能联网管理余热驱动电热冷汽水料污联供系统的制作方法_2

文档序号:10439819阅读:来源:国知局
换模块17、二通阀2、蒸发器7-1余热侧、回流管3等组成的蒸发加热回路,以使蒸发器7-1工质侧的低沸点有机工质7-8吸收余热而气化成有压气体,再流经二通阀2驱动膨胀机7-2旋转做功而降压,并带动发电机7-7发电,以提供电力;经回热器7-3放热降温形成的气液两相流,流经冷凝器7-4工质侧时向回水放热,以凝结成液体并流入储液罐7-5,最后由工质栗7-6驱动,流经二通阀2及回热器7-3吸热升温后,重回蒸发器7-1工质侧,从而形成有机朗肯循环;回水流经传感器数据采集交换模块17、过滤器10、循环栗11、止回阀12、冷凝器7-4水侧,以被工质冷凝加热升温而提供中温热水。
[0047]2、余热驱动换热器提供高温热水:余热载体流经余热管1、总管传感器数据采集交换模块17、分流三通、支管传感器数据采集交换模块17、二通阀2、换热器8余热侧、回流管3等组成的换热回路,以加热另侧回水;而回水则流经传感器数据采集交换模块17、过滤器10、循环栗11、止回阀12进入换热器8水侧,被余热直接加热而升温,以提供高温热水。
[0048]3、余热驱动吸收式机组提供冷水+提供低温热水:余热载体流经余热管1、总管传感器数据采集交换模块17、分流三通、支管传感器数据采集交换模块17、二通阀2、再生器6-1管内、回流管3等组成的再生加热回路,加热管外溶液,以蒸发出水蒸气而被浓缩成吸收液,再由吸收液栗驱动,而滴淋在吸收器6-3管外;水蒸气则流经冷凝器6-4管外,放热并冷凝为冷剂水,再经管路减压而降温,并依重力流入蒸发器6-2中,再由冷剂栗驱动而循环滴淋在蒸发器6-2管外,以吸收回水热量而蒸发成水蒸汽,然后流经吸收器6-3管外,被滴淋的吸收液吸收而成为稀溶液并放热,然后由溶液栗驱动,重新送回再生器6-1管外,经吸热而蒸发。冷回水流经传感器数据采集交换模块17、过滤器10、循环栗11、止回阀12而进入蒸发器6-2管内,被滴淋的冷剂水蒸发吸热而降温以提供冷水;热回水则流经传感器数据采集交换模块17、过滤器1、循环栗11、止回阀12而进入串联连接的吸收器6-3、冷凝器6_4管内,被管外的吸收放热和冷凝放热先后加热并升温,以提供低温热水。
[0049]4、水源热栗机组回收余热提供超高温热水/提供水蒸汽:余热载体流经余热管1、总管传感器数据采集交换模块17、分流三通、支管传感器数据采集交换模块17、二通阀2、蒸发器4-1余热侧、回流管3等组成的热栗热源回路,以使蒸发器4-1工质侧的低压两相热栗工质4-5吸收余热而蒸发成低压过热气态工质,并使余热载体降温后排出;该工质被吸入压缩机4-2,以压缩成高压过热气态工质,再于冷凝器4-3工质侧冷凝为高压过冷液体工质,最后经膨胀阀4-4节流而成为低压两相工质,完成热栗循环,同时把冷凝热量释放给水侧。当回水流经传感器数据采集交换模块17、三通阀9、过滤器10、循环栗11、止回阀12、冷凝器4-3水侦叭三通阀9时,被冷凝热量加热升温以提供超高温热水;而当循环水经闪蒸罐13底部出口与补水混合后,流经三通阀9、过滤器10、循环栗11、止回阀12、冷凝器4-3水侧、三通阀9时,被冷凝热量加热升温,再经节流阀14的减压以及喷嘴15的喷淋,而绝热闪蒸出二次蒸汽,被蒸汽压缩机16压缩之后,经传感器数据采集交换模块17而提供水蒸汽。
[0050]5、余热启动压汽闪蒸装置提供净水:前一轮循环料液节流闪蒸出的二次蒸汽经汽液分离后,由闪蒸罐13顶部出口被蒸汽压缩机16绝热压缩,以提高其温度、压力,使其饱和温度略高于循环料液温度,从而作为热源而输送至凝结回热器5-2净水侧,以在凝结成净水的同时,加热另侧循环料液,以为后一轮循环料液提供闪蒸潜热,一旦余热启动加热料液之后,即可实现回收前一轮闪蒸潜热来加热后一轮循环料液;而净水则流经净水回热器5-3净水侧、循环栗11、止回阀12、传感器数据采集交换模块17流出装置以提供净水,同时释放其降温显热来预热另侧补充污水。
[0051]6、余热启动压汽闪蒸装置提供料液:余热载体流经余热管1、总管传感器数据采集交换模块17、分流三通、支管传感器数据采集交换模块17、二通阀2、加热盘管5-1管内、回流管3等组成的启动加热回路,以启动加热管外料液,使其升温后流经闪蒸罐13底部出口、料液三通、三通阀9、循环栗11、止回阀12、凝结回热器5-2料液侧,以被另侧水蒸汽凝结潜热加热升温,再经节流阀14的节流以及喷嘴15的喷淋,而在闪蒸罐上部形成过热料液雾滴,并迅速释放其降温显热而提供绝热蒸发所需潜热,以闪蒸出二次蒸汽,同时浓缩成饱和料液,其中的一部分经料液三通引入料液回热器5-4料液侧、循环栗11、止回阀12、传感器数据采集交换模块17而流出装置以提供料液,同时释放其降温显热来预热另侧补充污水。
[0052]7、余热启动压汽闪蒸装置处理污水:污水流经传感器数据采集交换模块17、过滤器10、循环栗11、止回阀12、分流三通、并联的净水回热器5-3污水侧和料液回热器5-4污水侦U,分别被另侧的排放净水和排放料液所预热升温,再经合流三通混合后,由三通阀9补充至循环料液中,以压汽闪蒸工艺处理污水。
[0053]8、通过能联网管理集成系统实现分时段、多元化、连续性输出:集成系统各输入、输出部位设置传感器数据采集交换模块17,分别通过有线或无线方式,与互联网终端电脑控制器18之间通讯连接并交换信息,以及通过能量管理程序调度余热输入量和功能输出量,组建能量管理互联网络一能联网,一方面实现连续回收余热,另一方面实现集成系统分时段、连续性输出电热冷汽水料污七项功能,在线满足工业基本动力需求。
[0054]因此与现有余热回收技术相比较,本发明特点如下:
[0055]1、设备多功能化:通过有机朗肯循环机组实现提供电力+提供中温热水双功能,使得机组效率从8 %提高至100 %,提高12.5倍;通过吸收式机组实现提供冷水+提供低温热水双功能,使得机组效率从0.8提高至2.6,提高3.25倍;通过水源热栗机组回收余热实现提供超高温热水/提供水蒸汽双功能,使得机组投资降低50%;通过压汽闪蒸装置实现提供净水+提供料液+处理污水三功能,使得机组投资降低66%;从而实现每台热回收设备输出多项功能,以期成倍提高集成系统回报率并缩短投资回收期,达到合同能源管理所需的经济性要求。
[0056]2、集成系统联供七功能:通过系统集成经过设备多功能化的有机朗肯循环机组、水源热栗机组、吸收式机组、压汽闪蒸装置、换热器等五种设备,实现共同、切换回收余热,联合提供发电、制热、制冷、制汽、制水、制料、污水处理七项功能。
[0057]3、组建能联网:在集成系统各输入、输出部位,设置传感器数据采集交换模块,分别通过有线或无线方式,与互联网终端电脑控制器之间通讯连接并交换信息,以期组建能量管理互联网络一能联网。
[0058]4、能联网远程能量管理集成系统:通过能联网一方面远程管理集成系统的工业余热输入量,以实现连续回收余热;另一方面按工艺需求实现集成系统分时段、连续性输出电热冷汽水料污七项功能,在线满足工业基本动力需求。
[0059]5、回收环境放热:回收有机朗肯循环机组和吸收式机组的环境放热,并提供多种温度热水,以期成倍提高集成系统利用率并缩短投资回收期。
[0060]6、实现工业节能4.0: “互联网+能量”就是工业节能4.0,它将推动中国工业节能向中国创造转型,是整个中国时代性的革命。其特征为:
[0061](I)互联:通过互联网+(热回收设备、工业需求、传感器和客户条件);
[0062](2)数据:通过能联网连接传感器、热回收设备、研发制造、工业链、运营管理、客户需求等大数据;
[0063](3)集成:通过CPS把传感器、嵌入式终端、智能控制、通信设施等组建成为智能网络,再由其形成人-人、人-机器、机器-机器、服务-服务的能联网,实现横向、纵向与终端的高度集成;
[0064](4)创新:机组产品创新、集成系统创新、能联网管理创新、商业模式创新、产业形态创新、组织形式创新;
[0065](5)转型:从一次能源的规模生产转向二次能源的个性化利用,实现能量利用形态的柔性化、个性化、定制化;
[0066]7、节能与环保并举:集成系统成倍降低电、热、冷、汽、水、料、污的驱动能耗、环境放热、输送损失、系统投资,使得节能与环保并举,以期为工业用户提供多品种、高品质、高可靠、信息化的清洁能源服务。
[0067]因此与现有余热回收技术相比较本发明技术优势如下:系统集成多种热回收设备并使各设备多功能化,再组建能联网,进行远程能量管理,实现集成系统按工艺需求,连续、切换回收工业余热及环境放热,分时段、连续性输出发电、制热、制冷、制汽、制水、制料、污水处理等功能,并提供多种温度热水,在线满足工业基本动力需求,降低驱动能耗、环境放热、输送损失、系统投资,节能与环保并举,成倍提高系统利用率和回报率,缩短其投资回收期。
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1