热传递系统的制作方法

文档序号:17295525发布日期:2019-04-03 04:21阅读:232来源:国知局
热传递系统的制作方法

本发明涉及热传递系统。



背景技术:

世界上几乎所有大的发达城市都具有并入其基础设施中的至少两种类型的能量分配网:一个用于提供加热的网和一个用于提供冷却的网。用于提供加热的网可以例如用于提供舒适和/或过程加热,和/或热的自来水制备。用于提供冷却的网可以例如用于提供舒适和/或过程冷却。

普通的用于提供加热的网是供气网,其提供可燃气体(通常为矿物燃料气体)。由供气网提供的气体在建筑物处局部地燃烧,以提供舒适和/或过程加热,和/或热的自来水制备。替代的用于提供加热的网是区域加热网。区域加热网用于将通常以水的形式的加热的热传递液体提供至城市的建筑物。中央放置的加热泵站用于加热和分配热传递液体。热传递液体经由一个或多个供给管道递送到城市的建筑物且经由一个或多个返回管道返回到加热泵站。在建筑物处的局部,来自热传递液体的热量经由热交换器提取。进一步替代地,电能网的电能可用于加热。电能可例如用于加热自来水或加热用于舒适和/或过程加热的局部热传递液体。

普通的用于提供冷却的网是电能网。电能可例如用于运行冰箱或冰柜。电能可例如用于运行用于提供舒适冷却的空调。替代的用于提供冷却的网是区域冷却网。区域冷却网用于将通常以水的形式的冷冻的热传递液体提供至城市的建筑物。中央放置的冷却泵站用于冷却和分配热传递液体。热传递液体经由一个或多个供给管道递送到城市的建筑物且经由一个或多个返回管道返回到冷却泵站。在建筑物处的局部,来自热传递液体的冷量经由热交换器提取。

用于加热和/或冷却的能量的使用稳定增加,对环境产生负面的影响。通过改善能量分配网中分配的能量的利用率,对环境的负面影响可被降低。因此,需要改善能量分配网中分配的能量的利用率。



技术实现要素:

本发明的目的是解决上述问题中的至少一些。

根据第一方面,提供热传递系统。热传递系统包括:加热回路,其具有:供给管道,其用于具有第一温度的热传递流体的输入流,和返回管道,其用于具有第二温度的热传递流体的返回流,第二温度低于第一温度;冷却回路,其具有:供给管道,其用于具有第三温度的热传递流体的输入流,和返回管道,其用于具有第四温度的热传递流体的返回流,第四温度高于第三温度;和热泵,其具有:第一热交换器,其具有用于循环热传递流体的第一回路和用于循环热传递流体的第二回路,其中第一回路具有连接到冷却回路的入口和出口,第二热交换器,其具有用于循环热传递流体的第三回路和用于循环热传递流体的第四回路,其中第四回路具有连接到加热回路的入口和出口,其中第二回路和第三回路是第一热交换器和第二热交换器的共有回路;其中,第四温度低于第二温度。

在本公开的上下文中,词语“热传递流体”应当被解释为具有传递热能的能力的流体。热传递流体可以将热能从一个地方运到另一个地方。热传递流体可包括水。然而,根据其他实施例,可使用其他热传递流体。一些非限制示例是氨、防冻液(如,乙二醇)、油和乙醇。热传递流体还可包括上面提到的热传递流体中的两个或更多个的混合物。

这允许将由冷却回路中的热传递流体吸收的热量再次用于加热加热回路的热传递流体,该吸收的热量通常经由区域冷却网运离建筑物或者通常使用例如冷却塔将该吸收的热量排放到环境。因此,在冷却回路从建筑物提取热量的需求被降低,同时通过区域加热网或供气网向建筑物提供热量的需求被降低。因此提供了在能量分配网中分配的能量的改善的利用率。

第一回路的入口可连接到冷却回路的返回管道。

第四回路的入口可连接到加热回路的返回管道。

第一回路的出口可连接到冷却回路的返回管道。通过将第一回路的出口连接到冷却回路的返回管道,热泵的安装导致了对热泵的控制系统的干扰的最小化和热泵的控制系统的适应性。

第一回路的入口相对于第一回路的出口可在上游连接到冷却回路的返回管道。

第四回路的出口可连接到加热回路的返回管道。通过将第四回路的出口连接到加热回路的返回管道,热泵的安装导致了对热泵的控制系统的干扰的最小化和热泵的控制系统的适应性。

第四回路的入口相对于第四回路的出口在上游连接到加热回路的返回管道。

第一回路的出口可连接到冷却回路的供给管道。通过将第一回路的出口连接到冷却回路的供给管道,热泵的安装导致了对局部冷却系统的控制系统的干扰的最小化和局部冷却系统的控制系统的适应性。

第四回路的出口可连接到加热回路的供给管道。通过将第四回路的出口连接到加热回路的供给管道,热泵的安装导致了对局部加热系统的控制系统的干扰的最小化和局部加热系统的控制系统的适应性。

共有回路可包括压缩机。

共有回路可包括膨胀阀。

第一热交换器可以是蒸发器热交换器。

第二热交换器可以是冷凝器热交换器。

本发明的进一步的适用范围将根据下面给出的详细说明变得明显。然而,应当理解,尽管指示本发明的优选实施例,但详细说明和具体示例仅通过示例方式给出,因为本发明的范围内的各种变化和修改将根据该详细说明对本领域技术人员是显而易见的。

因此,应当理解,本发明不限于所述装置的具体组件部分或所述方法的步骤,因为这种装置和方法可变化。应当理解,本文使用的技术仅用于描述具体实施例且不旨在限制。必须注意的是,如在说明书和随附权利要求使用的,冠词“一、一个、所述”和“该”旨在意味着存在元件中的一个或多个,除非上下文以其他方式明确说明。因此,例如,提及“单元”或“所述单元”可包括若干装置等。此外,词语“包括”、“包含”、“含有”以及类似的词语不排除其他元件或步骤。

附图说明

现在将参考示出本发明的实施例的附图更详细地描述本发明的以上和其他方面。附图不应当理解为将本发明限制到具体实施例;相反,他们用于解释和理解本发明。

如在图中示出的,为了说明的目的,层和区域的尺寸被放大,并且因此被提供以说明本发明的实施例的一般结构。在全文中,相同的附图标记指代相同元件。

图1是根据一个实施例的热传递系统的示意图。

图2是根据替代的实施例的热传递系统的示意图。

图3是根据又一替代的实施例的热传递系统的示意图。

具体实施方式

现在将参考附图在下面更全面的描述本发明,其中,本发明的当前优选实施例被示出。然而,本发明可以以许多不同的形式实施,并且不应该被解释为限于这里阐述的实施例;相反,提供这些实施例是为了彻底性和完整性,并且向本领域技术人员充分传达本发明的范围。

图1示出热传递系统1。热传递系统1包括加热回路30、冷却回路40和热泵50。热传递系统通常安装在建筑物(未示出)中。在图2和图3中,示出热传递系统1的替代实施例。不同实施例之间的差别是针对热量如何传递到热传递系统1以及如何从热传递系统1传递热量。这将在下面详细讨论。

加热回路30包括供给管道34和返回管道36。供给管道34被配置为将热传递流体从热源32运到散热器38。热源32被配置为加热热传递流体。因此,供给管道34被配置为将加热的热传递流体从热源32运到散热器38。返回管道36被配置为将热传递流体从散热器38运到热源32。散热器38消耗来自热传递流体的热量以加热其环境。因此,热传递流体在散热器38处冷却。因此,返回管道36被配置为将冷却的热传递流体从散热器38运到热源32。换句话说,供给管道34被配置为将具有第一温度的热传递流体的输入流运到散热器38,而返回管道36被配置为从散热器38的运送具有第二温度的热传递流体的返回流,其中,第二温度低于第一温度。

根据非限制示例,在热传递流体主要包括水的情况下,第一温度的范围是25℃至70℃且第二温度的范围是0℃至50℃。如上所述,热传递流体可以是水,但是应当理解,可使用其他流体或流体的混合物。一些非限制示例是氨、防冻液(如,乙二醇)、油和乙醇。混合物的非限制示例是添加有防冻剂(如,乙二醇)的水。

如上所述,热源32被配置为加热加热回路30的热传递流体。热源32可以不同方式实施。根据图1和图3的热传递系统1,热源32可以是热交换器31,其被配置为将热量从区域加热网10传递到加热回路30。这可以通过以下方式完成:使区域加热网10的热传递流体从区域加热网供给管道12流到热交换器31,其中,加热回路30的热传递流体被加热,并且因此区域加热网10的热传递流体被冷却。区域加热网10的冷却的热传递流体此后可返回到区域加热网返回管道14。通常,区域加热网10的热传递流体是水。然而,也可使用其他流体或流体的混合物。一些非限制示例是氨、防冻液(如,乙二醇)、油和乙醇。混合物的非限制示例是添加有防冻剂(如,乙二醇)的水。在区域加热网10的热传递流体主要包括水的情况下,流到热交换器31的热传递流体的温度范围是60℃至95℃。在此情况下,热交换器31通常被设置成使得返回到区域加热返回管道14的热传递流体的温度范围是20℃至50℃。

替代地或组合地,热源32可实施为燃烧器33,其燃烧可燃气体(通常为矿物燃料气体)。结合图2对其进行说明。通过燃烧可燃气体,在热源32处加热加热系统30的热传递流体。可燃气体通常经由供气网16供给到燃烧器33。

如上所述,散热器38被配置为消耗来自热传递流体的热量以加热其环境。消耗热量的过程的非限制示例是在于热的自来水制备、舒适加热和/或过程加热。

冷却回路40包括供给管道44和返回管道46。返回管道46被配置为将热传递流体从冷却器48运到吸热器42。冷却器48被配置为从其环境吸收热量以冷却环境。在冷却器48处,吸收的热量被传递到冷却回路40的热传递流体。因此,返回管道46被配置为将加热的热传递流体从冷却器48运到吸热器42。吸热器42从热传递流体提取热量以冷却热传递流体。因此,热传递流体通过吸热器42被冷却。供给管道44被配置为将热传递流体从吸热器42运到冷却器48。因此,供给管道44被配置为将冷却的热传递流体从吸热器42运到冷却器48。换句话说,供给管道44被配置为将具有第三温度的热传递流体的输入流运到冷却器48,而返回管道46被配置为从冷却器48运送具有第四温度的热传递流体的返回流,其中,第四温度高于第三温度。根据非限制示例,在热传递流体主要包括水的情况下,第三温度的范围是5℃至10℃且第四温度的范围是10℃至15℃。如上所述,热传递流体可以是水,但是应当理解,可使用其他流体或流体的混合物。一些非限制示例是氨、防冻液(如,乙二醇)、油和乙醇。混合物的非限制示例是添加有防冻剂(如,乙二醇)的水。

如上所述,吸热器42被配置为从冷却回路40的热传递流体提取热量。吸热器42可以不同方式实施。根据图1和图2的热传递系统1,吸热器42可以是热交换器41,其被配置为将热量从冷却回路30传递到区域冷却网20。这可以通过以下方式完成:使区域冷却网20的热传递流体从区域冷却网供给管道22流到热交换器41,其中,冷却回路40的热传递流体被冷却,并且因此区域冷却网20的热传递流体被加热。区域冷却网20的加热的热传递流体此后可返回到区域冷却网返回管道24。通常,区域冷却网20的热传递流体是水。然而,也可使用其他流体或流体的混合物。一些非限制示例是氨、防冻液(如,乙二醇)、油和乙醇。混合物的非限制示例是添加有防冻剂(如,乙二醇)的水。在区域冷却网20的热传递流体主要包括水的情况下,流到热交换器41的热传递流体的温度范围是4℃至10℃。在此情况下,热交换器41通常被设置成使得返回到区域冷却返回管道24的热传递流体的温度范围是8℃至12℃。

替代地或组合地,吸热器42可实施为热泵43。热泵42可以是局部冷却机(例如,空调、冰柜、冰箱等)的一部分。结合图3对其进行说明。

如上所述,冷却器48被配置为通过由热传递流体吸收热量来降低其环境的温度。吸收热量的过程的非限制示例是在于舒适冷却、过程冷却、制冷和/或冷冻。

热泵50连接在冷却回路40和加热回路30之间。热泵50被配置为将热量从冷却回路40传递到加热回路30。这允许将由冷却回路40中的热传递流体吸收的热量再次用于加热加热回路30的热传递流体,该吸收的热量通常经由区域冷却网返回管道24运离建筑物或通常使用例如冷却塔将该吸收的热量排放到环境。因此,在冷却回路处从建筑物提取热量的需求被降低,同时通过区域加热网或供气网向建筑物提供热量的需求被降低。因此,热传递系统1的基本原理是将在冷却回路40处吸收的热量在加热回路处再次使用。热泵50用于将冷却回路40中吸收的热量更新到可用的温度水平,该可用的温度水平可在加热回路30中使用。

热泵50包括第一热交换器51和第二热交换器54。第一热交换器51可以是蒸发器热交换器。第二热交换器54可以是冷凝器热交换器。第一热交换器51包括用于循环热传递流体的第一回路52a。第一热交换器51包括用于循环热传递流体的第二回路52b。第一回路52a和第二回路52b彼此不流体接触。第一回路52a具有入口53a和出口53b。第一回路52a的入口53a连接到冷却回路40的返回管道46。在热泵50的操作期间,第一热交换器51被配置为从经由第一回路52a的入口53a进入第一热交换器51的热传递流体吸收热量。经由出口53b返回到冷却回路40的热传递流体将因此被冷却。在图1至图3示出的实施例中,第一回路52a的出口53b连接到冷却回路40的返回管道46。

在第一回路52a的入口53a和出口53b都连接到冷却回路40的返回管道46的情况下,相对于第一回路52a的出口53b,第一回路52a的入口53a优选在上游连接到冷却回路40的返回管道46。

此外,在热泵50在操作中且第一回路52a的入口53a和出口53b都连接到冷却回路40的返回管道46的情况下,将冷却返回管道46的热传递流体。

替代地,或结合第一回路52a的出口53b的上述配置,第一回路52a的出口53b可以连接到冷却回路40的供给管道44。将结合图4在下面更详细的讨论第一回路52a的出口53b与冷却回路40的供给管道44的连接。

根据以上内容,第一回路52a和冷却回路40彼此流体接触。

第二热交换器54包括用于循环热传递流体的第三回路52c。第二热交换器54包括用于循环热传递流体的第四回路52d。第三回路52c和第四回路52d彼此不流体接触。第四回路52d具有入口55a和出口55b。第四回路52d的入口55a连接到加热回路30的返回管道36。在热泵50的操作期间,第二热交换器54被配置为加热经由第四回路52d的入口55a进入第二热交换器54的热传递流体。经由出口55b返回到加热回路40的热传递流体将因此被加热。在图1至图3示出的实施例中,第四回路52d的出口55b连接到加热回路30的返回管道36。

在第四回路52d的入口55a和出口55b都连接到加热回路30的返回管道36的情况下,相对于第四回路52d的出口55b,第四回路52d的入口55a优选在上游连接到加热回路30的返回管道36。

此外,在热泵50在操作中且第四回路52d的入口55a和出口55b都连接到加热回路30的返回管道36的情况下,将加热返回管道36的热传递流体。

替代地,或结合第四回路52d的出口55b的上述配置,第四回路52d的出口55b可以连接到加热回路30的供给管道34。将结合图4在下面更详细的讨论第四回路52d的出口55b与加热回路30的供给管道34的连接。

根据以上内容,第四回路52d和加热回路30彼此流体接触。

第二回路52b和第三回路52c是第一热交换器51和第二热交换器的共有回路56。共有回路56可以进一步包括压缩机57。共有回路56可以进一步包括膨胀阀58。热泵50被配置为将冷却回路40中吸收的热量更新到可用的温度水平,该温度水平可在加热回路30中使用。

如上所述,结合图4,将讨论第一回路52a的出口53b与冷却回路40的供给管道44的连接以及第四回路52d的出口55b与加热回路30的供给管道34的连接。

在冷却回路40处开始。在热泵50在操作中且第一回路52a的出口53b连接到冷却回路40的供给管道44的情况下,将影响供给管道44的热传递流体。在此配置下,有利于控制热泵50使得返回到冷却回路40的供给管道44的热传递流体的温度被控制。优选地,控制热泵50使得返回到冷却回路40的供给管道44的热传递流体的温度具有第三温度。这是因为,第三温度是冷却器48请求的作为输入温度的温度。另外,在此情况下,优选控制吸热器42使得其递送第三温度的热传递流体。替代地,热泵50和吸热器42共同被控制使得它们单独射出的热传递流体在混合时呈现第三温度。

转向加热回路30。在热泵50在操作中且第四回路52d的出口55b连接到加热回路30的供给管道34的情况下,将影响供给管道34的热传递流体。在此配置下,有利于控制热泵50使得返回到加热回路30的供给管道34的热传递流体的温度被控制。优选地,控制热泵50使得返回到加热回路30的供给管道34的热传递流体的温度具有第一温度。这是因为,第一温度是加热器38请求的作为输入温度的温度。另外,在此情况下,优选控制热源32使得其递送第一温度的热传递流体。替代地,热泵50和热源32共同被控制使得它们单独射出的热传递流体在混合时呈现第一温度。

本领域技术人员认识到,本发明并不限于上述优选实施例。相反,许多修改和变体在随附权利要求的范围内是可能的。

例如,热传递系统1可包括多于一个的加热回路30或冷却回路40。在多于一个加热回路30或冷却回路40的情况下,热传递系统1可包括多个热泵50,其中,单个热泵50将一个冷却回路40与一个加热回路30连接。根据非限制示例,热传递系统1包括被配置为向建筑物提供舒适加热的第一加热回路30、被配置为向建筑物提供热自来水制备的第二加热回路30和被配置为向建筑物提供舒适冷却的冷却回路40。该热传递系统1还包括将冷却回路40连接到第一加热回路30的第一热泵50和将冷却回路40连接到第二加热回路30的第二热泵50。

此外,已经讨论了热源32的以上两个替代方案。然而,还可独自或结合使用其他热源32。这种其他热源32的一个示例是电加热器(未示出)。

此外,在图1至图3中,在以上段落中,说明了关于可以如何将热能分配到加热回路30和如何从冷却回路40分配热能的实施方式的一些替代实施例。意识到,可以使用至热传递系统1和来自热传递系统1的热能的这种分配的任何组合。

在结合图1至图3讨论的实施例中,第一回路52a的出口53b连接到冷却回路40的返回管道46,并且在结合图4讨论的实施例中,第一回路52a的出口53b连接到冷却回路40的供给管道44。然而,意识到第一回路52a的出口53b可以连接到冷却回路40的返回管道46和供给管道44两者。在后一情况下,多个阀中的一个阀可用于控制分别进入返回管道46和供给管道44的热传递流体的流量。

在结合图1至图3讨论的实施例中,第四回路52d的出口55b连接到加热回路30的返回管道36,并且在结合图4讨论的实施例中,第四回路52d的出口55b连接到加热回路30的供给管道34。然而,意识到第一回路52d的出口55b可以连接到加热回路30的返回管道36和供给管道34两者。在后一情况下,多个阀中的一个阀可用于控制分别进入返回管道36和供给管道34的热传递流体的流量。

第一回路52a的出口53b到冷却回路40的返回管道46和/或到冷却回路40的供给管道44的连接当然可以独立于第四回路52d的出口55b到加热回路30的返回管道36和/或到加热回路30的供给管道34的连接进行。因此,可使用出口53b、55b的连接的任何排列。

另外,通过研究附图,公开内容和所附权利要求,本领域技术人员在实践所要求保护的发明时可以理解和实现对所公开实施例的变型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1