用于天然气升级的高选择性聚降冰片烯均聚物膜的制作方法

文档序号:16039456发布日期:2018-11-24 10:21阅读:272来源:国知局

本申请要求2016年3月1日提交的美国专利申请15/057,894的优先权,其全部内容通过引用并入本文。

本公开的实施例大体上涉及降冰片烯均聚物膜和其分离天然气分子的能力。

背景技术

消费者使用的天然气几乎完全由甲烷构成。然而,在井口发现的天然气虽然仍然主要由甲烷构成,但绝不是纯净的。天然气通常从三个不同的来源分离得到:油井、气井和凝析气井,但无论天然气的来源如何,它通常与其它烃混合存在;主要是乙烷、丙烷、丁烷和戊烷。这些烃中的每一种都具有相似的尺寸和极性。戊烷是一种较大的烃,比较容易分离,但对于较小的烃来说,分离是一项具有挑战性的工作。

在气体分离领域中使用的大多数膜衍生自玻璃状聚合物,并且通常不能用于重质烃分离。大多数玻璃状聚合物相对于丙烷、丁烷和其它气体来说具有高甲烷渗透性,并且这些玻璃状聚合物没有足够的选择性来区分重质烃与甲烷。玻璃状聚合物膜已被用于有效地分离空气样品中的氧气和氮气,并且还用于将丁醇与其它生物燃料分离;然而,这些玻璃状聚合物膜只能实现低烃选择性,因此无法进行充分的分离以用于天然气升级应用。相比之下,橡胶状聚合物,例如聚二甲基硅氧烷(polydimethylsiloxane,pdms),具有高渗透性,但通常具有较低的选择性。此外,玻璃状聚合物膜往往会因为老化而导致性能下降。老化是由自由体积的坍塌引起的,这往往会导致渗透性降低。



技术实现要素:

因此,一直需要改进的天然气升级膜,其实现高选择性,同时保持合适的渗透性和长的膜寿命。

本公开的实施例涉及交联的烷氧基甲硅烷基聚降冰片烯均聚物制剂、制备交联的烷氧基甲硅烷基聚降冰片烯均聚物制剂的方法以及掺入了这些交联的烷氧基甲硅烷基降冰片烯均聚物制剂的膜的方法,其中这些降冰片烯均聚物膜显示出高选择性、合适的渗透性和较高的耐老化性和耐塑化性,特别是在天然气升级应用中。膜的特征在于权衡了各种关系,其中提高的选择性伴随着不希望的渗透性降低。然而,本发明交联的烷氧基甲硅烷基聚降冰片烯均聚物制剂的侧链烷氧基甲硅烷基部分保持高渗透性,同时实现较高的选择性,这是三甲基甲硅烷基取代的聚合物做不到的。此外,在天然气升级应用中使用的现有聚降冰片烯在50psi的纯气体条件下所能实现的最大丙烷/甲烷(c3h8/ch4)选择性较低,是3,而本发明的交联的烷氧基甲硅烷基降冰片烯均聚物膜在类似条件下所能达到的选择性能至少提高一倍。

根据一个实施例,一种制备交联的烷氧基甲硅烷基聚降冰片烯均聚物的方法,其包含:使具有烷氧基甲硅烷基部分的降冰片烯单体在催化剂存在下聚合以产生烷氧基甲硅烷基改性的聚降冰片烯均聚物,和通过溶胶-凝胶引发烷氧基甲硅烷基改性的聚降冰片烯均聚物交联以产生交联的烷氧基甲硅烷基聚降冰片烯均聚物。

根据另一个实施例,提供了一种包含交联的烷氧基甲硅烷基聚降冰片烯均聚物的制剂,所述均聚物具有以下结构之一:

在这种情况下,r1是烷基、烷氧基或osir4r5,r2是烷基、烷氧基或osir4r5,r3是烷基、烷氧基或osir4r5,r4是烷基或烷氧基,r5是烷基或烷氧基,并且n至少是1,但要求r1、r2和r3中的至少一个是烷氧基或烷氧基硅氧烷,如osir4r5。此外,交联的特征在于10重量%到100重量%的凝胶含量。

实施例的额外特征和优点将在下面的具体实施方式中加以阐述,并且在某种程度上本领域的技术人员很容易从具体实施方式得知,或通过实践本文所描述的实施例而认识到,包括下面的具体实施方式、权利要求书以及附图。

附图说明

图1是通过开环易位聚合(ringopeningmetathesispolymerization,romp)产生的不同的交联的乙氧基甲硅烷基聚降冰片烯均聚物[romp-sime2oet、romp-sime(oet)2、romp-si(oet)3]对比通过romp产生的非烷氧基化聚降冰片烯均聚物(romp-sime3)而得到的选择性的图解说明。

图2是通过加成聚合(additionpolymerization,apn)产生的不同的交联的乙氧基甲硅烷基聚降冰片烯均聚物[apn-sime2oet、apn-sime(oet)2、apn-si(oet)3]对比通过apn产生的非烷氧基化聚降冰片烯均聚物(apn-sime3)而得到的选择性的图解说明。

图3是通过开环易位聚合(romp)产生的不同的交联的乙氧基甲硅烷基聚降冰片烯均聚物[romp-sime2oet、romp-sime(oet)2、romp-si(oet)3]对比通过romp产生的非烷氧基化聚降冰片烯均聚物(romp-sime3)的广角x射线衍射(wideanglex-raydiffraction,waxrd)图的图解说明。

图4是通过加成聚合(apn)产生的不同的交联的乙氧基甲硅烷基聚降冰片烯均聚物[apn-sime2oet、apn-sime(oet)2、apn-si(oet)3]对比通过apn产生的非烷氧基化聚降冰片烯均聚物(apn-sime3)的waxrd图的图解说明。

图5是条形图,其描绘了当在酸催化条件下,在这种情况下是乙酸,进一步进行溶胶-凝胶引发的交联时,apn或romp中的凝胶分数(%)和交联的增加。

附图中阐述的实施例本质上是说明性的,并不打算限制权利要求书。此外,基于具体实施方式,附图的各个特征将变得更加清楚和明白。

具体实施方式

本公开的实施例涉及交联的烷氧基甲硅烷基聚降冰片烯均聚物制剂和包括这些交联的烷氧基甲硅烷基聚降冰片烯均聚物制剂的膜,其中所述膜具有改进的选择性,能从重质烃流中分离出较小的烃,例如甲烷、乙烷、丙烷和丁烷。

如本文所用,“均聚物”意指聚合物分子仅由一种单体,特别是下面所讨论的降冰片烯单体产生,因此不涵盖包含另外的共聚单体的共聚物。尽管如此,本发明可以使用新型共聚合来增加自由体积,从而提高所得膜的性能。话虽如此,但在一些实施例中,设想将另外的组分、如另外的聚合物或添加剂与交联的烷氧基甲硅烷基聚降冰片烯均聚物制剂共混于膜中。这些添加剂可包含硅烷小分子衍生物,其另外影响溶胶-凝胶化学。然而,高工程改造添加剂,例如碳纳米管、石墨烯或具有金属有机框架的其它分子,将有益于提高均聚物的传输性质。

如本文所用,“选择性”是指相比于甲烷来说较大的烃的分离。虽然以下讨论和实例讨论了选择性或丙烷相对于甲烷,但本文所用的“选择性”还可以包括其它较大的烃,例如丁烷相对于甲烷。在50psi下丁烷对甲烷的纯气体选择性一直高达53,这远高于丙烷相对于甲烷的选择性。

不受理论束缚,交联的烷氧基甲硅烷基聚降冰片烯均聚物制剂的烷氧基甲硅烷基可通过增强空间相互作用来增加聚合物链之间的自由体积以及由于其高迁移率和柔韧性而促进气体扩散,从而为膜提供改进的性能。另外,含有烷氧基甲硅烷基的降冰片烯聚合物是可交联的,其在长期应用中提供稳定的抗老化性能,同时还进一步提高了膜的选择性。

此外,在用于天然气升级,特别是用于将重质烃(乙烷、丙烷、丁烷)与甲烷分离的膜中,增加烷氧基含量能够提高选择性。如下面进一步描述的,在50psi的纯气体条件下,丙烷对甲烷的膜选择性可以是8或更高。

交联的烷氧基甲硅烷基聚降冰片烯均聚物可以通过以下产生:使包含烷氧基甲硅烷基部分的降冰片烯单体在催化剂存在下聚合以产生烷氧基甲硅烷基改性的聚降冰片烯均聚物。然后,可以通过溶胶-凝胶引发烷氧基甲硅烷基改性的聚降冰片烯均聚物交联而产生交联的烷氧基甲硅烷基聚降冰片烯均聚物。考虑了溶胶-凝胶引发的交联的各种反应条件。在一个或多个实施例中,溶胶-凝胶过程可以在环境条件或酸催化条件下引发。例如,溶胶-凝胶引发的交联涉及在水中水解或暴露于大气中。此外,在酸催化条件下可以进一步提高交联度。举例来说,酸,如乙酸,可以大大增加烷氧基部分的交联。虽然烷氧基甲硅烷基改性的聚降冰片烯均聚物的溶胶-凝胶交联可能类似于原硅酸四乙酯(tetraethylorthosilicate,teos)化合物中的乙氧基部分的交联,但是可以考虑使用乙氧基的多种烷氧基替代物。

根据本公开,降冰片烯单体可包含一个到九个烷氧基甲硅烷基。例如但不限于如下所示,降冰片烯单体可包括甲基二乙氧基甲硅烷基降冰片烯(结构1)、二甲基乙氧基甲硅烷基降冰片烯(结构2)和三乙氧基甲硅烷基降冰片烯(结构3)。在一些实施例中,可以存在更多的烷氧基甲硅烷基取代基。例如,代替与二氧化硅原子键合的甲基或烷氧基,可以将烷氧基硅氧烷取代基键合到二氧化硅原子上(即[osi(ome)3]3)(结构4)。另外,可在双环结构上存在多于一个部分(结构5)

考虑了各种聚合技术。聚合技术可包括开环易位聚合(romp)和加成聚合,如下面进一步说明。

在另一个实施例中,聚合步骤可包括romp催化剂。romp催化剂可包括格拉布催化剂(grubbscatalyst),这是一种过渡金属络合物。在一个或多个实施例中,格拉布催化剂是格拉布第一代催化剂,或之后任一代格拉布催化剂。在一个实施例中,催化剂是钌催化剂。任选地,催化剂可以具有载体或溶剂,例如甲苯。举例来说,romp催化剂是格拉布第一代催化剂,并且可经历以下所描述的反应。

下面是使用三乙氧基甲硅烷基降冰片烯单体(另外显示于在结构3中)和格拉布第一代催化剂(苯亚甲基双(三环己基膦)二氯化钌)的样品romp过程:

除了前面所示的反应1中所产生的三乙氧基甲硅烷基聚降冰片烯均聚物之外,romp过程的聚降冰片烯均聚物还可以具有如下结构6中所示的以下结构:

在结构6和结构7的烷氧基甲硅烷基改性的环戊烷结构中,r1是烷基、烷氧基或osir4r5,r2是烷基、烷氧基或osir4r5,r3是烷基、烷氧基或osir4r5,r4是烷基或烷氧基,r5是烷基或烷氧基,并且n至少是1,但要求r1、r2和r3中的至少一个是烷氧基。在其它实施例中,r1、r2和r3中的至少两个和最多三个是烷氧基或烷氧基硅氧烷取代基(即osir4r5),其中至少两个烷氧基包含相同或不同的烷基部分。

考虑了各种烷氧基。在一个实施例中,烷氧基是c1-c6烷氧基部分。例如,r1-r3中的烷氧基或烷氧基硅氧烷部分可包括1到9个乙氧基、甲氧基、丙氧基、异丙氧基、异丁氧基、叔丁氧基或其组合。

例如但不限于,由romp过程产生的聚降冰片烯均聚物可包括如下所示的特定结构:romp-sime2oet(结构8)、romp-sime(oet)2(结构9)和romp-sime(oet)3(结构10)。

或者,聚合步骤可以是加成聚合过程,其使用加成聚合催化剂来聚合烷氧基甲硅烷基降冰片烯单体。加成聚合催化剂可包括至少一种过渡金属催化剂。在一个或多个实施例中,过渡金属催化剂可包含镍、钯、钛、锆、铬、钒或其组合。在又一个实施例中,过渡金属催化剂可以是后过渡金属。在一个实例中,加成聚合催化剂可以是钯茂金属催化剂。在其它实施例中,加成聚合催化剂可以是包含过渡金属催化剂和其它催化剂组分的混合催化剂。在一个或多个实施例中,加成催化剂可包含钯茂金属催化剂、硼酸三苯甲酯和膦。不受理论限制,此混合催化剂是合适的,因为它具有足以克服降冰片烯单体的空间体积的活性。任选地,加成催化剂可以混合在溶剂溶液中,例如甲苯。

下面是使用三乙氧基甲硅烷基降冰片烯单体(另外显示于结构3中)和包含钯茂金属催化剂、膦和硼酸三苯甲酯的混合催化剂的样品加成聚合过程。

除了在前面所示的反应2中产生的三乙氧基甲硅烷基聚降冰片烯均聚物之外,另外的聚合过程的聚降冰片烯均聚物可以具有如下结构6中所示的以下双环结构:

在结构11和结构12的烷氧基甲硅烷基改性的双环结构中,r1是烷基、烷氧基或osir4r5,r2是烷基、烷氧基或osir4r5,r3是烷基、烷氧基或osir4r5,r4是烷基或烷氧基,r5是烷基或烷氧基,并且n至少是1,但要求r1、r2和r3中的至少一个是烷氧基或烷氧基硅氧烷。在其它实施例中,r1、r2、r3、r4和r5中的至少两个是烷氧基或烷氧基硅氧烷取代基(类似于结构4中的部分),其中至少两个烷氧基包含相同或不同的烷基部分。

例如但不限于,由另外的聚合过程产生的烷氧基甲硅烷基聚降冰片烯均聚物可包括如下所示的特定结构:apn-sime2oet(结构13)、apn-sime(oet)2(结构14)和apn-si(oet)3(结构15)。

虽然烷氧基甲硅烷基聚降冰片烯均聚物的结构在由romp或apn产生时略有不同,但两者的烷氧基甲硅烷基部分是一样的。在一个或多个实施例中,取决于与硅连接的烷氧基部分的数目,烷氧基甲硅烷基聚降冰片烯均聚物链可包括10重量%到80重量%的烷氧基,或15重量%到75重量%的烷氧基,或20重量%到60重量%的烷氧基。

在一个或多个实施例中,交联的烷氧基甲硅烷基聚降冰片烯均聚物可以包含1到3的分子量分布(molecularweightdistribution,mwd),其中mwd被定义为是mw/mn,其中mw是重均分子量,mn是数均分子量。在其它实施例中,交联的烷氧基甲硅烷基聚降冰片烯均聚物可包括1到2的mwd。

如前所述,烷氧基甲硅烷基聚降冰片烯均聚物的烷氧基甲硅烷基具有可控的交联官能度。不受理论限制,交联可能经常在合成过程中过早发生,导致聚合物不能被加工成膜形式。然而,本发明的烷氧基甲硅烷基聚降冰片烯均聚物实施例的交联可被控制,使得烷氧基甲硅烷基聚降冰片烯均聚物在交联发生之前合成、沉淀并浇铸成膜形式。如前所述,交联在最终的膜状态下通过暴露于水中发生,或者在某些情况下,通过在环境条件下长时间暴露于大气中而发生。参考图5,当烷氧基甲硅烷基聚降冰片烯均聚物用酸如乙酸处理时的交联度。在一个或多个实施例中,交联的烷氧基甲硅烷基聚降冰片烯均聚物的交联的特征在于10重量%到100重量%的凝胶含量或20重量%到100重量%的凝胶含量。

如前所述,本发明膜的一个关键特征是重质烃与甲烷之间较高的选择性。为了使膜有效地分离小分子,还必须控制膜的孔径。使用气体渗透研究来确定选择性。使用恒定体积可变压力技术测量纯气体渗透系数。膜的上游侧使用不锈钢管和管配件构造。下游侧主要由焊接的管和vcr配件组成。使用不锈钢高压过滤器支架(马萨诸塞州比尔里卡的密理博公司(millipore,billerica,ma))来容纳膜。在室温(23-25℃)下使用50-100psi的进料压力测量渗透性。下游压力或渗透物压力保持在低于50托。使用时滞法验证渗透稳态的建立,其中14倍的扩散时滞被认为是有效的稳态。使用baratron绝对压力传感器(马萨诸塞州比尔里卡的mks仪器公司(mksinstruments,billericama))测量系统压力并使用labview软件记录。

渗透系数被定义为是每单位膜厚度每单位驱动力通过膜的材料的传输通量。膜厚度可以在50微米到150微米的范围内。膜厚度可以显著更低并且可以小于1微米。使用恒定体积/可变压力技术计算纯气体渗透系数。渗透系数使用以下等式计算:

pi=(ni*l)/δf(等式1)

其中n是摩尔通量,l是膜厚度,δf是跨膜的逸度差。使用逸度差而不是分压差,可以解释进料流中的气相非理想性,其会显著影响烃类气体的渗透值。使用peng-robinson状态方程计算逸度系数。理想的选择性通过以下等式计算:

α=pi/pj(等式2)

如图1中所示,加成聚合的烷氧基甲硅烷基聚降冰片烯均聚物[apn-sime2oet、apn-sime(oet)2、apn-si(oet)3]在50psi的纯气体条件下均实现了约6到约9的丙烷/甲烷选择性,而大多数烷氧基甲硅烷基聚降冰片烯则实现了约7到约8的选择性。相比之下,没有烷氧基的加成聚合的聚降冰片烯(apn-sime3)实现了仅约3的选择性。参考图2,虽然图1的romp烷氧基甲硅烷基聚降冰片烯均聚物[romp-sime2oet、romp-sime(oet)2、romp-si(oet)3]所实现的选择性低于加成聚合的烷氧基甲硅烷基聚降冰片烯均聚物[apn-sime2oet、apn-sime(oet)2、apn-si(oet)3],但是所述选择性是没有烷氧基的romp聚降冰片烯均聚物(romp-sime3)的选择性的至少3倍。

如前所述,选择性至少部分地与链间堆砌相关。广角x射线衍射(waxrd)最常用于分析结晶小分子和结晶聚合物。气体分离中最有用的膜大部分是无定形的,因此很少有研究将waxrd图中获得的数据与渗透性质联系起来。然而,通过布拉格定律(bragg'slaw)将散射角与链间距离相关联,可以从示出的waxrd峰(由图3和图4中的峰上方的星号指出)计算链间距离。

链间距离表示为(db/dic)=(布拉格距离/链间校正距离)=([λ/2sinθ]/[1.22λ/2sinθ])。

参考对图3和图4的实施例的说明,交联的烷氧基甲硅烷基聚降冰片烯均聚物至少包括第一链堆砌区和第二链堆砌区(由星号表示),其中第一链堆砌区由第一链间距离限定,第二链堆砌区由第二链间距离限定,第一链间距离小于第二链间距离,其中第一链间距离和第二链间距离根据布拉格定律从通过waxrd测量的角度峰计算。在另一个实施例中,交联的烷氧基甲硅烷基聚降冰片烯均聚物还可包含由第三链间距离限定的第三堆砌区,第三链间距离大于第一链间距离和第二链间距离。在又一个实施例中,交联的烷氧基甲硅烷基聚降冰片烯均聚物还可包含由第四链间距离限定的第四堆砌区,第四链间距离小于第一链间距离、第二链间距离和第三链间距离。

本发明实施例的特征将在下面的实例中进一步加以说明。

实例

开环易位聚合三乙氧基甲硅烷基降冰片烯(romp-si(oet)3)合成:

参考反应1来举例说明,在手套箱中,向30毫升(ml)小瓶中加入03.85g原样(asreceived)三乙氧基甲硅烷基降冰片烯(0.05摩尔浓度(m),1.51毫摩尔(mmol))和29ml无水脱氧甲苯。在单独的小瓶中,将含有钌(0.003mmol)的2.5毫克(mg)格拉布第一代催化剂溶解在2ml无水甲苯中以产生储备催化剂溶液。最后,将1.0ml催化剂溶液加入到搅拌中的降冰片烯溶液中以引发聚合。24小时后,加入乙基乙烯基醚(0.431ml,4.51mmol)终止聚合,并继续搅拌溶液。再过24小时后,在手套箱中真空去除溶剂,直到样品体积约为5ml,此时样品变成粘稠液体。将粘稠溶液逐滴沉淀到搅拌中的乙醇(500ml)中。沉淀后,在混浊的上清液中得到纤维状聚合物。将聚合物干燥至恒重并分离为灰白色固体。

加成聚合三乙氧基甲硅烷基降冰片烯(apn-si(oet)3)合成:

参考反应2来举例说明,在氮气下,向30ml小瓶中加入1.541g原样三乙氧基甲硅烷基降冰片烯(6.01mmol)和29.7ml无水脱氧甲苯(0.2m)。在三个单独的小瓶中,将0.34mg三环己基膦(00012mmol)溶解在1ml甲苯中,同时将0.35mg环戊二烯基-(1,2,3-n)-1-苯基-2-丙烯基钯(ii)(0.0012mmol)溶解在1ml甲苯中,并将1.11mg四[3,5-双(三氟甲基)苯基]硼酸三苯甲酯(0.0012mmol)溶解在1ml甲苯中。将0.2ml含有钯催化剂的溶液与0.2ml膦溶液混合,然后将0.2ml硼酸三苯甲酯溶液加入到0.4ml钯和膦中。然后,将0.3ml的混合催化剂溶液加入到降冰片烯溶液中。将反应容器密封并从手套箱中取出,在40摄氏度(℃)下加热并搅拌24小时,到时它变成黄色粘稠状。24小时后,使溶液在1000ml丙酮中逐滴沉淀,立即在丙酮中搅拌形成小的白色聚合物珠粒。通过过滤收集白色聚合物,并在室温下减压干燥。

加成聚合三乙氧基甲硅烷基降冰片烯(apn-si(oet)3)浇铸:

将0.5克(g)三乙氧基聚合物样品溶解在10ml甲苯中并搅拌直至完全溶解。然后在手套箱中在干燥的惰性条件下用0.45微升(μl)注射器式过滤器过滤溶液。将具有5w/v%浓度的10ml过滤后的聚合物溶液倒入水平表面上直径10厘米(cm)的pfa模具中。盖住pfa模具以减缓蒸发速率,并使膜干燥过夜。从pfa模具中取出聚合物膜并在真空下干燥至恒重。所得膜是透明的、可延展的和无色的。

表1

参考图4和以上表1,romp-sime3仅显示一个代表的链堆砌的峰,该峰虽然相对较高,但是与许多扩散控制的气体分离膜一致,所述膜如聚砜或聚酰亚胺。在乙氧基取代后,在romp-sime2oet中,该峰开始变宽,形成等于的两个峰。这个较大的链间峰表明聚合物链间的自由体积高,这允许溶解度控制的渗透,因为链堆砌太大就不能有效地区分气体分子。由于含乙氧基聚合物的交联,可能产生较小的链间峰,这是聚合物链之间更紧密堆砌的机制。

这种趋势在romp-sime(oet)2和romp-si(oet)3中也是如此,分别是尽管在这两种聚合物中,第三个非常松散的链堆砌区开始出现。假设这些区域甚至会进一步促进扩散控制选择性的丧失和溶解度控制选择性的出现。

参考图3和上表1,甲基取代的聚降冰片烯apn-sime3在文献中已知为溶解度选择性材料。这种聚合物具有双峰链堆砌分布,具有大的远的链堆砌区其根据布拉格定律计算是这种松散的链堆砌导致了加成型聚合物中扩散性-选择性的缺乏。随着乙氧基取代的增加,低散射角峰通常转移到甚至更低的角度,最终在apn-si(oet)3聚合物中达到这一趋势中一个值得注意的例外是,与apn-sime2oet相比,apn-sime(oet)2(12.4/15.1)实际上具有增加的链堆砌。这种意想不到的差异可能解释了独特的传输性质,表明apn-sime2oet是比apn-sime(oet)2更具渗透性的材料。

其中两种聚合物apn-sime2oet和apn-si(oet)3也显示出具有极低散射角的第三区域,其对应于非常远的链间堆砌。这些峰代表的间距大到并且对于在提高的选择性下保持高渗透性可能是至关重要的。其中一种聚合物apn-si(oet)3还显示了链间堆砌非常紧密的第四个峰其提供了具有最多乙氧基含量的加成聚合物中交联的证据。与其中三种romp聚合物相比,只有一种加成型聚合物显示出这种转变。与较低tgromp聚合物相比,加成型聚合物的较高玻璃化转变限制了链的移动性并限制了交联位点一起反应的能力。

对于本领域技术人员显而易见的是,在不脱离所要求保护的主题的精神和范围的情况下,可以对所描述的实施例进行各种修改和变化。因此,本说明书旨在覆盖各种描述的实施例的修改和变化,只要这些修改和变化落入所附权利要求书和其等同物的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1