引风空冷式冷凝器的制作方法

文档序号:17295829发布日期:2019-04-03 04:23阅读:229来源:国知局
引风空冷式冷凝器的制作方法

本发明涉及一种空冷式冷凝器道(air-cooledcondenserstreet),用于冷凝来自例如动力设备(powerplant)的蒸汽轮机的排出蒸汽。

本发明还涉及一种空冷式冷凝器,包括一个或多个空冷式冷凝器道。



背景技术:

用于冷凝来自动力设备的蒸汽的各种空冷式冷凝器(acc)类型在本领域中是已知的。这些空冷式冷凝器利用热交换器,该热交换器通常包括形成管束的多个平行排列的翅片管。管束的管与环境空气接触,当蒸汽通过管时,蒸汽释放出热量并最终冷凝。

通常,两个管束放置在相对于水平倾斜位置。以这种方式,当在管中形成冷凝物时,它可以通过重力流动到管的下端部分并在此收集冷凝物。

根据热交换器的两个束的布置,可以获得所谓的a形热交换器几何形状或v形热交换器几何形状。例如,在us7096666中公开了具有v形热交换器几何形状的空冷式冷凝器,而在us8302670中公开了a型热交换器几何形状的示例。

空冷式冷凝器包括一个或多个主蒸汽歧管,其从蒸汽轮机接收排出蒸汽。那些主蒸汽歧管配置成将蒸汽供应到管束的各个管。通常,主蒸汽歧管在与垂直于垂直轴线z的纵向轴线y平行的方向上延伸,并且主蒸汽歧管连接到束的每个管的一端,以便将蒸汽引入束中。对于v形或a形热交换器几何形状,可以使用单个主蒸汽歧管将蒸汽引入v形或a形热交换器的两个管束。

位于两个管束下方或上方的电动风扇分别产生通过热交换器的强制通风(forcedairdraft)或引风(inducedairdraft)。为了获得足够的空气流量,风扇和束被放置在相对于地平面一定高度处。根据空冷式冷凝器的详细设计,需要例如4米至20米的高度。

空冷式冷凝器通常是所谓的空冷式冷凝器道的组件,其中每个acc道包括多个acc模块。包括与风扇相关联的部件(包括风扇及其马达,风扇支撑结构和管束)的一个acc模块是空冷式冷凝器道的一部分。acc模块排成一排,使得主蒸汽歧管可以向多个模块的管束供应蒸汽。排成一排的多个acc模块形成acc道。这些空冷式冷凝器道中的一个或多个可彼此相邻放置以形成空冷式冷凝器。

空冷式冷凝器包括各种大框架结构,以支撑各种部件,例如管束、主蒸汽歧管、冷凝物歧管和风扇。通常,例如us8302670中所示,下支撑结构可以与位于下支撑结构顶部的上框架结构区分开。下支撑结构包括位于地平面上的腿。例如us8302670所示,配置成支撑风扇的风扇平台(fandeck)位于管束下方,并且风扇平台由下框架结构支撑。上框架结构为热交换器元件的区域提供整体结构支撑,以便为主蒸汽歧管提供支撑元件和为管束提供支撑元件。另外,包括辅助支撑结构的所谓的风墙(windwall)附接到上框架结构。风墙为最小化热空气的再循环之必需。通常,提供额外的支撑结构以允许进行维护活动。

us2010/0147487a1中公开了下框架结构的另一个例子,示出了空冷式冷凝器所需的钢结构的复杂性。

这种类型的空冷式冷凝器的缺点是需要大量的钢来构造各种支撑结构,这增加了空冷式冷凝器的总成本。

另一个缺点是,为了架设空冷式冷凝器,需要大量耗费时间和劳力的工作,包括各种现场焊接活动。



技术实现要素:

本发明的一个目的是提供一种空冷式冷凝器道,其需要较低总量的材料(例如钢和/或混凝土)来构建支撑框架结构。

本发明的另一个目的是提供一种空冷式冷凝器道,其在安装现场竖立更便宜。

进一步目的是提供一种易于进行维护活动的空冷式冷凝器。

本发明的这些目的和其它方面是通过所要求保护的空冷式冷凝器道和空冷式冷凝器来实现的。

根据本发明的第一方面,提供一种空冷式冷凝器道,用于冷凝来自涡轮机的排出蒸汽。这样的空冷式冷凝器道包括单排或一系列相邻排v(i)的v形热交换器,其中i=1至nv且nv≥1,nv为v形热交换器的排数。单排或一系列相邻排的每排包括:

·一个或多个第一管束,相对于由垂直轴线z和垂直于垂直轴线z的纵向轴线y形成的垂直平面(z-y)倾斜角度为-δ1,其中15°<δ1<90°,

·一个或多个第二管束,相对于所述垂直平面以角度+δ2倾斜,其中15°<δ2<90°,并且第一管束和第二管束具有下端和上端,

·主蒸汽歧管,用于将排出蒸汽供应到第一管束和第二管束,主蒸汽歧管在与纵向轴线y平行的方向上延伸,相对于垂直轴线z定位在垂直位置z1,且相对于垂直于轴线z和y的横向轴线x定位在横向位置x(i)处,并且主蒸汽歧管连接到第一管束和第二管束的下端。

空冷式冷凝器道包括一个或多个风扇,用于引起通过单排或一系列相邻排v形热交换器的气流。

空冷式冷凝器道还包括:

一系列平行顶部蒸汽歧管rm(j),用于收集和输送不可冷凝气体和/或在第一或第二管束中未冷凝的蒸汽,其中j=1至nrm且(nv+1)≤nrm≤(2*nv),nrm为平行顶部蒸汽歧管的数量。一系列平行顶部蒸汽歧管的每个顶部蒸汽歧管rm(j)在与纵向轴线y平行的方向上延伸。空冷式冷凝器道构造成使得单排或一系列相邻排的第一管束和第二管束的每个管束以其上端与一系列平行顶部蒸汽歧管rm(j)的顶部蒸汽歧管连接。

空冷式冷凝器还包括一个或多个风扇支撑组件,用于支撑一个或多个风扇,并且其中每个风扇支撑组件包括风扇平台,其配置用于在横向轴线x的方向上桥接一系列平行顶部蒸汽歧管rm(j),并且其中风扇平台连接到一系列平行顶部蒸汽歧管rm(j)。

有利地,通过将平行顶部蒸汽歧管连接到一系列相邻排v形热交换器的单排的管束的上端并且通过将风扇平台连接到顶部蒸汽歧管,没有必要构建上框架结构来支持风扇平台。

有利地,通过将管束放置成v形布置,其中大的主蒸汽歧管位于v形热交换器的顶点区域并且通过将风扇平台连接到平行顶部蒸汽歧管,获得用于支撑风扇、风扇电机和机械驱动器的重量的刚性自支撑结构。

有利地,通过将风扇平台连接到平行顶部蒸汽歧管,给具有以其下端连接到主蒸汽歧管的管束的v形热交换器提供稳定性。特别是,向外部管束提供稳定性。

有利地,空冷式冷凝器道和空冷式冷凝器可以利用简化的下层支撑结构来从地面层提升主蒸汽歧管。鉴于本发明的空冷式冷凝器道的几何形状,提升主蒸汽歧管的支撑结构同时也将管束、平行顶部蒸汽歧管和风扇平台与风扇一起升高。与需要多个支撑结构来支撑空冷式冷凝器的这些各种部件的现有技术配置形成了对比。

有利地,通过使用根据本发明的空冷式冷凝器,可以显著减少构建支撑结构所需的钢量。

有利地,通过使用风扇平台,可以便于接近风扇以执行维护活动。

有利地,由于可以减少要安装的支撑结构的总数,因此减少了竖立空冷式冷凝器的时间和精力。

有利地,通过将一个风扇平台放置在一排或多排v形热交换器的顶部上,减少了竖立冷凝器所需的部件数量。

在实施例中,空冷式冷凝器道包括位于一系列平行顶部蒸汽歧管rm(j)和一个或多个风扇组件的风扇平台之间的一个或多个引导元件。一个或多个引导元件构造成允许风扇平台和顶部蒸汽歧管rm(j)之间不同的热膨胀。

优选地,v形热交换器的排数nv在1≤nv≤6的范围内。

根据本发明的另一方面,提供一种空冷式冷凝器,其包括一个或多个空冷式冷凝器道和支撑结构,所述支撑结构被配置用于相对于地面层升高所述一个或多个空冷式冷凝器道中的每一个的主蒸汽歧管在高度h1>4m,其中h1沿垂直轴线z测量。

附图说明

通过示例并参考附图,将更详细地解释本发明的这些和其他方面,其中:

图1示出了一对管束,它们的下端连接到主蒸汽歧管形成v形热交换器排v(i);

图2示出了根据本发明的空冷式冷凝器道的横截面,其包括单排v形热交换器v(1);

图3示出了根据本发明的空冷式冷凝器道的横截面,其包括双排v形热交换器v(1)和v(2);

图4示出了根据本发明的空冷式冷凝器道的横截面,其包括三排v形热交换器:v(1),v(2)和v(3);

图5示出了包括三排v形热交换器的空冷式冷凝器道的另一个示例的横截面;

图6示出了根据本发明的空冷式冷凝器模块的侧视图;

图7a和图7b示意性地示出了位于风扇平台和平行顶部蒸汽歧管之间的接口元件,

图8示出了由支撑结构升高的空冷式冷凝器道的主视图;

图9示出了由支撑结构支撑的空冷式冷凝器道的侧视图;

图10示出了空冷式冷凝器的横截面,其包括两个空冷式冷凝器道acc(1)和acc(2),由共同的支撑结构支撑;

图11示出了根据本发明的风扇支撑组件的示例的透视图;

图12示出了包括八个空冷式冷凝器道acc(i)的空冷式冷凝器的俯视图,其中每个空冷式冷凝器道包括7个acc模块mod(j);

图13a示出了空冷式冷凝器道的侧视图,其包括两个具有一级,二级和三级管束的acc模块;

图13b示出了图13a所示的空冷式冷凝器道的主视图;

图14示出了支撑主蒸汽歧管的支撑结构的示例的侧视图;

图15示出了根据本发明的包括两个空冷式冷凝器道的空冷式冷凝器的另一个示例。

具体实施方式

附图未按比例绘制。通常,相同的部件在图中用相同的附图标记表示。

根据本发明的第一方面,提供了一种用于冷凝来自蒸汽轮机的排出蒸汽流的空冷式冷凝器道。

根据本发明的空冷式冷凝器道的例子示于图2至图5中。空冷式冷凝器道包括单排或一系列相邻排v(i)热交换器。在图2中,示出了单排空冷式冷凝器道的主视图,而图3示出了双排空冷式冷凝器道的主视图。图4和图5示出了三排空冷式冷凝器道的主视图。

图1中示出了v形热交换器排v(i)的主视图。这种v形热交换器排v(i)包括一个或多个第一管束13,其相对于由垂直轴线z和垂直于该垂直轴线z的纵向轴线y所形成的垂直平面z-y倾斜角度为-δ1,15°<δ1<90°。v形热交换器排还包括一个或多个第二管束14,其相对于垂直平面以角度+δ2倾斜,15°<δ2<90°。每个v形热交换器排包括主蒸汽歧管12,用于将排出蒸汽供应到第一和第二管束。主蒸汽歧管12在与纵向轴线y平行的方向上延伸,并且相对于所述垂直轴线z位于垂直位置z1,并且相对于与轴线z和y垂直的横向轴线x位于横向位置x(i)处。主蒸汽歧管12连接到第一管束13和第二管束14的下端,使得主蒸汽歧管可以向第一和第二管束均提供蒸汽。

如图3至图5所示,如果空冷式冷凝器道包括多于一排的v形热交换器,则主蒸汽歧管相对于垂直轴线z位于相同的位置z1。

管束在本领域中是已知的并且包括多个平行定向的冷凝管。当管形成面板时,管束也可以被命名为管屏(tubepanel)。管束的下端和上端必须被解释为管束的管的下端和上端。因此,管束的下端与主蒸汽歧管的连接须被解释为管束的管与主蒸汽歧管的连接,使得蒸汽可以从主蒸汽歧管流入管束。

由于根据本发明的热交换器具有v形,在第一和第二管束中形成的冷凝物将借助重力流动到主蒸汽歧管。优选地,管束的倾斜角度如下:20°<δ1<35°,20°<δ2<35°。

这些第一管束13和第二管束14以所谓的逆流模式运行,其中蒸汽和冷凝物以相反的方向流动。

在ep0346848中描述了以逆流模式运行的热交换器的示例,其中两个管束以三角形(δ形)几何形状而不是v形几何形状放置,并且每个热交换器使用两个主蒸汽歧管。

根据本发明的空冷式冷凝器道还包括一系列平行顶部蒸汽歧管rm(j),其中j=1至nrm且(nv+1)≤nrm≤(2*nv)。数量nrm对应于空冷式冷凝器道的平行顶部蒸汽歧管的数量。平行顶部蒸汽歧管rm(j)被配置用于收集和输送不可冷凝气体和/或在第一或第二管束中未冷凝的蒸汽。一系列平行顶部蒸汽歧管也在与纵向轴线y平行的方向上延伸。如图3至5所示,平行顶部蒸汽歧管相对于横向轴线x位于不同位置xrm(j),j=1至nrm。

轴线x,y,z形成示例性坐标系,用于表示空冷式冷凝器道的一些部件的取向或相对位置。也可以使用任何其他合适的坐标系来表达这些取向和相对位置。

如图2至图5中进一步所示,空冷式冷凝器道被配置成使得单排或一系列排的v形热交换器的第一管束13和第二管束14的每个管束其上端是与一系列平行顶部蒸汽歧管rm(j)的顶部蒸汽歧管相连接。以这种方式,每个第一管束13和每个第二管束14其下端连接到主蒸汽歧管并且其上端连接到顶部蒸汽歧管。根据本发明的空冷式冷凝器道包括一个或多个风扇51,用于引起通过单排或一系列相邻排的v形热交换器的管束的气流。这些风扇由风扇支撑组件50支撑。

风扇支撑组件50构造成用于支撑一个或多个风扇51,并且每个风扇支撑组件50包括风扇平台52,风扇平台52构造成在横向轴线x的方向上桥接一系列平行顶部蒸汽歧管rm(j)。这在图2和图3中示出,其中风扇平台在x方向上的宽度w被示出为足够长,使得风扇平台桥接空冷式冷凝器道的所有平行顶部蒸汽歧管。

支撑组件50的风扇平台52连接到一系列平行顶部蒸汽歧管rm(j)的顶部蒸汽歧管。这样,如图2至图5所示风扇平台可以搁置在一系列平行顶部蒸汽歧管的顶部。因此,一系列平行顶部蒸汽歧管rm(i)形成支撑组件,用于支撑搁置在平行顶部蒸汽歧管上的风扇平台。有利地,无需额外的支撑结构来支撑风扇平台。

与平行顶部蒸汽歧管连接的风扇平台必须被解释为风扇平台,其连接或搁置在平行顶部蒸汽歧管上。下面将更详细地讨论如何执行风扇平台和平行顶部蒸汽歧管之间的连接的细节。

当风扇平台连接到平行顶部蒸汽歧管时,风扇支撑组件和风扇及其机动化装置的重量由被设计用于支撑这些重量的v形热交换器支撑。

空冷式冷凝器道的热交换器的排数nv没有上限,但为了考虑风扇平台尺寸的上限和风扇平台支持的风扇的最大可用尺寸,最好限制在6的值。在图2中示出了包括单排热交换器v(1)的空冷式冷凝器道的示例。已知的现有技术空冷式冷凝器道通常包括具有单个主蒸汽歧管的单排v形热交换器。如上所述,本发明包括这样的实施例,其中空冷式冷凝器道包括多排彼此相邻放置的v形热交换器,并且其中每排包括其适当的主蒸汽歧管。当使用多排v形热交换器时,v形热交换器每一排的每个主蒸汽歧管12沿z轴位于相同的垂直位置z1,如图3至图5所示。

当空冷式冷凝器道包括多于一排的v形热交换器时,主蒸汽歧管12通常分开距离d>1.5m,其中d沿横向轴线x测量。如图3至5所示,在主蒸汽歧管的中心之间测量距离d。

如上所述,平行顶部蒸汽歧管rm(i)的数量nrm具有范围(nv+1)≤nrm≤(2*nv)的值。在图5中,示出了具有三排v形热交换器和六个平行顶部蒸汽歧管的空冷式冷凝器道的示例。在图4中,示出了具有三排v形热交换器v(1),v(2)和v(3)以及四个平行顶部蒸汽歧管rm(1),rm(2),rm(3)和rm(4)的结构的示例。如图3和图4所示,顶部蒸汽歧管可以连接到两个不同排的两个管束,因此形成一个共同的顶部蒸汽歧管。所需的平行顶部蒸汽歧管的最小数量是nv+1。

示例性风扇支撑组件50在图11中示意性地示出。风扇支撑组件50是配置用于支撑一个或多个风扇的支撑结构。风扇支撑组件50包括风扇平台52和风扇桥54,风扇桥54附接到风扇平台并且被配置用于支撑风扇。通常,作为圆柱形元件的风扇护罩53围绕风扇放置,用于引导气流的方向。在该示例中,如图11所示,风扇支撑组件50被配置为支撑单个风扇(风扇未在图11中示出)并且因此包括单个风扇桥54。在一些实施例中,风扇桥包括额外的安全栏杆(图11中未显示)以允许为维护目的安全接近风扇。

风扇平台52通常是正方形或矩形平台,具有用于放置风扇的圆形开口。风扇平台包括多个支撑梁和盖板(盖板未在图11中示出),其构造成使得气流仅流过圆形开口。风扇护罩位于圆形开口周围以引导气流。风扇平台的沿横向x的宽度w在图2、图3和图11中示出,而风扇平台沿纵向y的长度l在图6和图11中示出。图11示出的实施形态中包括单个风扇,风扇平台具有矩形外形,因此w=l。风扇平台和风扇桥还提供对风扇的接近以执行维护活动。

在根据本发明的实施例中,空冷式冷凝器道包括在与轴线y平行的方向上排列的多个风扇平台。例如图7b和图9所示,三个风扇平台52沿y方向对齐。

如上所述,风扇和风扇组件与管束一起通常被称为模块,因此空冷式冷凝器道可以被解释为沿y轴对齐的多个模块。在图6中,示出了空冷式冷凝器道的一个模块mod(i)的示例。图6中的黑色箭头表示蒸汽和/或不可冷凝气体的流动。在主蒸汽歧管12中流动的蒸汽进入第一和第二管束,在那里蒸汽被冷凝。不可冷凝气体或在第一或第二管束中未冷凝的蒸汽被顶部蒸汽歧管收集并进一步输送。在图9中,示出了具有三个模块mod(i)的空冷式冷凝器道的侧视图,其中,在该示例中,每个模块包括风扇51,风扇平台以及第一和第二管束。

当蒸汽开始流过平行顶部蒸汽歧管时,平行顶部蒸汽歧管温度从环境温度升高到接近蒸汽温度的温度,因此平行顶部蒸汽歧管将热膨胀。由于风扇平台与平行顶部蒸汽歧管相连,平台的温度也会升高,因此风扇平台也会膨胀。为了限制风扇平台和平行顶部蒸汽歧管之间的摩擦,风扇平台应该优选地以风扇平台可以自由膨胀的方式放置在歧管上。

在本发明的优选实施例中,空冷式冷凝器道包括位于一系列平行顶部蒸汽歧管rm(i)和风扇平台之间的一个或多个引导元件71。这些引导元件被配置成使得当平行顶部蒸汽歧管rm(i)和/或风扇平台由于温度差而膨胀时,风扇平台可以自由移动。

在一个实施例中,引导元件包括槽孔。优选地,槽孔设置在风扇平台的末端。在一个优选实施例中,除了槽孔之外,风扇平台在一个位置用螺栓固定到平行顶部蒸汽歧管之一,以便形成固定点。优选地,该固定点位于风扇平台的中心部分。通过这种方式,风扇平台适当地连接到平行顶部蒸汽歧管,同时当风扇平台和平行顶部蒸汽歧管之间存在差异膨胀时,为风扇平台可自由地膨胀提供自由度。在图7a和图7b中,示意性地示出了槽孔71和固定点72。

在一个优选实施例中,根据本发明的空冷式冷凝器道包括一个或多个膨胀开口或膨胀节,以允许与轴线y平行对齐的每个风扇平台在y方向上自由膨胀。在图7b和图9中,示出了沿轴线y对齐的多个风扇平台之间的膨胀开口eo。

如上所述,在管束中形成的冷凝物将通过重力流动到主蒸汽歧管。因此,多个主蒸汽歧管12中的每一个包括冷凝物部分,该冷凝物部分构造成用于收集和排出冷凝物。

在优选实施例中,如图3所示,空冷式冷凝器道包括两排v形热交换器v(1)和v(2)。该优选实施例还包括三个平行顶部蒸汽歧管rm(1),rm(2)和rm(3),其中rm(2)位于rm(1)和rm(3)之间。顶部蒸汽歧管rm(2)形成共同的顶部蒸汽歧管,其与排v(1)的一个管束14连接并且与排v(2)的一个管束13连接。

主蒸汽歧管沿纵向轴线y的长度可在10米到100米之间。鉴于沿y轴的这么长的长度,热交换器通常包括多个第一管束和多个第二管束。例如,在图9中,示出了空冷式冷凝器道的侧视图,其具有三个第一管束13和三个第二管束14。实际上,如上所述,沿y轴的空冷式冷凝器道的长度是长的,因此,第一管束和第二管束的数量可以高于该示例中所示的数量。

如本领域中已知的,每个管束包括多个平行定向的翅片管。翅片管的管长tl在2m≤tl≤12m的范围内。管的长度tl对应于管束的下端和上端之间的距离,如图1所示。

在根据本发明的实施例中,管束包括现有技术的单排管。这些单排管的横截面可以具有例如矩形形状或者椭圆形形状。在其他实施例中,多层圆形芯管可以平行放置以形成管束。

v形热交换器的排v(i)的主蒸汽歧管沿轴线x分开距离d,如图3至图5所示。该距离d取决于管束长度和一对管束之间的角度δ1+δ2。

在示例性实施例中,主蒸汽歧管之间的距离d在5m和6m之间,角度δ1在25°和35°之间,角度δ2在25°和35°之间,管束的长度在4米到6米之间。

v形热交换器的第一管束的长度和第二管束的长度不必相同。例如,在图5中,所有管束具有相同的长度,而在图4的实施例中,一些管束具有不同的长度。图3和图4中所示的实施例包括共同的平行顶部蒸汽歧管,其直径大于其他平行顶部蒸汽歧管。因此,与共同的平行顶部蒸汽歧管连接的管束具有较短的长度。优选地,管的长度和平行顶部蒸汽歧管的直径被限定为使得所有蒸汽歧管rm(i)的顶部处于相同的高度z2以允许风扇平台容易地由所有平行顶部蒸汽歧管支撑。平行顶部蒸汽歧管顶部的这个共同高度z2如图4所示。

根据本发明的主蒸汽歧管12必须被解释为包括入口侧的管道,该入口侧用于接收来自涡轮机的排出蒸汽,并且该管道还构造成将该排出蒸汽分配到v形热交换器的第一和第二管束。主蒸汽歧管通常呈管状,入口侧的直径在0.4米到2.5米之间。直径在沿y轴方向的整个长度上通常不是恒定的,但是直径随着要供给蒸汽的管束的剩余数量而减小。

在运行中,排出蒸汽被供应到第一和第二管束的管其下端,并且当蒸汽在第一和第二管束的管中冷凝时,冷凝物流回到主蒸汽歧管。如上所述,这种运行模式被称为逆流模式,因为蒸汽和冷凝物在相反方向上流动。在ep0346848中公开了一种主蒸汽歧管12的示例,其被配置为提供向管束供应蒸汽和收集在管束中形成的冷凝物的功能。

通常,并非所有蒸汽在单次通过管束的管之后被冷凝,因此存在未冷凝的蒸汽,其离开管的端部并进入顶部蒸汽歧管。此外,不可冷凝的气体也会流到顶部蒸汽歧管。根据本发明的顶部蒸汽歧管必须被解释为连接到第一和第二管束的端部以收集、输送和重新分配未冷凝的蒸汽和未冷凝的气体的管道。顶部蒸汽歧管通常呈管状,典型直径在0.2米到1.0米之间。顶部蒸汽歧管配置成将这些未冷凝蒸汽和不可冷凝气体重新分配到例如进一步冷凝系统或进一步将蒸汽与不可冷凝气体分离的系统。

平行顶部蒸汽歧管不一定在空冷式冷凝器道的沿y轴的整个长度上形成连续管道。顶部蒸汽歧管可以例如分成许多单独的部分或单独的管。平行顶部蒸汽歧管也可以具有不同的隔室,这取决于例如多级冷凝机构的详细实施方式。

在us7096666中,公开了一种具有两个空冷式冷凝器道的空冷式冷凝器配置。在这种配置中,主蒸汽歧管位于热交换器下方,用于将蒸汽供应到管束的下端,并且平行顶部蒸汽歧管连接到管束的上端。在本公开中,平行顶部蒸汽歧管布置成通过管束的上端额外供给蒸汽,并且讨论另一种机构以提取不可冷凝的气体。

在根据本发明的优选实施例中,v形热交换器的每个排v(i)还包括相对于所述垂直平面(z-y)以所述角度-δ1(15°<δ1<90°)倾斜的一个或多个第三管束15、和相对于所述垂直平面(z-y)以所述角度+δ2(15°<δ2<90°)倾斜的一个或多个第四管束16。这在图13a和图13b中示意性地示出,其中示出了该优选实施例的示例的侧视图和主视图。在这种配置中,第三管束15其上端连接到与第一管束13所连接的相同的顶部蒸汽歧管,第四管束16其上端连接到与第二管束14所连接的相同的顶部蒸汽歧管。第三管束15和第四管束16的下端与补充蒸汽歧管85连接,该补充蒸汽歧管85构造成用于输送不可冷凝气体和/或未在第三和第四管束中冷凝的蒸汽。

第一和第二管束通常称为一级管束,第三和第四管束通常称为二级管束。如上所述,一级管束以逆流模式运行,而二级管束以平行流模式运行,其中蒸汽和冷凝物以相同的方向流动。图13a上的黑色箭头表示蒸汽和/或不可冷凝气体的流动。

当空冷式冷凝器运行时,排出蒸汽进入主蒸汽歧管12,在那里蒸汽被分配到第一管束13和第二管束14(即一级管束)的下端。未在第一束中冷凝的蒸汽与不可冷凝的气体一起流到顶部蒸汽歧管,其将剩余的蒸汽输送并供应到第三管束(即二级管束)。类似地,在第二管束中未冷凝的蒸汽被收集在顶部蒸汽歧管中并供应到第四管束以进一步冷凝。

在替代实施例中,补充蒸汽歧管85可以配置作为主蒸汽歧管12的单独隔室。

在根据本发明的空冷式冷凝器道的优选实施例中,如图13a和图13b中进一步示意性地示出的,v形热交换器的每个排v(i)还包括一个或多个第五管束17,每个第五管束17相对于所述垂直平面(z-y)倾斜角度为-δ1,15°<δ1<90°,以及一个或多个第六管束18,每个相对于所述垂直平面(z-y)以角度+δ2倾斜,15°<δ2<90°。对于每排v(i),第五和第六管束它们的下端连接到补充蒸汽歧管85,用于接收不可冷凝气体和在第三和/或第四管束中未冷凝的蒸汽。第五管束17其上端连接到第一排出歧管86,第六管束18其上端连接到第二排出歧管87。这些第一和第二排出歧管构造成用于排出不可冷凝的气体。第五和第六管束也称为三级管束,并且也以逆流模式工作。

在包括一级,二级和三级管束的实施例中,空冷式冷凝器道被配置成使得大部分排出蒸汽在一级管束中冷凝(即50%至80%)并且另一部分是在二级管束中冷凝。在三级管束中,通常只有非常小部分的总排出蒸汽被冷凝(<10%)。如ep0346848中所讨论的,使用一级和二级管束序列可以降低冬季期间管束中冷凝物冻结的风险。这种冻结通常是不可冷凝气体的非有效排空的结果。

如图8和图9所示,空冷式冷凝器道可以升高,以便将主蒸汽歧管12放置在地面层65上方的高度h1处。该高度h1通常在4米到30米之间。由于主蒸汽歧管12位于v形热交换器的顶点区域,因此可以提供简化的支撑结构以将主蒸汽歧管提升到空中。

在根据本发明的实施例中,如图8和图9所示,用于支撑空冷式冷凝器道的主蒸汽歧管12的支撑结构60包括多个与轴线z平行定向的混凝土支撑柱61,并且其在一端连接到地面层并且另一端连接到蒸汽歧管12。在该示例中,不需要支撑钢结构。

通常,空冷式冷凝器不包括单个空冷式冷凝器道,而是多个空冷式冷凝器道彼此相邻放置。例如,在图12中,示意性地示出了一空冷式冷凝器,其包括彼此相邻放置的八个空冷式冷凝器道acc(i)。在该示例中,每个空冷式冷凝器道acc(i)包括沿y轴对齐的七个模块mod(j),并且每个模块包括一个风扇平台52和一个风扇51。每个空冷式冷凝器道acc(i)包括两排v形热交换器,每一排v形热交换器包括主蒸汽歧管12。因此,总的来说,在该示例中,空冷式冷凝器包括16个与主蒸汽管道供应部55连接的主蒸汽歧管12,主蒸汽管道供应部55供应来自涡轮机的排出蒸汽。

本发明的另一个目的是提供一种空冷式冷凝器,它包括多个空冷式冷凝器道和支撑结构60,支撑结构60用于提升多个空冷式冷凝器道在地平面上方的高度h1处。

如图8至10所示,高度h1定义为沿着轴线z测量的蒸汽歧管中心与地面层65之间的距离。在图8和图9所示的示例中,空冷式冷凝器道的主蒸汽歧管通过使用混凝土支撑柱61升高,该混凝土支撑柱61一端连接到主蒸汽歧管12且另一端连接到地面层65。

在图10中,示出了包括两个空冷式冷凝器道acc(1)和acc(2)的空冷式冷凝器的示例。提供了一种支撑两个空冷式冷凝器道的支撑结构。支撑结构包括两个或更多个钢桁架62,钢桁架62在与所述轴线x平行的方向上延伸并且构造成用于支撑两个空冷式冷凝器道。钢桁架由多个混凝土支撑柱61支撑。支撑柱61的一端连接到支撑桁架,另一端连接到地面层65。在该示例中,如图10所示,每个钢桁架62由两个混凝土支撑柱61支撑。利用这种支撑结构,每个空冷式冷凝器道1的主蒸汽歧管12搁置在两个或更多个钢桁架62上。需要支持空冷式冷凝器道的钢桁架62的数量取决于主蒸汽歧管12沿y轴的长度。

在替代实施例中,没有混凝土柱用作支撑结构,相反,空冷式冷凝器3的支撑结构包括三个或更多个单独的钢支撑框架。在图14所示的示例中,三个钢支撑框架sf(i),i=1至3,支撑多个蒸汽歧管12。这三个支撑框架具有上端和下端,下端连接到地面层65,上端连接到空冷式冷凝器道的主蒸汽歧管12。三个独立的钢支撑框架在与轴线x平行的方向上延伸,并且沿y方向位于不同的位置,以便在平行顶部蒸汽歧管三个不同的位置支撑每个空冷式冷凝器道1的主蒸汽歧管12。

优选地,位于sf(1)和sf(2)之间的支撑框架sf(2)具有与主蒸汽歧管12和地面层65的固定连接,而支撑框架sf(1)和sf(3)与主蒸汽歧管12和地面层有可移动的连接。通过在支撑框架的下端和上端使用例如铰链组件95来实现可移动连接。以这种方式,铰链允许蒸汽歧管在存在热差异时膨胀。图14中主蒸汽歧管顶部显示的箭头表示主蒸汽歧管的潜在膨胀方向。

在根据本发明的实施例中,空冷式冷凝器道的单排或一系列排相邻v形热交换器形成自支撑结构,该自支撑结构被配置用于支撑一个或多个风扇支撑组件50和一个或多个风扇51的重量。如图8至图10所示,v形热交换器排支撑风扇平台和安装在风扇平台上的设备(例如风扇和风扇的机动化装置)而无需任何额外的支撑结构。

在替代实施例中,可以添加一些额外的支撑梁68以增加v形热交换器的刚性。例如,如图15所示,一些额外的支撑梁68可以连接到位于空冷式热交换器道的外侧的顶部蒸汽歧管。例如,支撑梁的一端可以连接到顶部蒸汽歧管,而另一端可以连接到下层支撑结构。与构建整个支撑结构来支撑风扇的现有技术装置相比,这些额外的支撑梁68仅代表使用少量额外的钢。利用本发明的当前实施例,通过将风扇平台连接到顶部蒸汽歧管来获得v形热交换器的支撑能力的优点。

已经根据具体实施方式描述了本发明,这些具体实施方式是对本发明的说明而不应被解释为限制。更一般地,本领域技术人员将理解,本发明不限于上文特别示出和/或描述的内容。本发明在于各个和每个新颖的特征和特征的各个和每个组合。权利要求中的附图标记不限制它们的保护范围。使用动词“具有”,“包括”,“由......组成”或任何其他变体,以及它们各自的动词变形,并不排除存在除所述元件之外的元件。在元件之前使用冠词“一”,“一个”或“该”并不排除存在多个这样的元件。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1