一种渗透汽化杂化复合膜及其制备方法和应用的制作方法

文档序号:4995001阅读:468来源:国知局
专利名称:一种渗透汽化杂化复合膜及其制备方法和应用的制作方法
技术领域
本发明涉及一种渗透汽化杂化复合膜,及其制备方法和应用,属于膜分离领域。
背景技术
渗透汽化是以液体混合物中各组分蒸汽分压差为推动力,依靠各组分通过致密膜的溶解和扩散速度的不同实现分离的过程。渗透汽化分离过程不受热力学平衡的限制,特别适合于普通精馏难于分离或不能分离的近沸或恒沸物、热敏性物质以及同分异构体的分离。渗透汽化膜分离技术流程简单,装置的占地面积小,结构紧凑,操作方便,资源利用率高,附加处理过程少,除存在少量蒸馏残液(或残渣)外,无其他废弃物排放;选择合适的膜,单级就能达到很高的分离度,且便于放大与其他过程集成和耦合。渗透汽化膜分离技术在有机溶剂、废水中少量有机污染物的分离、混合溶剂中微量水的脱除等领域展示了明显的经济和技术优势。在渗透汽化过程中,分离性能直接影响分离效果及处理费用,是整个渗透汽化过程的关键。膜材质的物化结构、被分离组分的物理和化学性质及其与膜材料之间的相互作用,渗透汽化操作条件(温度、料液浓度和分压等)等是渗透汽化分离性能的主要影响因素。市场上渗透汽化膜价格昂贵,是整个渗透汽化应用中急需突破的瓶颈,这使得膜的选择、研制和开发成为渗透汽化膜分离技术的研究重点。在渗透汽化膜材料选择过程中,应根据分离组分选择,应以含量少的组分为优先透过组分;同时还必须考虑膜的各种理化性质 (如抗有机溶剂腐蚀性、热稳定性、机械性能等)。目前已经商品化的渗透汽化膜主要有两种,一种是以亲水性高聚物为原料研制的均质和改性的高分子膜。专利CN101069823中以聚丙烯腈底膜、聚砜底膜或聚醚砜底膜为支撑层,聚乙烯醇与聚丙烯酸共混物做分离层,制得的渗透汽化有机高分子复合膜,并将其应用于甲醇/碳酸二甲酯共沸液的分离。Varghese等(Varghese J G,Kittur A A, Rachipudi P S,et al. Synthesis,characterization and pervaporation performance of chitosan-g-polyaniline membranes for the dehydration ofisopropanol[J]. Journal of Membrane Science,2010,364 (1-2) : 111-121)人以过硫酸铵为引发剂,通过氧化自由基聚合反应,将聚苯胺接枝到壳聚糖,形成壳聚糖-g_聚苯胺膜,并将其用于渗透汽化异丙醇脱水。这种高分子膜具有柔韧性强,成本低,成膜性能好,易于制造等优点;但化学稳定性差,机械强度不高,大多不耐酸碱、高温和有机溶剂等,难以在苛刻条件下使用,所以在某些领域的应用受到限制。另一种渗透汽化膜是分子筛膜。Urtiaga等(Urtiaga A, Gorri E D, Casado C, et al. Pervaporative dehydration of industrial solvents using a zeolite NaA commercial membrane[J]. Separation and Purification Technology,2003,32 (1-3) 207-213)人采用商业化的NaA分子筛膜对含水质量分数为7.9%的四氢呋喃(THF)和 3. 25%的丙酮/水溶液进行了渗透汽化脱水实验。与高分子膜相比,分子筛膜具有很好的热稳定性、生物稳定性、化学稳定性和机械性能。目前分子筛膜的制备是在反应釜中采用水热法完成的,分子筛膜大多负载在无机支撑层(多孔陶瓷、多空金属和多孔玻璃)上。专利 CN101318665采用高温密闭式水热合成法,在多孔莫来石管、管状α-Al2O3和管状不锈钢支撑层上合成了致密的NaY分子筛膜,并将其应用于甲醇/甲基叔丁基醚、乙醇/乙基叔丁基醚和苯/环己烷混合液的渗透汽化分离过程。这种制膜方式的合成条件较为苛刻,制备成本较高,且难以避免膜层厚度的不均勻,从而造成大面积制备困难,填装体积小的缺点。在降低生产成本和增加填装体积的基础上,研制可大面积制备、分离性能优良的渗透汽化膜具有重要的经济和社会价值。本发明针对上述背景技术的局限性,提出一种机械强度高、物化稳定性好的渗透汽化膜材料,并同时提出该渗透汽化膜的制备方法,具有过程简单、可快速成膜,且易于大面积制备的优点;制得的杂化复合膜可用于有机物和水的混合物的分离,便于制成管式或螺旋卷式膜组件,解决装填面积低的问题。

发明内容
本发明的目的之一是提供一种机械强度高、物化稳定性好的渗透汽化杂化复合膜。本发明的另一个目的是提供所述渗透汽化杂化复合膜的制备方法,通过该方法可改善膜的机械强度和物化稳定性,制膜过程简单,可快速成膜,且易于大面积制备。本发明的再一个目的是提供所述渗透汽化杂化复合膜在有机物与水的混合物的渗透汽化分离过程的应用。本发明的上述目的是通过以下技术方案实现的提供一种渗透汽化杂化复合膜,它由分离层和支撑层构成,其中,所述的分离层为亲水性的NaA和PVA的混合物。其中PVA在作为基本制膜材料的基础上,起到胶黏剂的作用,增加了支撑层和分离层的结合能力。优选的方案中,PVA的分子量为2. 5 20万道尔顿;醇解度为87% 89%和 98% 100%,目前优选市场上较多的醇解度为78%、88%、98%&PVA。所述的支撑层优选多孔α -Al2O3陶瓷管或聚四氟乙烯(PTFE)薄膜,由此得到的复合膜可以分别制成管式和螺旋卷式的膜组件。所述的α -Al2O3陶瓷管的孔径优选为0. 1 0. 5 μ m。所述的PTFE薄膜的孔径优选为0. 05 0. 5 μ m。本发明还提供所述渗透汽化杂化复合膜的制备方法,包括以下步骤采用原位水热法制备纳米级的NaA分子筛;将合成的NaA分子筛置于溶剂中配成 NaA分子筛悬浮液;然后将NaA分子筛悬浮液中加入PVA水溶液,通过超声波对混合液进行分散,得到含有NaA和PVA的混合物的铸膜液;将铸膜液均勻涂覆到支撑层上,在30 80°C 下烘干,制得所述的渗透汽化杂化复合膜。所述的制备方法具体包括以下步骤⑴纳米级的NaA分子筛的制备 以硅酸钠(Na2SiO3 · 9H20)为硅源,硫酸铝(Al2SO3 · 18H20)为铝源,按摩尔比 η (Na2O) η (SiO2) η (Al2O3) η (H2O) = (5 9) 2 1 (500 900)配制成分子筛合成液;老化4 12h,在反应釜中75 100°C下晶化18 24h,取出冷却,抽滤,用去离
4子水洗至中性,烘干,得到纳米级的NaA分子筛;(2)将步骤(1)得到的纳米级NaA分子筛加入溶剂中,得到纳米级NaA分子筛悬浮液;将PVA在90°C下回流溶于去离子水中,得到PVA水溶液。(3)将步骤⑵合成的纳米级NaA分子筛悬浮液加入PVA水溶液中,调节 NaA PVA 溶剂的质量比为1 (0. 1 10) (1 15);然后超声波震荡10 30min, 使其充分混合均勻,得到含有NaA和PVA混合物的铸膜液;(4)将步骤(3)得到的含有NaA和PVA的混合物的铸膜液采用涂覆膜方法均勻涂覆到支撑层上,在20 60°C下烘干,即得到所述的渗透汽化杂化复合膜。上述步骤(2)所述的溶剂选自乙醇或水。步骤(2)配成的NaA分子筛悬浮液的质量分数为20% 80% ;PVA水溶液的质量分数为10% 60%。上述步骤(4)中所述的支撑层优选为多孔α -Al2O3陶瓷管或PTFE薄膜。步骤(4)优选重复涂覆和烘干2-5次。步骤(4)所述的涂覆膜方法可以是浸涂法、提拉法、喷涂法或压延法中的任意一种或两种以上。本发明还提供所述的复合膜在有机物与水的混合物的渗透汽化分离过程的应用。所述的有机物与水的混合物包括醇类、醚类、酮类、酯类、酰胺类或醛类与水的混合物,另外还有四氢呋喃和二甲基甲酰胺等有机溶剂的渗透汽化分离,具有较好的分离性能。本发明综合考虑高分子膜和分子筛膜在膜材料本身存在的优缺点,采用NaA和 PVA混合物做为分离层。克服传统分子筛膜制备条件苛刻的缺点,采用浸涂法、提拉法、喷涂法或压延法将NaA与PVA的分散液直接涂覆在管式α -Al2O3或PTFE薄膜等支撑层上制得渗透汽化杂化复合膜,其制膜工艺简单,膜连续性较好、机械和化学稳定性较强,可进一步进行大面积制备,在有机物和水的混合物的渗透汽化分离中显示了优良分离性能。本发明的优点在于分离层性能可控,膜表面连续性好,分离层与支撑层结合较强;制备工艺简单,可快速多次成膜,且易于大面积制备。制备的薄膜可制成管式和卷式膜组件,便于增加膜的装填面积,利于进一步工业放大,具有较高的工业应用和经济价值。


图1为实施例1中制得的NaA/PVA/PTFE复合膜的XRD谱图。(a 合成的NaA分子筛的XRD谱图,b =PTFE微孔膜的XRD谱图,c 原位水热法合成的NaA分子筛/PTFE复合膜的XRD谱图)图2为实施例1中制得的NaA/PVA/PTFE复合膜的表面SEM图。
具体实施例方式实施例1以Na2SiO3 · 9H20为硅源,Al2SO3 · 18H20为铝源,NaOH为碱源,按摩尔比 η (Na2O) η (SiO2) η (Al2O3) η (H2O) = 6:2:1: 750 配制分子筛合成液。在 85°C 下在聚四氟乙烯衬套的不锈钢反应釜中晶化20h,取出骤冷,抽滤,用去离子水洗至中性,干燥后得纳米级NaA分子筛。NaA分子筛和PTFE支撑层的XRD图如图1 (a)和图1 (b)所示。将20g质量分数为40 %的NaA分子筛水溶液加入20g质量分数为40 %的PVA水溶液中,加入16g去离子水,超声波震荡15min,得到NaA PVA 溶剂比值为1 1 5的铸膜液。采用提拉法在α-Al203支撑层上涂膜,3(rC干燥12h,重复涂膜3次后得到NaA/PVA/ α -Al2O3复合膜。复合膜的XRD图如图1 (c)所示,同时包括NaA分子筛和PTFE支撑层的特征衍射峰;复合膜的表面SEM照片如图2所示。复合膜的膜面积为0. 04m2 ;膜层厚度约为8μπι。对制备的杂化复合膜进行表征和渗透汽化性能测定。以质量分数为20%的二甲基甲酰胺/水溶液为分离体系,操作温度为75°C,渗透侧压力为20KPa,得到二甲基甲酰胺 /水溶液的渗透通量为1. 33kg · m_2 · tT1,分离因子为25。实施例2以Na2SiO3 · 9H20为硅源,Al2SO3 · 18H20为铝源,NaOH为碱源,按摩尔比 η (Na2O) η (SiO2) η (Al2O3) η (H2O) = 7:2:1: 800 配制分子筛合成液。在 80°C 下在聚四氟乙烯衬套的不锈钢反应釜中晶化24h,取出骤冷,抽滤,用去离子水洗至中性,干燥后得纳米级NaA分子筛。将IOg质量分数为40%的NaA分子筛悬浮液(乙醇为溶剂)加入30g质量分数为40%的PVA水溶液中,然后加入12g无水乙醇,超声波震荡15min,得到NaA PVA 溶剂比值为1 3 6的铸膜液;其中,溶剂中质量比水乙醇=1 1。采用浸涂法在PTFE 薄膜上涂膜2次,25°C干燥12h,得到NaA/PVA/PTFE复合膜。膜面积为0. 16m2 ;膜层厚度约为7μπι。对制得的杂化复合膜进行了表征和渗透汽化性能测定。以质量分数为20%的乙醇/水溶液为分离体系,操作温度为80°C,渗透侧压力为20KPa,得到乙醇/水溶液的渗透通量为1. 43kg · m_2 · h—1,分离因子为24。实施例3以Na2SiO3 · 9H20为硅源,Al2SO3 · 18H20为铝源,NaOH为碱源,按摩尔比 η (Na2O) η (SiO2) η (Al2O3) η (H2O) = 7:2:1: 800 配制分子筛合成液。在 80°C 下在聚四氟乙烯衬套的不锈钢反应釜中晶化24h,取出骤冷,抽滤,用去离子水洗至中性,干燥后得纳米级NaA分子筛。将30g质量分数为40%的NaA分子筛悬浮液(乙醇为溶剂)加入15g质量分数为40%的PVA水溶液中,然后加入9g无水乙醇,超声波震荡15min,得到NaA PVA 溶剂比值为1 0.5 3的铸膜液;其中,溶剂中质量比水乙醇=1 3。采用浸涂法在PTFE 薄膜上涂膜3次,25°C干燥12h,得到NaA/PVA/PTFE复合膜。膜面积约为0. 16m2 ;膜层厚度约为6μπι。对制得的杂化复合膜进行了表征和渗透汽化性能测定。以质量分数为20%的乙醇/水溶液为分离体系,操作温度为80°C,渗透侧压力为20KPa,得到乙醇/水溶液的渗透通量为1. 55kg · m_2 · h—1,分离因子为19。
权利要求
1.一种渗透汽化杂化复合膜,它由分离层和支撑层构成,其特征在于所述的分离层为亲水性的NaA和PVA的混合物。
2.权利要求1所述的渗透汽化杂化复合膜,其特征在于所述的支撑层为多孔α-Al2O3 陶瓷管或PTFE薄膜;所述的多孔α -Al2O3陶瓷管的孔径为0. 1 0. 5 μ m ;所述的PTFE薄膜的孔径为0. 05 0. 5 μ m。
3.权利要求1所述的渗透汽化杂化复合膜,其特征在于所述的PVA的分子量为2.5 20万道尔顿;醇解度为87% 89%或98% 100%。
4.权利要求1所述的渗透汽化杂化复合膜的制备方法,包括以下步骤采用原位水热法制备纳米级的NaA分子筛;将合成的NaA分子筛置于溶剂中配成NaA分子筛悬浮液 ’然后将NaA分子筛悬浮液中加入PVA水溶液,通过超声波对混合液进行分散,得到含有NaA和 PVA的混合物的铸膜液;将铸膜液均勻涂覆到支撑层上,在30 80°C下烘干,制得所述的渗透汽化杂化复合膜。
5.权利要求4所述的制备方法,其特征在于,具体包括以下步骤(1)纳米级的NaA分子筛的制备以Na2SiO3· 9H20为硅源,Al2SO3 · 18H20为铝源,按摩尔比Na2O SiO2 Al2O3 H2O = 5 9 2 1 500 900配制成分子筛合成液;老化4 12h,在反应釜中75 100°C下晶化18 24h,取出冷却,抽滤,用去离子水洗至中性,烘干,得到纳米级的NaA分子筛;(2)将步骤(1)得到的纳米级NaA分子筛加入溶剂中,得到纳米级NaA分子筛悬浮液; 将PVA在90°C下回流溶于去离子水中,得到PVA水溶液;(3)将步骤(2)合成的纳米级NaA分子筛悬浮液加入步骤⑵得到的PVA水溶液中,调节NaA PVA 溶剂的质量比为1 0. 1 10 1 15 ;然后超声波震荡10 30min,使其充分混合均勻,得到含有NaA和PVA的混合物的铸膜液;(4)将步骤(3)得到的含有NaA和PVA的混合物的铸膜液采用涂覆膜方法均勻涂覆到支撑层上,在20 60°C下烘干,将所述涂覆和烘干重复进行2-5次,即得到所述的渗透汽化杂化复合膜。
6.权利要求5所述的制备方法,其特征在于步骤(2)所述的溶剂选自乙醇或水。
7.权利要求5所述的制备方法,其特征在于步骤⑵配成的NaA分子筛悬浮液的质量分数为20% 80% ;PVA水溶液的质量分数为10% 60%。
8.权利要求5所述的制备方法,其特征在于步骤(4)中所述的支撑层为多孔Ci-Al2O3 陶瓷管或PTFE薄膜。
9.权利要求5所述的制备方法,其特征在于步骤(4)所述的涂覆膜方法是浸涂法、提拉法、喷涂法或压延法中的任意一种或两种以上。
10.权利要求1所述的渗透汽化杂化复合膜在有机物和水的混合物的渗透汽化分离过程的应用;所述的有机物和水的混合物包括醇类、醚类、酮类、酯类、酰胺类、醛类或四氢呋喃与水的混合物。
全文摘要
本发明提供一种渗透汽化杂化复合膜,它由分离层和支撑层构成,所述的分离层为亲水性的NaA和PVA的混合物。本发明的渗透汽化杂化复合膜不仅分离性能好,而且机械强度高、物化稳定性好,制备过程简单,易于大面积制备,利于进一步放大及最终实现工业化生产。本发明还提供所述复合膜的制备方法和在有机物和水的混合物的分离中的应用。
文档编号B01D69/12GK102380320SQ20111024188
公开日2012年3月21日 申请日期2011年8月23日 优先权日2011年8月23日
发明者张环茹 申请人:北京中电加美环境工程技术有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1