催化型挤出的固体蜂窝体的制作方法

文档序号:18545032发布日期:2019-08-27 21:34阅读:157来源:国知局

WO2008/106519公开了一种选择性催化还原催化剂,其包含:沸石,该沸石具有CHA晶体结构,和大于约15的二氧化硅与氧化铝的摩尔比,和超过约0.25的铜与铝的原子比。在一个实施方案中,该SCR催化剂可以处于由SCR催化剂组合物形成的蜂窝状整料的形式。

本发明人现在已经非常令人惊讶地发现,与没有硅藻土的等同催化剂相比,通过使用硅藻土作为包含铜促进的小孔结晶分子筛催化剂的挤出的固体蜂窝体中的基质组分的成分,改进了该催化剂的选择性催化还原活性,特别是在相对低的温度(例如200-300℃),如通过该挤出的固体蜂窝体中存在的铜促进的小孔结晶分子筛催化剂的重量归一化的催化剂活性的比较所示。

根据第一方面,本发明提供一种挤出的固体蜂窝体,其包含铜促进的小孔结晶分子筛催化剂,用于在还原剂存在下转化氮氧化物,其中该结晶分子筛包含8个四面体原子的最大环尺寸,该挤出的固体蜂窝体包含:20-50重量%的包含硅藻土的基质组分,其中该挤出的固体蜂窝体的2-20重量%是硅藻土;80-50重量%的用铜离子交换的小孔结晶分子筛;和0-10重量%的无机纤维。

该蜂窝体包含在所谓的“流通式”布置中部分地由从其第一端延伸到第二端的泡孔壁限定的平行通道的阵列。该泡孔壁横截面典型地是正方形,但是可以想到任何具体的横截面,例如三角形、六边形、八边形或其非对称组合,例如八边形和正方形横截面的非对称组合。

硅藻土也称作D.E.、硅藻石,是一种天然存在的、柔软的、硅质沉积岩,其容易压碎成细的白色到米白色粉末。它的粒度范围是小于3微米到大于1毫米,但是典型地是5-200微米。烘箱干燥的硅藻土典型的化学组成是80-95%的二氧化硅,和2-4%的氧化铝(大部分归因于粘土矿物)和0.5-2%的氧化铁。硅藻土由硅藻(一类硬壳藻类)的化石遗体组成,并且它们使用显微镜在本发明的产物中是可见的。

分子筛是一种具有非常小的精确和均匀尺寸的孔的材料。这些孔足够小,以阻挡大分子,同时允许小分子通过。柱撑粘土可以被认为是分子筛,但是不具有规则的三维网络结构。非铝硅酸盐沸石(例如SAPO)和铝硅酸盐沸石是用于本发明的具有规则的三维网络结构的分子筛的例子。

基质组分通常是惰性填料。优选地,挤出的固体蜂窝体中的基质组分包含氧化铝、粘土或者氧化铝和粘土二者。基质组分的一个目的是提供用于挤出的固体蜂窝体的骨架,从而选择该挤出的固体蜂窝体中的基质组分的类型和它的含量,与无机纤维(在存在时)相组合,赋予最终产物以所需的强度。一些基质组分还可以贡献令人期望的性能来帮助制造。因此,例如粘土是固有塑性的,这样它们添加到待挤出的组合物中实现或促进所需的塑性水平,或者结合到挤出混合物中,改进糊流动和因此的挤出性能。

使用目前的技术来鉴别最终的挤出的固体蜂窝体的基质组分中的单个成分是困难的(但并非不可能),因为该基质组分可以形成硅酸盐分散体陶瓷。硅酸盐分散体陶瓷包含小颗粒的紧密混合物。取决于颗粒的尺寸,在例如氧化铝和硅酸盐或粘土矿物之间进行区分,和由此确定固体蜂窝体的组成是可能的。可以帮助鉴别基质组分中单个非硅藻土成分的合适的分析技术包括能量色散X射线光谱法(EDX)。但是,如上所述鉴别硅藻土的存在是可能的。

但是,优选地,至少一些粘土在挤出的固体蜂窝体中作为柱撑粘土存在,更具体地柱撑粘土矿物组分,例如高岭土型粘土、蒙脱石型粘土、漂白土、阴离子粘土(层状双氢氧化物)、海泡石或其任意两种或更多种的混合物。与上述的鉴别具体的非柱撑粘土相反,本发明的挤出的固体蜂窝体中的柱撑粘土矿物组分是容易鉴别的,因为它们具有XRD图案,其清楚地显示了作为“信号”的d001线(基础间隔)。高岭土可以选自亚斑脱土、蠕陶土、埃洛石、高岭石、地开石、珍珠陶土及其任意两种或更多种的混合物;蒙脱石可以选自蒙脱石(例如锂蒙脱石)、绿脱石、蛭石、皂石及其任意两种或更多种的混合物;和漂白土可以是蒙脱石或坡缕石(绿坡缕石)。特别优选地,柱撑粘土矿物组分包括柱撑高岭土矿物和/或柱撑斑脱土矿物。

柱撑是将层状结晶无机化合物例如粘土矿物转化成具有化学和热稳定的微孔性(IUPAC标记法<2nm)和/或中孔性(IUPAC标记法2-50nm)的材料的程序,其可以通过XRD图案来鉴别。在该程序中,将外来物质(柱撑剂)引入到粘土矿物的层之间,同时保持该粘土矿物的层化结构。柱撑粘土矿物可以通过以下特性来定义:(i)该层是垂直撑开的,并且在除去带有柱撑剂的溶剂时不坍塌;(ii)基础间隔的最小增加是N2分子的直径,通常用于测量表面积和孔体积:0.315±0.353nm;(iii)柱撑剂具有分子尺寸,并且在分子长度等级上以层间空间来横向隔开;(iv)该层间空间是多孔的,并且至少对于大到N2分子是可接近的;该孔的尺寸没有上限。柱撑粘土矿物可以区别于在粘土矿物的层之间包含外来物质的普通粘土,因为柱撑粘土矿物具有来源于柱撑剂的横向分离的晶内孔隙率。

柱撑剂包括无机和有机化合物。有机化合物包括具有氨基、烯烃和环氧基团的那些,例如咪唑鎓柱撑剂和衍生自例如聚羟基铝柱撑剂的无机水合多氧阳离子,或苯甲酸铁。无机柱撑剂可以是在溶液中形成的大金属-(例如Al、Fe、Ti、Zr、Cr、Ga、Ce、Ta、La)-多氧阳离子,或硅烷(例如3-氨丙基三甲氧基硅烷(APTMS)和2-(2-三氯甲硅烷基乙基)吡啶(TCSEP))。还参见美国专利6521559。

虽然根据本发明第一方面是任选的,但是优选本发明的挤出的固体蜂窝体包含无机纤维。使用无机纤维的优点是改进了可挤出性,以在干燥过程中保持零件的形状(不过如果使用微波干燥,这可能不是必需的,因为微波干燥更快),但是主要用于产品的稳定性(即纤维增强),其能够挤出更长的零件和/或具有更宽横截面的零件和/或用于催化剂会震动的应用例如车辆应用。

优选地,无机纤维是E-玻璃纤维或玄武岩纤维。E-玻璃纤维可以定义为铝-硼硅酸盐玻璃,具有小于1%w/w的碱性氧化物。玄武岩纤维是由极细的玄武岩的纤维制成的材料,其包括矿物斜长石、辉石和橄榄石。

选择使用的无机纤维的长度可以是改进的挤出性和改进的产品稳定性之间的折中,即较短的纤维改进挤出性,但是降低稳定性,反之亦然。但是,优选地,本发明的挤出的固体蜂窝体中存在的纤维长度分布是150-700μm(高斯分布),优选200-500μm,并且中值是约300μm。这样的纤维长度可以在实践中通过将更长长度的纤维,例如约6mm或预先研磨6mm长度获得的约1mm,添加到根据本发明的制造方法的塑性混合物中来引入,然后使用不同的混合参数来实现最终产物中所需的纤维长度分布。这样的混合参数可以包括选择混合叶片,混合叶片速度,叶片间隙,代替叶片使用捏合机或双捏合机,混合物的水含量,混合持续时间等。

小孔结晶分子筛可以是铝硅酸盐沸石、金属取代的铝硅酸盐沸石或非沸石铝磷酸盐分子筛。非沸石铝磷酸盐分子筛可以是铝磷酸盐(AlPO)、金属取代的沸石(MeAlPO)、硅-铝磷酸盐(SAPO)沸石或金属取代的硅-铝磷酸盐(MeAPSO)。合适的取代基金属包括但不限于As、B、Be、Co、Cu、Fe、Ga、Ge、Li、Mg、Mn、Zn和Zr中的一种或多种,优选Cu。

用于本发明的小孔结晶分子筛可以包括已经处理以改进水热稳定性的那些。改进水热稳定性的示例性方法包括:

(i)如下来脱铝:汽蒸和使用酸或络合剂例如(EDTA-乙二胺四乙酸)来酸萃取;用酸和/或络合剂处理;用SiCl4的气流处理(用Si取代沸石骨架中的Al);

(ii)阳离子交换-使用多价阳离子例如La;和

(iii)使用含磷的化合物(参见例如美国专利5,958,818)。

优选地,小孔结晶分子筛不是硅-铝磷酸盐分子筛或非沸石铝磷酸盐分子筛。这部分是因为硅-铝磷酸盐在使用中会吸附大量的水分子,导致晶体单元晶胞收缩和相关的由于水从中解吸而引起的再膨胀,这会导致挤出的固体蜂窝体破裂。吸附在硅-铝磷酸盐中的水还会降低NOx还原活性。

最优选地,用于本发明的小孔结晶分子筛是铝硅酸盐沸石。

优选地,本发明的挤出的固体蜂窝体中的小孔结晶分子筛具有CHA、ERI、FER、AFX或AEI晶体结构,优选CHA和/或AEI。

用于本发明的具有CHA晶体结构的同型体包括AlPO-34、CoAPO-47、DAF-5、GaPO-34、LZ-218、Linde D、Linde R、MeAPO-47、MeAPSO-47、Phi、SAPO-34、SAPO-47、SSZ-13(一种铝硅酸盐)、SSZ-62(一种铝硅酸盐)、UiO-21、ZK-14和ZYT-6。优选地,具有CHA晶体结构的同型体是AlPO-34、SAPO-34、SSZ-13或SSZ-62。

用于本发明的具有AFX晶体结构的同型体包括SAPO-56、MAPSO-56,其中M是Co、Mn或Zr,和SSZ-16(一种铝硅酸盐)。优选地,具有ERI晶体结构的同型体是SSZ-16。

用于本发明的具有FER晶体结构的同型体包括[Bi-Si-O]-FER、[Ga-Si-O]-FER、[Si-O]-FER、FU-9、ISI-6、单斜晶镁碱沸石、NU-23、Sr-D和ZSM-35。优选地,具有FER晶体结构的同型体是ZSM-35。

用于本发明的具有ERI晶体结构的同型体包括AlPO-17、LZ-220、Linde-T和UZM-12。

用于本发明的具有AEI晶体结构的同型体包括AlPO-18、[Co-Al-P-O]-AEI、SAPO-18、SIZ-8和SSZ-39(一种铝硅酸盐)。优选地,具有AEI晶体结构的同型体是SSZ-39。

优选地,挤出的固体蜂窝体中的小孔结晶分子筛的二氧化硅-氧化铝之比是10-50,例如15-40或20-35。

本发明的挤出的固体蜂窝体中的小孔结晶分子筛催化剂是用铜促进的。铜可以通过离子交换、浸渍、同晶型取代等引入到小孔结晶分子筛中。在本发明的挤出的固体蜂窝体中优选的是铜组分在小孔结晶分子筛中离子交换。离子交换可以通过已知的技术来进行,包括固态离子交换(例如,将粉状的铜化合物和氢形式的分子筛的组合研磨,并且在惰性气氛中加热)或“湿”离子交换,例如通过将铵或氢形式的小孔分子筛与铜化合物例如硝酸铜、硫酸铜或醋酸铜,优选醋酸铜的溶液合并。

已经在小孔结晶分子筛中离子交换的铜可以在与基质组分混合(即预成形)之前进行离子交换,和/或铜组分可以作为离子交换前体添加到混合物。铜组分还可以作为“游离铜”,例如未交换的CuO颗粒存在。

优选的是小孔结晶分子筛中铜的总重量%是1.0-5.0重量%(包括端点)铜,例如2.0-4.0重量%(包括端点),最优选2.5-3.5重量%(包括端点)。

铜促进的小孔结晶分子筛催化剂中铜促进剂的量可以表示为铜与铝的原子比。优选地,铜与铝的原子比是0.06-1.22。这个范围不是随机选择的。当小孔结晶分子筛的二氧化硅-氧化铝之比(SAR)是10和铜负载量是1.0重量%时,铜与铝的原子比是0.06;而当SAR是50和铜负载量是5.0重量%时,铜与铝原子比是1.22。用于从已知的SAR和表示为重量百分比的铜负载量来确定铜与铝原子比的等式可以表示为:

Cu/Al原子=X/63.5/(1×2/(SAR×60+102)),

其中“X”是铜的重量%。

在本发明的挤出的固体蜂窝体中优选的是硅藻土包含氧化铁,其中挤出的固体蜂窝体中Fe:Cu重量比可以是1:5-1:20,优选1:8-1:15,最优选约1:12。

挤出的固体蜂窝体的壁孔隙率可以是40-60%,和优选>50%。孔隙率可以通过水银孔隙率法来测定。

挤出的固体蜂窝体的泡孔壁厚度可以是150-250μm,例如175-225μm。本发明人已经发现,如果泡孔壁厚度远小于200μm,则会降低NOx还原活性。此外,本发明人发现,随着泡孔壁厚度增加到远高于200μm,NOx转化率没有显著改进(即质量转移限制效应),但是当用于排气系统时处于不期望的背压增加(即降低了挤出的固体蜂窝体的开放的前区(OFA))。

本发明的挤出的固体蜂窝体的泡孔密度可以>62个泡孔cm-2(>400个泡孔/平方英寸(cpsi)),优选155个泡孔cm-2(1000cpsi)或>62个泡孔cm-2(>400cpsi)或更大,例如93个泡孔cm-2(600cpsi)或更大到124个泡孔cm-2(800cpsi)或更低,最优选约93个泡孔cm-2(600cpsi)。本发明人已经发现,对于相同的泡孔壁厚度,93个泡孔cm-2(600cpsi)挤出的固体蜂窝体具有比62个泡孔cm-2(400cpsi)挤出的相同配制物更好的性能。虽然由于OFA相应的降低,泡孔密度的增加应当用背压的任何增加来平衡(假定泡孔壁厚度保持恒定),但是NOx还原活性足够显著,优选更高的泡孔密度。

本发明的挤出的固体蜂窝体可以涂覆有催化涂层。

一种或多种催化涂层可以用于将NH3氧化成N2。这样的催化剂经常被称作氨泄漏催化剂或ASC。合适的ASC可以包含相对低的负载量,例如14.2-28.3g/l(0.5-10g/ft3)的铂族金属,例如铂或者铂和钯二者,其负载于合适的颗粒金属氧化物载体材料例如氧化铝上。在一种特别优选的ASC中,在直接位于挤出的固体蜂窝体的表面上的第一层中施用相对低负载量的铂族金属/颗粒金属氧化物载体材料,并且施用用于使用含氮还原剂转化NOx的催化涂层,即选择性催化还原催化剂作为直接位于第一层上的第二层。选择性催化还原(SCR)催化剂可以是基于氧化钒的SCR催化剂,例如V2O5/TiO2或V2O5/WO3/TiO2;或者用过渡金属例如铜和/或铁促进的结晶分子筛。优选的两层布置促进对于N2的更大选择性。

为了不干扰挤出的固体蜂窝体用于在还原剂存在下转化氮氧化物的主要目的,ASC优选涂覆到要在使用中布置到排气系统下游侧的区域上。该区域在一端是通过该挤出的固体蜂窝体的第一端所限定的基本均匀的长度,在另一端是从第一端测量的该挤出的固体蜂窝体的总长度的最大50%(≤40%或≤30%,例如≤20%)的长度。

一种或多种催化涂层可以用于使用含氮还原剂来转化NOx,即选择性催化还原(SCR)催化剂。SCR催化剂可以是基于氧化钒的SCR催化剂,例如V2O5/TiO2或V2O5/WO3/TiO2;或者结晶分子筛,优选铝硅酸盐沸石,其用过渡金属例如铜和/或铁促进。优选地,使用铜和/或铁促进的结晶分子筛催化剂,在该情况中催化剂可以与挤出的催化剂相同或不同。优选的结晶分子筛包括具有CHA、AEI、FER、MFI或BEA晶体结构的那些。优选小孔分子筛,即具有8个四面体原子的最大环尺寸的那些。

ASC和SCR催化剂涂层可以合并,其中要在使用中布置在排气系统上游侧的区域可以用SCR催化剂涂覆,和在要使用中布置在下游侧的区域可以用ASC涂覆。优选地,在SCR催化剂涂层和ASC之间不存在间隙。

根据第二方面,本发明提供一种排气系统,其包含根据前述权利要求中任一项的挤出的固体蜂窝体。

排气系统优选地包含注射器,用于将含氮还原剂注入到挤出的固体蜂窝体上游的流动废气中。但是,NH3也可以通过使上游NOx吸收剂催化剂与富废气接触来原位产生,例如定期产生以再生NOx吸收剂催化剂,例如Ba(NO3)2+8H2→BaO+2NH3+5H2O。

排气系统还可以包含位于挤出的固体蜂窝体上游的单独基底上的氧化催化剂或NOx吸收剂催化剂,尤其用于将一氧化氮氧化成二氧化氮。SCR催化剂催化以下反应:(i)4NH3+4NO+O2→4N2+6H2O(即1:1NH3:NO);(ii)4NH3+2NO+2NO2→4N2+6H2O(即1:1NH3:NOx;和(iii)8NH3+6NO2→7N2+12H2O(即4:3NH3:NOx)。反应(ii)最快,并且促进低温NOx还原。反应(i)第二快。为了获得NO2以促进反应(ii),需要在本发明的挤出的固体蜂窝体上游将NO氧化成NO2。

根据第三方面,本发明提供一种内燃机,其包含本发明第二方面的排气系统。

根据第四方面,本发明提供一种车辆,其包含本发明第三方面的内燃机。

根据第五方面,本发明提供一种转化气体中的氮氧化物(NOx)的方法,其包括将含氮还原剂添加到该气体中以产生气体混合物;和使该气体混合物与本发明第一方面的挤出的固体蜂窝体接触。

根据第六方面,本发明提供本发明第一方面的挤出的固体蜂窝体的用途,用于用含氮还原剂来转化气体中的氮氧化物(NOx)。

根据第七方面,本发明提供一种制造挤出的固体蜂窝体的方法,其包括步骤:(a)通过将粉状的硅藻土基质组分;粉状的另外的基质组分;粉状的小孔结晶分子筛,其中该小孔结晶分子筛包含8个四面体原子的最大环尺寸;铜组分;任选的无机纤维;和酸或碱水溶液混合和/或捏合在一起来形成塑性混合物,其中该铜组分包含铜,其已经在混合步骤之前在该小孔结晶分子筛中进行了离子交换,和/或该铜组分作为离子交换前体添加到该混合物,其中该粉状的小孔结晶分子筛作为其H+或NH4+形式添加到该混合物,并且该小孔结晶分子筛用该铜原位离子交换;(b)将该塑性混合物挤出成湿蜂窝体,干燥挤出的蜂窝体和煅烧它以形成挤出的固体蜂窝体;和(c)选择起始材料的定量比例,以使得该挤出的固体蜂窝体包含20-50重量%的包含硅藻土的基质组分,其中该挤出的固体蜂窝体的2-20重量%是硅藻土;80-50重量%的用铜离子交换的该小孔结晶分子筛;和0-10重量%的无机纤维。

“湿”挤出的材料可以使用标准技术干燥和煅烧,包括冻干和微波干燥(参见WO2009/080155)。

优选地,挤出的固体蜂窝体中另外的基质组分包括氧化铝。氧化铝可以衍生自氧化铝前体例如勃姆石,其包括在该方法的塑性混合物中;和/或直接添加,优选作为氧化铝溶胶,其改进了挤出的固体蜂窝体的强度。

优选地,该方法包括将粘土包含在塑性混合物中作为另外的基质组分。最优选地,另外的基质组分包含氧化铝和粘土二者。粘土优选是斑脱土、高岭土和耐火粘土的组合。美国环境保护局将耐火粘土非常通常地定义为“矿物聚集体,包含含水的铝的硅酸盐(Al2O3·2SiO2·2H2O),具有或不具有游离二氧化硅”。要被称作“耐火粘土”,该材料必须经受1515℃(2759°F)的最小温度。耐火粘土的范围从燧石粘土到塑性耐火粘土,但是也存在着半燧石和半塑性耐火粘土。耐火粘土由天然粘土材料组成,大部分是高岭石族粘土,以及细粒云母和石英,并且还可以包含有机物质和硫化合物。优选的是使用具有最低碱金属含量的粘土,因为改进了形成的催化活性,特别是在相对低的温度。

优选的是耐火粘土相对于存在的粘土总量以大部分的重量%存在。这是因为与斑脱土粘土矿物相比,耐火粘土可以增加混合物的塑性(用于改进的挤出行为),但是在干燥和煅烧时收缩较小。

铜组分可以作为离子交换前体添加到混合物中,其中该离子交换前体可以是硝酸铜、硫酸铜、氧化铜或醋酸铜,但是优选醋酸铜。

使用有机助剂来改进加工或者将所需的属性引入最终产品中,但是在煅烧步骤中烧除。这样的材料可以改进加工塑性,以及改进最终产品中的孔隙率,和因此改进产品在使用中的质量传递,因为它们在煅烧过程中烧除,留下空隙。适用于本发明第七方面的方法的有机助剂包括丙烯酸纤维(挤出助剂和成孔剂)、纤维素衍生物(增塑剂和/或干燥助剂)、其他有机增塑剂(例如聚乙烯醇(PVA)或聚环氧乙烷(PEO))、润滑剂(挤出助剂)和水溶性树脂中的至少一种。

为了更充分地理解本发明,以仅示例的方式提供以下实施例。

实施例

实施例1和对比例

根据类似于US7,507,684中公开的那些的方法来制造两种挤出的沸石整料基底:对比例和本发明的实施例(实施例1)。对于对比例,将粉状的铜交换的铝硅酸盐CHA沸石与粘土矿物和粉状的合成勃姆石氧化铝(Pural)混合,并且在pH值为5-6的水溶液中,通过与羧甲基纤维素、增塑剂/挤出助剂Zusoplast(油酸、二醇、酸和醇的混合物(Zschimmer&Schwarz GmbH&Co KG的商标名))和有机助剂PEO商标名Alkox(一种聚环氧乙烷)混合,来加工成可成形的和可流动的浆料(slip),以与硅藻土和其他基质组分组合来提供所需的孔隙率水平。以这样的方式选择起始材料的定量比例,以使得最终的固体催化剂体的活性材料包含60重量%的CuCHA,31重量%的γ-Al2O3和粘土矿物,和10重量%的玻璃纤维。将该可成形的混合物挤出成流通式蜂窝催化剂体,即具有连续的通道和具有圆形横截面,泡孔密度是62个泡孔cm-2(400cpsi(泡孔每平方英寸))。随后,根据WO2009/080155中所述的方法将该催化剂体在2毫巴冻干1小时,和在580℃的温度煅烧以形成固体催化剂体。

对于本发明的实施例,将一定量的市售硅藻土添加到对比例的混合物中。以这样的方式选择起始材料,以使得最终的固体催化剂体的活性材料包含58.5重量%的CuCHA,23重量%的γ-Al2O3和粘土矿物,7重量%的玻璃纤维,和12重量%的硅藻土。将该催化剂体挤出成与对比例相同的泡孔密度和横截面,并且以相同的方式干燥和煅烧。

表1

实施例2–催化剂测试

将对比例和实施例1的相同体积的样品在合成催化活性测试(SCAT)设备中,使用以下入口气体混合物在选择的入口气体温度进行测试:100ppm的NOx(NO2=0ppm),100ppm的NH3,7%的H2O,9.4%的O2,余量的N2,空速是60,000h-1。表2通过不同温度的蜂窝体积(XNOx/V)和蜂窝重量(XNOx/M)给出了NOx转化率的结果。

表2

从这些结果可见,蜂窝体单位体积的催化剂活性几乎相同,不过实施例1的催化剂具有1.5重量%的更低的CuCHA存在。但是,当通过单位蜂窝重量来表示NOx转化活性(参见表2中所示的%差值)时,可以看到实施例1的催化剂的活性大于对比例。从这些数据,本发明人得出结论,向用于NH3-SCR催化剂的挤出物组合物中添加硅藻土产生具有增加的NOx还原活性的更多的催化剂。

为了避免任何疑义,在此引用的全部现有技术文献的整个内容在此通过引入。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1