通过固态离子交换来生产金属交换的微孔材料的方法与流程

文档序号:11885337阅读:293来源:国知局
Cu-和Fe-交换的微孔材料,如沸石和沸石型材料,是用于例如电厂废气中或者固定和运输应用两者中的柴油发动机废气中的NOx还原的有效催化剂。NOx的催化还原被称作SCR(选择性催化还原)。两个最有名的还原NOx的SCR工艺是:(1)烃SCR(HC-SCR),其中烃被用作还原剂,以及(2)氨SCR(NH3-SCR),其中氨被用作还原剂。在HC-SCR的情况下,烃源是发动机的柴油燃料或者废气中由于发动机中的不完全燃烧而残留的烃。使用NH3-SCR的通用技术是在废气流中注入尿素,其分解以产生所需的用于SCR反应的NH3。产生金属交换沸石的一般方法是使沸石与期望的金属离子溶液接触,随后过滤、洗涤、干燥和在高温(例如>500℃)下煅烧。因此,按照该一般程序,使具有含有Cu、Co或Fe离子的适当溶液如硝酸铜、乙酸铜、乙酸钴、硝酸铁、硫酸铜或硫酸铁的沸石与Na+、K+、H+、NH4+形式或不同的阳离子形式的任意沸石接触通常会产生这样的材料:其在用烃或NH3进行的SCR反应中显示催化活性。金属盐的阴离子的选择在原则上是任意的,但通常选择阴离子,使得获得足够的溶解度,能够在生产期间容易地去除,可安全地操作,并且不以不利的方式与沸石发生相互作用。大多数沸石结构在与Cu、Co或Fe进行离子交换之后产生用于烃SCR和NH3SCR的活性催化剂,最公知的例子是ZSM-5、β、SSZ-13和Y沸石,但是也已知其他沸石类型在进行离子交换之后显示用于SCR的活性。[B.Moden,J.Donohue,W.Cormier,H.Li,Stud.Surf.Sci.Catal.2008,174,1219–1222.;O.aAnunziata,A.R.Beltramone,Z.Juric,L.B.Pierella,F.G.Requejo,Appl.Catal.AGen.2004,264,93–101.;M.Moliner,C.Franch,E.Palomares,M.Grill,A.Corma,Chem.Commun.(Camb).2012,48,8264–6.;C.Franch-Martí,C.Alonso-Escobar,J.L.Jorda,I.Peral,J.Hernández-Fenollosa,A.Corma,A.E.Palomares,F.Rey,G.Guilera,J.Catal.2012,295,22–30.;A.E.Palomares,J..Prato,A.Corma,Catal.Today2002,75,367–371.]实际上,用于SCR反应的活性是由于离子交换的Cu、Co或Fe,并且这些离子在不同沸石结构中的局部化学环境是非常相似的,并且不是非常依赖于沸石的晶体结构。因此,可以期望任何Cu、Co和Fe交换的沸石具有催化活性,或者在一般情况下,如果已知给定的阳离子对于一种类型的沸石具有一定的SCR活性,则可以预期其对其他沸石也显示SCR活性。各种沸石结构的性能差异可以来源于沸石的骨架稳定性的差异或者沸石中交换的Cu或Fe的稳定性的差异[S.Brandenberger,O.M.Casapu,A.Tissler,R.Althoff,Appl.Catal.BEnviron.2011,101,649–659.;P.N.R.T.V.W.Janssens,A.Kustov,M.Grill,A.Puig-Molina,L.F.Lundegaard,R.R.Tiruvalam,P.Concepción,A.Corma,J.Catal.2014,309,477–490.]。沸石的离子交换能力源自这样的事实:某些骨架Si原子被铝原子或其他杂原子替换。由于Si的形式电荷为4+,Al的形式电荷为3+,所以这样的置换在沸石晶体中产生了有效的负电荷,或者通过用形式电荷比Si低的其他杂原子的同晶置换,其被阳离子如H+、NH4+、Na+或K+来平衡。Cu和Fe也可以形成合适的阳离子以平衡该负电荷,这是Cu和Fe交换的沸石可以通过上述方法生产的原因。沸石是多孔结晶硅铝酸盐。还存在其他材料,其不是水合硅酸铝,具有多孔晶体结构和离子交换能力,例如沸石型材料,如硅铝磷酸盐(SAPO)。离子交换能力源于相同的现象:某些骨架原子被具有不同价态的原子置换,并因此需要通过可交换的离子进行电荷补偿。这种材料的一个例子是SAPO材料,其是一种多孔结晶磷酸铝,其中某些磷原子(形式电荷为5+)被Si(形式电荷为4+)替换。还已知用Fe或Cu交换的SAPO材料为用于HC-SCR和NH3-SCR二者的有效催化剂,这样的材料的最有名的例子为Cu-SAPO-34。尽管用于基于沸石的材料和硅铝磷酸盐材料的离子交换方法是基本上相同的,但是在离子交换的效率方面存在显著差异。例如,SSZ-13和SAPO-34材料具有相同的CHA晶体结构,具有基本上相同的孔尺寸和结构。然而,在基于溶液的与Cu的离子交换中,Cu原子分布在SSZ-13材料的整个体积中,但是Cu原子具有沉积在SAPO-34的晶体的外表面的倾向[P.N.R.A.Katerinopoulou,R.R.Tiruvalam,A.Kustov,P.G.Moses,P.Concepcion,A.Corma,ACSCatal.2013,3,2158–2161]。其结果是,在通过基于溶液的离子交换方法获得的SAPO-34材料中,Cu离子交换的程度普遍较低,并且在通过该方法获得的SAPO-34中,铜负载量一般显著低于类似的SSZ-13材料。因此,新鲜的离子交换的Cu-SAPO-34沸石通常具有对于SCR的低活性。已知的是,为了用SAPO-34材料获得用于SCR反应的足够高活性,需要在高温下(>750℃)进行活化(P.N.R.A.Katerinopoulou,R.R.Tiruvalam,A.Kustov,P.G.Moses,P.Concepcion,A.Corma,ACSCatal.2013,3,2158–2161)。已经表明,这样的加热操作导致Cu在整个SAPO-34晶体中的重新分布,意味着更高程度的Cu离子交换。在结晶微孔材料中引入离子的可备选方法是固态离子交换,其包括制备微孔材料和待引入至微孔晶体中的阳离子的化合物的干燥固态混合物,以及随后的会驱动阳离子进入微孔材料中的一些适当处理。(G.L.Price,in:,J.R.Regalbuto(Ed.),CatalystPreparation:ScienceandEngineering,CRCPress,BocaRaton,London,NewYork,2007,pp.283–296.)专利申请US2013/0108544公开了一种用于生产离子交换的微孔材料的方法,其通过在SAPO-34晶体的表面上产生金属氧化物或金属盐颗粒,随后在500至800℃,优选650至750℃下加热12至72小时,以产生金属阳离子。金属氧化物颗粒或金属盐颗粒通过浸渍或沉淀而形成在SAPO-34晶体的表面上。该方法不同于常规的离子交换,因为实际的离子交换步骤是在去除用于浸渍或沉积的液体之后进行的。该方法要求高温和长的加热时间。该方法可以在干燥或湿润的空气中执行。该方法的变型描述于以下文献中:D.Wang,L.Zhang,J.Li,K.Kamasamudram,W.S.Epling,Catal.Today(2013),DOI10.1016/j.cattod.2013.11.040和M.Zamadics,X.Chen,L.Kevan,J.Phys.Chem.(1992)5488。与在SAPO晶体表面上产生金属氧化物颗粒不同,H形式的SAPO-34与CuO物理混合,并在800℃下加热12小时。在两篇文献中均可以确认Cu离子交换的完成。某些固态离子交换可以在550℃下在氧化铜与H-ZSM-5沸石的混合物之间在通常用于通过氨的氮氧化物的选择性催化还原的气体混合物(即N2中约500ppm的NO、530ppm的NH3、5%的H2O)中发生,如从以下观察所推论的:对CuO和H-ZSM-5的混合物的处理产生具有与常规Cu离子交换的H-ZSM-5SCR类似的SCR活性的材料,并且无论是CuO还是H-ZSM-5,其自身均不显示这样的活性(P.N.R.T.V.W.Janssens,A.Kustov,M.Grill,A.Puig-Molina,L.F.Lundegaard,R.R.Tiruvalam,P.Concepción,A.Corma,J.Catal.2014,309,477–490.)。使用铜氧化物和沸石的混合物来在废气纯化中去除含氮化合物也是专利EP1787720中已知的。在该专利中在所有情况下催化剂都是被加热至500℃。专利EP955080公开了用于将Cu、Fe、Co、Mn、Pd、Rh或Pt通过以下方法引入到具有大于5的Si/Al比的沸石中的方法:在室温和大气压下物理混合(i)铵盐、NH3/NH4+-沸石或含N化合物,和(ii)具有大于5的Si/Al比的沸石,以及(iii)选自上述金属的一种或多种化合物的活性化合物,并加热到至少300℃,直到离子交换过程完成,随后冷却至室温。在加热过程中,优选将该混合物暴露于氨或含胺的气氛,并且加热速率大于10K/分钟。专利申请US2013004398公开了一种用于通过使沸石暴露于五羰基铁而将Fe引入至沸石中的方法,其使得能够产生具有比阳离子位置数目更多的铁位点的沸石以及铁在沸石中的均匀分布。使用这种方法,可以在200℃下产生SCR活性的Fe-β催化剂。Fe-SSZ-13(CHA)催化剂的制备包括在700℃下的蒸汽中处理48小时。专利申请US2010075834和WO08009453公开了用于通过混合沸石和活性金属的化合物并且研磨该混合物来生产离子交换(金属掺杂)的沸石的方法。然后将混合物加热到预定的温度,并在该温度保持一定时间。在加热过程中,反应器内的压力降至0-200毫巴。所报道的用于制备Fe-β催化剂的温度是500℃。我们的发明建立在以下观察上:当用金属氧化物和/或盐与结晶微孔材料的物理混合物进行的固态离子交换是在含有NO和NH3的气氛中进行时,大大改善了金属交换的结晶微孔材料的制备。考虑到单独的NO并不增强离子交换过程的事实,这是相当令人惊讶的。本发明的一个优点是,可以在低于300℃的温度下制备金属交换的微孔材料。这提供了在低于300℃的温度下用于SCR活性微孔材料的制备路线。根据上述观察,本发明提供了用于制备金属交换的结晶微孔材料或含有金属交换的结晶微孔材料的混合物的固态离子交换方法,该方法包括以下步骤:提供含有以下物质的干混合物:a)一种或多种显示离子交换能力的结晶微孔材料,和b)一种或多种金属化合物;将混合物在含有氨和一种或多种氮的氧化物的气氛中加热至一定温度和持续一定时间,其足以引发和进行金属化合物的离子和结晶微孔材料的离子的固态离子交换;以及获得结晶的金属交换的微孔材料。本发明的进一步的细节可以在本发明的以下描述和从属权利要求中找到。可以在根据本发明的方法中使用的结晶微孔材料可以是任何具有离子交换能力的微孔材料。优选地,具有离子交换能力的结晶微孔材料是沸石,其是具有任意晶体结构的铝硅酸盐或诸如硅铝磷酸盐的沸石型材料,例如但不限于:AEI、AFX、CHA、KFI、LTA、IMF、ITH、MEL、MFI、SZR、TUN、*BEA、BEC、FAU、FER、MOR、LEV。已知的与在SCR反应中使用相关的这样的材料的最好的例子是,但不局限于,ZSM-5、沸石Y、β-沸石、SSZ-13、SSZ-39、SSZ-62、菱沸石和SAPO-34、SAPO-44、镁碱沸石和TNU-9。优选的实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中结晶微孔材料为H+或NH4+形式。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中结晶微孔材料含有有机结构导向剂。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中金属化合物为金属氧化物、金属硝酸盐、金属磷酸盐、金属硫酸盐、金属草酸盐、金属乙酸盐或其组合。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中金属化合物中的金属选自Fe、Cu和Co或其组合。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中金属化合物包含Cu的一种或多种氧化物。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中氮的氧化物为一氧化氮、二氧化氮或其混合物。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中氨在气氛中的含量为1至5000体积ppm。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中一种或多种氮氧化物在气氛中的含量为1至5000体积ppm。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中氨与氮氧化物的摩尔比大于0.01,优选为0.2至1。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中该气氛中的氧含量为1体积%或更低。另一个实施方案是将所述混合物暴露于含有氨和一种或多种氮氧化物的气氛中,其中该气氛中的水含量为5体积%或更低。另一个优选的实施方案是将所述混合物在100℃至高达300℃,优选150℃至250℃的温度下暴露于含有氨和一种或多种氮氧化物的气氛中。本发明的再一个方面是金属交换的结晶微孔材料或金属交换的结晶微孔材料的混合物,其是通过本发明的任意前述方面和实施方案的方法获得的。本发明的还另一个方面是通过用还原剂进行选择性催化还原而从废气中去除氮氧化物的方法,该方法包括使废气与包含通过本发明的任意前述方面和实施方案的方法获得的金属交换的结晶微孔材料或金属交换的结晶微孔材料的混合物的催化剂接触。在根据本发明的去除氮氧化物的方法的一个实施方案中,还原剂是氨或其前体。在根据本发明的去除氮氧化物的方法的一个实施方案中,还原剂是烃。实施例1通过将CuO和H-ZSM-5沸石混合至12.5wt%的CuO含量来制备催化剂。将催化剂的样品置于石英U形管反应器中,并在受控气氛中在250℃下加热10小时。加热后,将催化剂冷却至200℃并暴露于在N2中的500ppm的NO、533ppm的NH3、5%的H2O和10%的O2的气体混合物,并在2700标升/克催化剂小时的空间速度下测量NO的转化率,作为用于材料的SCR活性的记录。表1提供了在催化剂的10小时制备步骤中使用的气体混合物的处理的概览,以及随后以NO转化率而测量的如此制备的催化剂的SCR活性。从表1的结果可以清楚地看到,当通过在处理气体中存在NH3的条件下加热来制备催化剂时,获得最高的SCR活性。NO的存在增强了NH3的作用,而如果存在NO但没有NH3,其仅具有非常有限的作用或没有作用。当在加热过程中存在水和/或氧气时,获得活性稍弱的材料,因此认为水和氧气的存在是不太有利的。表1:所测量的如实施例1中所述的在不同气氛中处理后的NH3-SCR反应中NOx的转化率在250℃下在以下气氛中处理10小时200℃下的NOx转化率无处理1.4%5%H2O+10%O22.0%500ppmNO+10%O2+5%H2O2.0%530ppmNH3+10%O2+5%H2O2.0%500ppmNO+530ppmNH3+10%O2+5%H2O6.7%10%O21.0%500ppmNO+10%O22.1%530ppmNH3+10%O210.6%500ppmNO+530ppmNH3+10%O211.7%5%H2O3.0%500ppmNO+530ppmNH3+5%H2O18.2%500ppmNO4.6%530ppmNH336.2%500ppmNO+530ppmNH353.0%实施例2该实施例表明,将在250℃下的加热过程从10小时缩短至5小时仅对材料的SCR活性具有很小的影响。如实施例1所述制备两个催化剂样品。将一个样品在含有NH3和NO的气氛中在250℃下加热10小时,将另一个样品在含有NH3和NO的气氛中在250℃下加热5小时。如实施例1所述在200℃下进行的NH3-SCR活性测量表明,用加热5小时的材料获得的NO转化率为50.8%,用加热10小时的材料获得的NO转化率为53.0%。这表明,在250℃下加热的初始时间段是活性材料的制备中最重要的。实施例3该实施例表明,本发明的方法可以通过使用各种宽泛浓度的氨和氮氧化物来生产用于制备活性SCR材料的离子交换的沸石。根据实施例1制备催化剂。还根据该操作测试了催化剂,但是NO和NH3的浓度根据表2而变化。结果表明,NO和NH3的浓度可以在大的浓度范围内变化。表3:在如实施例3所述处理不同沸石之后在NH3-SCR反应中测量的NOx转化率实施例4该实施例表明,本发明的方法可以用于生产具有不同晶体结构的基于沸石的SCR活性材料。根据实施例1描述的操作制备了催化剂并测量了NO转化率,但是使用了H-β沸石或H-SSZ-13沸石来代替H-ZSM-5。表3示出使用不同沸石材料所测量的NO转化率。表3:在如实施例4所述处理不同沸石之后在NH3-SCR反应中测量的NOx转化率实施例5该实施例表明,本发明的方法不限于微孔二氧化硅-铝酸盐的沸石,而是还可以用于具有离子交换能力的其它微孔材料。根据实施例1描述的操作制备了催化剂并测量了NO转化率,但是使用了H-SAPO-34材料代替H-ZSM-5。测得的NO转化率为28.0%。值得注意的是,SCR活性的SAPO-34材料在添加Cu之后未加热至高于250℃。该实施例说明,本发明的方法提供了生产基于SAPO-34的活性催化剂的方法,而不需要在升高的温度(>700℃)下进行活化,而常规离子交换的SAPO-34材料则要求如此[P.N.R.A.Katerinopoulou,R.R.Tiruvalam,A.Kustov,P.G.Moses,P.Concepcion,A.Corma,ACSCatal.2013,3,2158–2161.]。实施例6该实施例表明,本发明的方法优选用于150-300℃的温度范围。将由30mg的H-β沸石和3mg的CuO组成的粉末混合物置于反应器中,并在预定的预处理温度下暴露于由N2中的500ppm的NH3和500ppm的NO组成的气体混合物5小时。预处理后,将温度改变为200℃并将样品暴露于300Nml/min的总流速的在N2中的600ppm的NH3、500ppm的NO、10%的O2和6%的H2O的气体混合物,测量NO的转化率作为材料的SCR活性的记录。表4提供了处理温度的概览,以及随后以NO转化率测量的如此制备的催化剂的SCR活性。表4:如实施例6所述在不同温度下在由500ppm的NH3、500ppm的NO和余量为N2的气体中处理H-β沸石之后在NH3-SCR反应中测量的NOx转化率从表4观察到NO转化率在高于150℃时的显著增高,表明在该温度范围内更有效的离子交换。实施例7该实施例表明,在含有NH3和氮氧化物在气氛中,NH3/NO比率可以在宽范围内变化。将由30mg的H-β沸石和3mg的CuO组成的粉末混合物置于反应器中,并在250℃下暴露于含有500ppm的NO和预定量的NH3的处理气体混合物5小时。预处理后,将样品冷却至200℃并暴露于300Nml/min的总流速的在N2中的600ppm的NH3、500ppm的NO、10%的O2和6%的H2O的气体混合物,并测量NO的转化率作为材料的SCR活性的记录。表5提供了处理气体混合物中NH3含量和NH3/NO比率的概览,以及随后以NO转化率测量的如此制备的催化剂的SCR活性。表5:如实施例7所述在250℃下在由500ppm的NO、500ppm的NH3和余量为N2的气氛中处理H-β沸石之后在NH3-SCR反应中测量的NOx转化率从表5中的数据可以看出,根据本发明的离子交换方法可有效用于含NH3和NO的处理气氛的宽范围组成。如果不存在NH3,则NOx转化率显著降低,表明较低效率的离子交换过程。与仅用NH3处理之后相比,NO转化率提高,在其中清楚地看到NO在NH3存在下对于离子交换工艺的积极作用。实施例8该实施例表明,通过本发明的方法进行的离子交换过程在低的氧浓度下更有效。将由30mg的H-β沸石和3mg的CuO组成的粉末混合物置于反应器中,并在250℃下暴露于含有500ppm的NO、500ppm的NH3和0、1、5或10%的氧气的处理气体混合物5小时。预处理后,将样品冷却至200℃并暴露于300Nml/min的总流速的在N2中的600ppm的NH3、500ppm的NO、10%的O2和6%的H2O的气体混合物,并测量NO的转化率作为材料的SCR活性的记录。表6提供了处理气体混合物中氧气浓度的概览,以及随后以NO转化率测量的如此制备的催化剂的SCR活性。表6:如实施例8所述在250℃下在由500ppm的NH3、500ppm的NO和0、1、5或10%的氧气的气体中处理H-β沸石之后在NH3-SCR反应中测量的NOx的转化率从表6可以看出,在含有1-10%的O2的气体中处理之后,NOx转化率几乎是相同的,而在不含有氧气的气体中处理之后,NOx转化率明显更高,表明在后者情况下更有效的离子交换。实施例9该实施例表明,根据本发明的离子交换过程在低于300℃的温度下更有效。将由30mg的H-β沸石和3mg的CuO组成的粉末混合物置于反应器中,并在150至450℃范围内的各种温度下暴露于在氮气中的含有500ppm的NO和500ppm的NH3的处理气体混合物5小时。预处理后,将样品冷却至200℃并暴露于300Nml/min的总流速的在N2中的600ppm的NH3、500ppm的NO、10%的O2和6%的H2O的气体混合物,并测量NO的转化率作为材料的SCR活性的记录。表7提供了处理温度的概览,以及随后在200℃下以NO转化率测量的如此制备的催化剂的相应SCR活性。表7:如实施例9所述在150至450℃范围内的不同温度下在由500ppm的NH3、500ppm的NO和余量为N2的气体中处理H-β沸石之后在NH3-SCR反应中测量的NOx的转化率表7中的结果表明,NOx转化率在200-325℃下处理之后是最高的,表明根据本发明的离子交换过程在该温度范围内是最有效的。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1