚集中间压力的制冷剂气体,下部分聚集中间压力的制冷剂液体。上半部的中压制冷剂气体,通过管道补充至压缩机,作为两级压缩的中间补气。而双向闪蒸器中的制冷剂液体,经过节流阀EEV1 二次节流后进入冷凝器11内蒸发,然后回到压缩机中,完成一次循环。

所制取的采暖用热水,一小部分流向新风处理器23,用于再热室外新风,另一部分进入到室内的热辐射器21,可快速使房间内的温度达到采暖要求。

通过以上描述可知,实施方式一的空调系统先通过蒸发器处的如风机盘管进行氟空气换热以及水空气换热,预热新风,使进入房间内的新风处于较高的温度;还采用热辐射器21直接加热辐射末端的室内空气,能够使室内迅速达到要求温度。与传统的仅采用常规辐射采暖相比,较大程度上缩短了从系统开始运行至达到室内采暖要求的时间。而且,从冬季工况的运行原理中可以看出,其循环为单一的冷凝温度和蒸发温度,但是由于其采用双级压缩系统,比常规单级压缩而言,降低了压比,从而提高了系统的性能。

2.2实施方式二

图2a至图2c描述了本申请的实施方式二的技术方案。

如图2a至图2c所示,压缩机30连接有四通阀,以可选择地向所述冷凝器11或蒸发器12输送流体介质。类似于实施方式一,四通阀的作用在于,在不同的工况下,使压缩机可以利用四通阀向冷凝器11或蒸发器12输送压力介质。

在实施方式二中,在所述压缩机30向所述冷凝器11输送的情况下,所述热交换器20与所述蒸发器12并联连接;并且在所述压缩机向所述蒸发器 12输送的情况下,所述压缩机通过所述热交换器20连接于所述冷凝器11,并且所述蒸发器12与所述热交换器20和冷凝器11之间的流路并联连接。

当压缩机30向冷凝器11输送高压制冷剂介质时,经过冷凝的介质经过热交换器20进行换热,从而使温度模块内的介质处于所需的物理状态中。同时,经过蒸发器12的处理,能够对新风进行除湿处理。当压缩机30向蒸发器12输送介质时,该压力介质首先经过热交换器20进行换热处理,以满足温度模块的需求。从热交换器20流出的介质一部分流向冷凝器11,另一部分流向蒸发器12以对新风进行温度和/或湿度的调控。上述工况将在下文中详细描述。

如图2a至图2c所示,优选地,蒸发器12上游串联有再热器14,该再热器14用于对所述新风的温度进行调控,从而能够利用再热器14对新风做更为精准的温度控制。优选情况下,为了使得实施方式二的技术方案适用于不同的工况,如图所示,再热器14上游串联有分别仅允许来自于所述冷凝器11的流体流向所述再热器和仅允许来自于所述热交换器20的流体流向所述再热器的两个上游单向阀137,137’,所述蒸发器12下游串联有仅允许流体从该蒸发器12分别流向所述压缩机和冷凝器的两个下游单向阀138,138’。利用上述两对单向阀能够控制制冷剂介质的流动方向,从而允许系统适用于不同的工况场合。

优选地,所述热交换器20串联有第一节流阀EEV1和第三节流阀EEV3;和/或所述蒸发器12的上游串联有第二节流阀EEV2,以控制制冷剂介质的流向和流量。还优选地,如图所示,蒸发器12和再热器14之间的流路与所述第一和第三节流阀EEV1,EEV3之间的流路通过阀141而连接。通过阀 141的控制,能够使空调系统可选择地执行除湿功能。

以上详细描述了实施方式二的连接结构,下面描述实施方式二的技术方案的在不同工况下的工作原理。

2.2.a夏季工况

如图2b所示,压缩机30排出的高温高压的制冷剂经过四通阀,进入冷凝器11(室外风冷换热器)降温成低温高压液体后分为两路:一路低温高压制冷剂液体经一个上游单向阀137进入再热器14,对除湿后的新风进行加热,之后制冷剂经过节流阀EEV2的节流膨胀后,进入蒸发器12对室外新风进行降温除湿,蒸发后的低压气态制冷剂通过四通阀又通过一个下游单向阀 138流回压缩机;多余的制冷剂通过阀141沿旁通管(经过电磁阀2),流入第一节流阀EEV1的出口端。另一路制冷剂与流入第一节流阀EEV1的出口端的制冷剂混合后,经过EEV3膨胀节流,进入热交换器20,从而与温控模块进行热交换,以制取高温冷水,从而供新风机组通过新风处理器23预冷新风,并通过热辐射器21实现室内末端的降温。随后,该另一路制冷剂也通过四通阀流回压缩机,完成一次循环。

其中,阀141(如电磁阀)的通断用于切换除湿模式和非除湿模式,第一节流阀EEV1的开度调节用于调节经过再热器14的制冷剂和主干路上的制冷剂的流量,满足不同的再热要求。

通过上述描述可知,夏季工况下,通过热交换器20直接制备高温冷水供给室内的辐射供冷;利用低温蒸发器通过氟空气换热,对室外新风进行除湿。实现温湿度独立控制,系统能耗相对较低。

2.2.b冬季工况

在实施方式二的技术方案中,冬季工况有两种子模式:制热除湿模式和单独制热模式。

1)制热除湿模式

压缩机30排出的高温高压气态制冷剂,经过四通阀进入热交换器20,通过热交换制取采暖用低温热水。

冷凝后的高压液态制冷剂分为两路:一路制冷剂经另一上游单向阀137’进入再热器14,对除湿后的新风进行加热,同时制冷剂的过冷度进一步增大;之后,一部分制冷剂经过阀141的旁路汇集至第三节流阀EEV3出口管路上,还有一部分制冷剂经第二节流阀EEV2的节流膨胀后,进入蒸发器12对室外新风进行降温除湿,并经另一个下游单向阀138’返回到第一节流阀EEV1 的出口,与经过第一节流阀EEV1节流后的主回路中的气液两相制冷剂汇合。同时,从热交换器20流出的另一路高压液态制冷剂经第三节流阀EEV3的略微减压后,与通过再热器旁路的制冷剂混合后,经过第一节流阀EEV1的膨胀节流,再与从除湿蒸发器12经另一个下游单向阀138’返回的气态制冷剂混合后进入冷凝器12(室外侧风冷换热器),再经四通阀、气液分离器,返回至压缩机,完成一次循环。

其中,调整不同开度的第三节流阀EEV3,可以调节经过再热器14的制冷剂和主干路上的制冷剂的流量,满足不同的再热要求。通过热交换器20,由温度模块所制取的采暖用热水分为两路,一路输送至热辐射器21,从而直接对末端进行温度调节;另一路输送至新风机组中新风处理器23(表冷器),对新风进行预热。

2)单独制热模式

将第二节流阀EEV2和阀141关闭,而保持第三节流阀EEV3全开。此时,因为第二节流阀EEV2关闭,所以没有制冷剂流过蒸发器12,因此无除湿功能。而且,此时只能利用低温热水在新风处理器23(表冷器)内加热新风。而当第二节流阀EEV2关闭且阀141打开时,可以利用过冷状态的高压制冷剂通过再热器14进一步加热新风。

通过以上描述可知,在冬季模式下,实施方式二的技术方案既能够对新风进行预热处理,也能够采用热辐射器21直接加热辐射末端的室内空气,能够使室内迅速达到要求温度。

2.3实施方式三

图3a至图3c描述了实施方式三的技术方案。

如图3a至图3c所示,压缩机30连接有四通阀,以可选择地向所述冷凝器11或蒸发器12输送流体介质。类似地,四通阀的作用在于,在不同的工况下,使压缩机可以利用四通阀向冷凝器11或蒸发器12输送压力介质。在实施方式三中,所述冷凝器11和所述热交换器20串联连接,所述蒸发器 12与串联的所述冷凝器11和热交换器20并联连接,蒸发器12的入口连接于所述压缩机30的排气口和所述四通阀之间的流路上。

优选地,如图所示,所述蒸发器12上游串联有再热器14,该再热器14 用于对所述新风的温度进行调控,从而能够对新风的温度做更为灵活的调控。

如图所示,再热器14上游串联有阀142;和/或所述再热器14和所述蒸发器12之间串联有第二节流阀EEV2,因此一方面能够对制冷剂介质的流量进行调控,同时也能够使得实施方式三的技术方案能够适应于不同的工况,这将在下文中详细描述。再优选地,所述冷凝器11串联有第一节流阀EEV1,所述热交换器20串联连接有第三节流阀EEV3。

以上详细描述了实施方式三的连接结构,下面描述实施方式三的技术方案的在不同工况下的工作原理。

2.3.a夏季工况

在夏季工况中,第一节流阀EEV1全开。压缩机30排出的高温高压制冷剂分为两路,一路进入四通阀,另一路(旁通支路)至再热器14中对除湿后的空气进行再热。该旁通支路的制冷剂流量(即再热量)通过阀142(如电磁阀)来调节。经过再热器14后的制冷剂再经过第二节流阀EEV2的膨胀节流后,进入除湿蒸发器12对室外新风进行降温除湿。进入四通阀的高温高压的制冷剂进入冷凝器11的降温,变为低温高压液体,经过第三节流阀EEV3的膨胀节流后,进入热交换器20制取高温冷水。最后,两路制冷剂在气液分离器前汇集,随后进入压缩机30,完成一次循环。

在温度模块中,制取的高温冷水,一部分旁通至表冷器对新风进行预热,另一部分进入热辐射器21调节末端的室内温度。

通过以上描述可知,在夏季工况下,通过热交换器能够直接制备高温冷水供给室内的辐射供冷;同时低温蒸发器12通过氟空气换热,对室外新风进行除湿。因此,能够实现温湿度的独立控制,并且系统能耗相对较低。

2.3.b冬季工况

在冬季工况下,当需要除湿运行时,第三节流阀EEV3全开。压缩机排出的高温高压制冷剂在进入四通阀前,旁通一路至再热器14中对除湿后的空气进行再热。该旁通支路的制冷剂流量(即再热量)通过阀142来调节,经过第二节流阀EEV2的膨胀节流后进入除湿蒸发器12对室外新风进行降温除湿。

另一路高温高压的制冷剂经过四通阀后,进入热交换器制取采暖用热水。随后经过第一节流阀EEV1的膨胀节流后,进入冷凝器11,变为低压的气态制冷剂,在气液分离器前,与除湿蒸发器的制冷剂汇集后,返回至压缩机,完成一次循环。

在冬季工况下,当需要单独制热时,第二节流阀EEV2和阀142均关闭,没有制冷剂经过再热器14与蒸发器12。此时,仅高温高压的制冷剂通过热交换器20进行热交换来制取采暖用热水。

由于再热器和蒸发器作为对新风的除湿处理的设备,与市场上的VRV系统最大的不同在于:可以从压缩机排气口连接的高压气体管,不经过四通阀而可以经过再热器和蒸发器后连接到压缩机的吸气口连接的低压气体管,如此一来,其可满足冬夏季除湿需求。同时该方案,大量减少阀门的使用,简化控制,使系统更易于实现。

通过以上描述可知,在冬季模式下,实施方式三的技术方案既能够对新风进行预热处理,也能够采用热辐射器21直接加热辐射末端的室内空气,能够使室内迅速达到要求温度。

此外,利用阀142和第二节流阀EEV2的配合,能够实现对除湿功能的选择。

2.4实施方式四

图4a至图4c描述了本申请的实施方式四的技术方案。

如图4a至图4c所示,压缩机30连接有四通阀,以可选择地向所述冷凝器11或蒸发器12输送流体介质。类似于实施方式一,四通阀的作用在于,在不同的工况下,使压缩机可以利用四通阀向冷凝器11或蒸发器12输送压力介质。

在实施方式四中,所述蒸发器12的入口连接于所述冷凝器11和所述热交换器20之间的流路上,所述蒸发器20的出口连接于所述压缩机30的吸气口。因此,当压缩机30向冷凝器11输送介质时,流经冷凝器11的介质将分流至蒸发器12和热交换器20;而当压缩机30向热交换器20输送介质时,介质将分流至蒸发器12和冷凝器11。该工况将在下文中更详细地加以描述。

如图所示,优选情况下,所述空调系统包括再热器14,该再热器14的入口连接于所述压缩机30的排气口和所述四通阀之间的流路上,所述再热器14的出口连接于所述冷凝器11和所述热交换器20之间的流路上。由于设置有再热器14,因此能够对新风的温度进行更为可靠的调控。另外,由于再热器14的入口与压缩机30的排气口相连,因此压缩机30输送的流体介质将分流至上述四通阀和再热器14。

为了满足对介质流向的控制以及适应于不同的工况要求,优选地,所述冷凝器11串联有第一节流阀EEV1;所述蒸发器12串联有第二节流阀EEV2;所述热交换器20串联有第三节流阀EEV3;和/或所述再热器14串联有第四节流阀EEV4。利用这些节流阀还能够对介质的物理状态进行调控,如压力和流量。

以上详细描述了实施方式四的连接结构,下面描述实施方式四的技术方案的在不同工况下的工作原理。

2.4.a夏季工况

在夏季制冷除湿工况中,第一节流阀EEV1全开。压缩机30排出的高温高压制冷剂在进入四通阀前,旁通一路至再热器14中对除湿后的空气进行再热。该旁通支路的制冷剂流量(即再热量)通过第四节流阀EEV4来调节。经过四通阀的另一路制冷剂进入冷凝器11降温成低温高压液体,与来自再热器14的制冷剂汇集后,分为两路。第一路制冷剂经过第二节流阀 EEV2的膨胀节流后,进入除湿蒸发器12对室外新风进行降温除湿;第二路制冷剂经过第三节流阀EEV3的膨胀节流后,进入热交换器20制取高温冷水。最后,两路制冷剂在气液分离器前汇集,进入压缩机,完成一次循环。

通过上述描述可知,在夏季工况下,通过热交换器直接制备高温冷水供给室内的辐射供冷;低温蒸发器12通过氟空气换热,对室外新风进行除湿。因而,实现温湿度独立控制,系统能耗相对较低。

2.4.b冬季工况

在冬季制热除湿模式下,第三节流阀EEV3全开。压缩机30排出的高温高压制冷剂在进入四通阀前,旁通一路至再热器14中对除湿后的空气进行再热。该旁通支路的制冷剂流量(即再热量)通过第四节流阀EEV4调节。经过四通阀的另一路高温高压的制冷剂进入热交换器制取采暖用热水。随后分为两路,一路经过第二节流阀EEV2的膨胀节流后进入除湿蒸发器12对室外新风进行降温除湿;另一路与来自再热器14的制冷剂汇集后,经过第一节流阀EEV1的膨胀节流后,在气液分离器前,与除湿蒸发器12的制冷剂汇集后,返回至压缩机,完成一次循环。

在冬季单纯制热模式下,阀门EEV2、4关闭,再热器14与蒸发器12不走制冷剂。压缩机30排出的高温高压制冷剂不再流向再热器14,而是仅流向热交换器20。

由于再热器和蒸发器作为对新风的除湿处理的设备,其冬夏季制冷剂的流路方向未发生变化,因此该方案最大的不同在于:从压缩机排气口连接的高压气体管,不经过四通阀而经过再热器和蒸发器后连接到压缩机吸气口连接的低压气体管,如此一来,其可满足冬夏季除湿需求。同时该方案,大量减少阀门的使用,简化控制,使系统更易于实现。另外,再热器14和除湿蒸发器12的制冷剂流量可相互独立地进行调节,能够实现空气参数的准确控制。

通过以上描述可知,在冬季模式下,实施方式四的技术方案既能够对新风进行预热处理,也能够采用热辐射器21直接加热辐射末端的室内空气,能够使室内迅速达到要求温度。

以上分别描述了不同实施方式的连接结构及其在不同工况下的运行过程和原理。在没有技术冲突或矛盾的前提下,上述不同实施方式的特征可以相互结合或借鉴,这里不再重复描述。例如,如附图所示,在新风的流向上,所述新风处理器23、所述蒸发器12和所述再热器14(在某些实施方式中再热器14可省略)从上游向下游依次排列,从而对新风的温度和/或湿度进行更为可靠和精确地调整。

按照如此排列,例如当夏季制冷除湿运行时,室外高温高湿的空气先经过23,此时23中通入的冷媒温度与辐射器的温度相同,通常为16-18℃,新风先经过通有16-18℃冷媒的新风处理器23进行预冷降温,温湿度降低至 20-23℃左右,湿度接近饱和后,再通过蒸发器12。此时蒸发器12中通入的是0-8℃的冷媒,新风经过蒸发器12进一步降温,本来通过23后空气就已经接近饱和,此时再通过蒸发器12后,空气会进一步降温,同时空气中的饱和水会大量析出,形成良好的除湿效应。除湿后的新风,再通过再热器14 进行升温,此时再热器14中的载冷/热媒介温度为30-60℃之间,新风经过再热器再热至20℃左右后送入室内,此过程使得室外空气经过了降温、降温除湿、升温的过程,通过硬件的设计及软件的控制,可以实现对空气的精准调节,达到系统所需要的状态。

通过顺序排列的方式,新风可以经过较长时间的流动,并充分与换热器之间进行冷热交换,对空气的精准调节提供了很大的便利。

对于上述排列顺序本申请并不限于此,上述新风处理器23、蒸发器12 和再热器14也可以具有其他的排列顺序。

另外,在实施方式四的基础上进行改进,可以获得如图4d所示的实施方式,其中,新风处理器23可以省略掉。在实施方式一至三中,也可以选择性地省略新风处理器23。在图4d所示的实施方式中,夏季工况和冬季工况的运行原理和过程可以参考实施方式四,同时还可实现除霜模式,其运行原理和过程可参考图4d所示,这里不再详细描述。

另外,如附图所示,也可以在空调系统中设置油分(即油分离器),以将制冷剂介质内的润滑油分离出来,确保系统的可靠运行。

以上所述仅为本申请的较佳实施方式而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1