抗菌过滤筒的制作方法

文档序号:5013345阅读:173来源:国知局
专利名称:抗菌过滤筒的制作方法
对相关申请的交叉引用本申请是在1995年12月15日提交的美国专利申请第08/573,067号的部分继续申请。
本发明的领域本发明一般涉及用于净化液体的过滤器。具体地说,本发明涉及一种抗菌过滤筒,该过滤筒用于一种过滤系统,该过滤系统由数层经抗菌试剂处理后的纱线和/或无纺网或垫组成,并且捆在一个核芯上,该核芯上覆盖有一层微孔薄膜材料,这就使得该过滤筒能够捕获和除去有机污染颗粒并消除和阻止被过滤流体中细菌性和病毒性污染物的生长,这样通过该过滤系统水流中的颗粒和细菌污染物的水平显著降低。
本发明的背景近些年来,公众已经越来越意识到我们国家和世界供水质量的持续恶化。污染物、生物的和有毒的废物以及其他污染物正以持续增加的速率引入供水中,使得供水不再适于饮用和其它必要的用途。比如,免疫力低下的病人现在就被要求不能饮用自来水,近些年来与饮用水水质差相关的大小疾病已经急剧地增加。这一问题对于美国以外的水质持续恶化、主要污染物是自然界细菌的地区尤为重要。然而现有的净化水的方法普遍太贵或者在一些地区不可行。
在目前可以利用的过滤系统当中,反渗透系统是提高水质最常用的方法之一。通常,这些系统采用一个除沉淀过滤器,正如Nishino在美国专利3,872,013号中所详细描述的,该过滤器与活性碳和涂有银的氧化物和卤化物的抑菌薄膜相连接,该薄膜安置在过滤器和出水口之间。该薄膜将阻止某些细菌离开过滤器并且抑制细菌在薄膜表面的生长,但并不抑制细菌在活性碳上的生长或抑制细菌繁殖和生成毒素的能力。其他机械过滤器比如陶瓷过滤筒,它能够过滤出尺寸大约1微米(micron)的细菌,但是当细菌收集在过滤器的表面上时,也不能有效抑制细菌的生长。Von Medlin在美国专利5,269,919号中详细描述了另一种类型的杀生反渗透系统。Von Medlin还采用多碘化合物树脂,该树脂释放出的碘与细菌和病毒有机物接触从而抑制细菌生长,然后使用颗粒状金属合金和活性碳将释放在水中的碘除去。如果不除去,这些碘对人体是有害的。事实上,最初在1973年制定并且在1982年重新确认EPA(美国环保署)“关于碘消毒剂的政策”,即无论任何时候饮用水中保留含碘物种时,碘消毒剂只是为了短期目的。
这样看起来好象当供水中的细菌被这些过滤器捕获时,这些被捕获的细菌就可以在目前的水净化系统中生长。这样过滤器就变成了细菌和毒素繁殖的场所,通过吞入有毒的微量金属比如银和铜的卤化物以及其它的没有从水中过滤出来的有毒物就会对人体造成潜在的危害。
在包扎和捆绑过滤器方面也有相当多的进展。纱线以不同方式和层数捆在打有孔洞的核芯上。已经发现通过增加层数和纱线捆绑的紧度可以更有效地在过滤器中捕获颗粒状物质,但是也抑制了水流经过滤器,这样就引起水流经该系统时水压下降。一般,在美国一个市政水管中的水压是60-80磅/平方英寸(psi)。传统缠绕式过滤器尤其成为负担,在管线中由于水流经过滤器时的抑制作用产生的水压下降增加到15-20磅/平方英寸或更大。这样一个水压下降的问题在国外更大,因为国外的管线压力约为35磅/平方英寸或更低,这样使用这些过滤器使水流如此显著地被抑制从而限制了该系统的使用。
此外,目前活性碳在许多种过滤器中所采用,用来从供水中除去气味,溶解有机物和吸收令人不愉快的味道。然而,在过滤器中使用活性碳的一个缺点就是碳是细菌的养料来源,一旦被感染上细菌,碳过滤器通常使细菌在过滤器上快速繁殖。结果,碳过滤器在使用时有一个警告只可用于过滤微生物安全水。在美国以外的许多国家水都是含有微生物污染物的,这样碳过滤器的使用可能是危险的并且通常是不可行的。这导致了一些法规的发布,这些法规禁止碳过滤器用于某些用途和某些地区。
因此,可以看到需要一种既便宜又安全的用于水过滤系统的过滤筒,该系统既能够过滤微生物又能够抑制细菌和微生物在过滤器介质中的生长,而且不释放出对生命有害必须进一步除去的杀菌剂,并且该过滤器系统不会抑制水流经该系统。
本发明的简介简单地说,本发明包括一个用于水过滤系统的过滤筒,该过滤筒用来安全有效地从饮用水中过滤掉微生物并且基本上消除和阻止细菌和被过滤器捕获的其它微生物的进一步生长。该过滤筒包括一个打有孔的内部管状核芯,该核芯可以是金属、塑料或陶瓷材料的。该核芯上通常覆盖有一系列的微孔薄膜,微孔薄膜通常具有大约5.0-0.5微米的孔并且由塑料材料形成,比如聚酯、聚丙烯、聚砜或类似材料。第一,这样就不在薄膜和核芯之间造成空隙,并且最好稍微比核芯长一些,以便叠加该核芯的两相对端。然后将第二和第三薄膜层捆绕在核芯的第一薄膜层上,第二和第三薄膜层通常由相同类型的微孔塑料或聚酯材料构成。
经抗菌剂浸泡或处理过的纱线或无纺布材料紧紧地捆绕各薄膜层和核芯,以十字交叉或菱形捆绕的式样捆绕在第三薄膜层的上面,形成大约1.0微米的菱形开口,通过该开口水可以通过。还可以不用纱线,而用无纺纤维垫或网捆绕微孔薄膜,无纺纤维垫或网中含有用抗菌剂处理过的纤维。
过滤筒还可以包括一个向外伸出的活性碳核芯,用该核芯代替聚丙烯核芯,活性碳的标称孔径大约为10.0微米。活性碳核芯通常经抗菌剂或抗菌添加剂处理,所使用的抗菌剂或抗菌添加剂与浸泡过滤器纱线和/或薄膜层的相同。活性碳核芯上至少捆绕一薄膜层,比较典型的是捆绕三层或更多薄膜层,每薄膜层的孔径在5.0到0.5微米之间。然后将一层经抗菌剂浸泡后的纱线捆绕在核芯和薄膜层上,通常捆绕成十字交叉或菱形的式样,这样水可以从所形成的菱形开口流过。
过滤器的外层十字交叉捆绕部分通常具有足够的厚度,这样过滤筒就可以紧紧地插入筒壳中,使过滤筒和筒壳壁间所形成的空间最小。安装完毕后的过滤器的薄膜层和纱线层的端部用抗菌聚合物或树脂密封,在过滤器的相对端形成端盖。这就确保被处理的流体在离开系统之前流经整个过滤器。
过滤筒安装在过滤系统的筒壳中,该筒壳连接到水源上。当水流进筒壳时,水向下流经过滤筒,然后通过出水口离开筒壳。本发明的过滤筒从流经过滤筒的水中除去微生物和其它杂质。大的杂质通常通过十字交叉层和/或微孔薄膜层除去。被薄膜层阻挡的微生物是细菌和病毒污染物,由于纱线和薄膜层紧密捆绕在核芯上,这就迫使污染物与纱线和薄膜层中的抗菌剂接触。这样就可以实现污染物和抗菌剂间的充分接触,从而除去污染物,而无须流体和过滤简之间长时间接触,还不会过度地抑制水流经该系统。
因此,本发明的一个目的就是提供一种抗菌过滤筒,该过滤筒能够基本上完全地从水中过滤颗粒和大的微生物,并且阻止细菌和病毒在过滤器媒质中的生长,从而克服了现有技术的上述及其它缺陷。
本发明的另一目的是提供一种抗菌过滤筒,该过滤筒不向水中释放有害毒素,这些毒素在安全使用水之前必须从水中除去。
本发明的再一目的是提供一种抗菌过滤筒,该过滤筒能够在包括反渗透系统在内的目前可使用的过滤系统的筒壳中使用,该过滤筒将抑制细菌和病毒的生长以及随后的毒素的产生,还将保护反渗透过滤系统中所使用的活性碳过滤器。
本发明的又一目的是提供一种抗菌过滤筒,该过滤筒能够基本上收集和除去水流中的颗粒和细菌污染物而不造成水压的显著下降。
本发明的再一目的是提供一种抗菌过滤筒,其中几乎所有流入过滤筒的水都与抗菌剂接触。
本发明的又一目的是提供一种抗菌过滤筒,其具有用抗菌剂浸泡的活性碳核芯。
本发明的又一目的是提供一种用抗菌剂浸泡过滤系统活性碳核芯的改进方法。
通过对图示解释及详细描述,本发明的其它目的、特点和优点对本领域的熟练技术人员将很明显。
附图的简述

图1是本发明的最佳实施例的侧视图,局部被剖开。
图2是本发明的过滤筒的侧视图,过滤筒上安装有端盖。
图3是本发明的具有活性碳核芯的第二实施例的侧视图,局部被剖开。
图4是本发明的具有活性碳核芯的第二实施例的侧视图,局部被剖开。
图5是本发明的又一实施例的透视图,局部被剖开。
图6是本发明的又一实施例的侧视图。
图7是本发明过滤筒的示意图,表明了过滤筒在地下水槽过滤系统中的安装和使用。
图8是本发明过滤筒的示意图,表明了过滤筒在水龙头过滤系统中的安装和使用。
详细描述现在将参照附图,各图中相同部件采用相同的标号标出,图1示出了按照本发明构造的过滤筒10的一个最佳实施例。该过滤筒10包括一个中空的并打有孔的核芯12,该核芯具有开口端13和14,核芯可以由塑料、纸、金属或预先打有孔的烛形陶瓷材料形成。核芯形成管状或圆柱状,长度大约5到30英寸,直径大约1到2英寸,可以根据需要采用更大或更小的直径。在核芯上形成沿长度方向均匀分布直径至少10微米或更大的孔16。
第一微孔薄膜17紧密捆绕在核芯上,将核芯完全覆盖。薄膜17最好是宽度略大于核芯12长度的薄膜,这样薄膜就与核芯的开口端13和14交迭大约0.125英寸。该微孔薄膜通常由诸如聚酯、聚砜聚合物、聚乙烯、聚丙烯或相似的多孔塑料材料构成,并且能够用抗菌剂处理。最好采用标称孔径在5.0到0.5微米之间的聚砜聚合物薄膜,比如由MEMTEC美国公司生产的BTS-16、BTS-10或BTS-5,商标是Filtrite,孔径通常为0.75微米或更大,这样该薄膜就将有效地将流经薄膜的水流中的大多数细菌和污染物颗粒保留在打有孔的核芯的内部。
随后在核芯上捆绕第二微孔薄膜层18和第三微孔薄膜层19,这两薄膜层捆绕在第一微孔薄膜17和核芯上。典型地,第二和第三微孔薄膜层由与第一薄膜层相同的聚砜聚合物薄膜材料构成,比如BTS-16、BTS-10或BTS-5,孔径通常为0.75微米或更大。通过减少和限制细菌通过过滤器的路径,这三薄膜层有效地捕获大多数的细菌和污染物颗粒,由于薄膜层的孔径更大从而没有显著地抑制水流。
多孔纱线21紧密地捆绕在微孔薄膜17-19上,捆绕在第三薄膜层的上面并沿着下面有孔核芯的长度伸展。典型的纱线尺寸在10/1到0.3/1立方厘米(c.c.)之间,最好在3/1到0.4/1立方厘米之间,纱线由白色聚丙烯、聚乙烯、醋酸纤维、人造纤维、溶解细胞质、丙烯酸、聚酯、尼龙或其它能够支撑抗菌剂的纤维材料制成。对于一些应用,纱线还可以由尼龙、棉花或纤维丝纱线材料制成,或混合和组合这些聚合物使用。纱线用抗菌剂浸泡,抗菌剂最好在纺线和形成纤维的过程中与纱线混合,这样在使用过滤筒的过程中抗菌剂就分散到纱线纤维中并分散到纤维的表面。
这些纤维的极微量能够在0.3到10dpf之间,基于成本和工作性能最好在1.5到6dpf之间。通常这些纤维在拉丝过程中或者用抗菌剂处理或者用抗菌剂浸泡,从而使得这些纤维是抗菌的。纤维中抗菌剂的浓度通常在100到10,000ppm之间,最好在2000到8000ppm之间。基于纱线的含量,最终过滤筒的抗菌剂含量在2500到10,000ppm之间,基于所使用的纤维最好在5000ppm的范围内。
最好在处理纱线和微孔薄膜时所使用的抗菌剂实际上是溶于流经过滤筒的以及位于过滤筒上面的水的,并且是对人和动物的皮肤安全、无毒、不致癌和不敏感的,而且当吞入时不在人体内积累。因此,所采用的抗菌剂一般是广谱抗菌剂,也就是说,该抗菌剂能够同样有效地抑制水中的大多数有害细菌。比如,通常使用的由米克罗本品公司生产,商标为MICROBANB的2,4,4′-三氯-2′-羟基二苯酚或5-氯-2-苯酚(2,4-二氯苯氧基)。然而应该理解到在本发明中可以采用各种各样的抗菌剂,这些抗菌剂是安全无毒并且能够在水中溶解。
纱线21以十字交叉或菱形式样捆绕在过滤筒上,形成一个十字交叉层,限定出尺寸大约为1.0微米的菱形开口或通道。十字交叉捆绕层的厚度决定过滤筒的厚度。虽然按照过滤筒装入其中的过滤系统筒壳的尺寸,十字交叉捆绕层21的厚度可大可小,最好十字交叉捆绕层的厚度是1/4英寸,以便使过滤筒与过滤系统的筒壳紧密地配合。一旦过滤器被捆绕到所需要的最终厚度,将纱线切断,并将纱线的端部隐藏或系到前面的线股上以防止纱线解开。
如图2所示,在过滤筒和核芯的开口端13和14上安装端盖22,用来密封过滤筒的两端。端盖22通常由含有抗菌剂比如MICROBANB的聚氯乙烯(PVC)塑料溶胶材料构成。该塑料溶胶以液体状态注入一个浅的模子中,该模子具有一个开口的内管。然后将过滤筒10的第一端插入装有塑料溶胶液体的模子中,溶胶液体加热到推荐的温度,比如260°F,大约7分钟或者直到塑料溶胶已经充分渗透进入过滤器端部的纱线为止。移出过滤筒并将其另一端或第二端浸入被加热的塑料溶胶中,放置方式同上。塑料溶胶液进行冷却并固化在过滤筒的两端,在过滤筒的上面,塑料溶胶沾到纤维纱线和微孔薄膜的突出端上,从而在过滤筒的端部密封了纱线和薄膜的边缘,而留下过滤筒的中心开口。
在另一实施例中,可以采用预先形成的端盖代替由塑料溶胶液形成的端盖。这样预先形成的端盖通常由塑料材料形成,比如聚丙烯或类似的材料,均经过抗菌剂处理。这些端盖确保微孔薄膜的端部密封和最好用抗菌黏合剂安装到过滤筒的端部。
端盖在过滤筒的每一端密封和覆盖过滤筒的微孔薄膜和十字交叉捆绕纱线层。这就迫使流经过滤系统的水和其它被过滤液体流经过滤筒的各侧,从而确保水或其它液体流经和接触过滤器上的十字交叉捆绕纱线层的抗菌纱线和通过微孔薄膜,这样至少1.0微米或更大尺寸的污染物就从通过过滤筒的水流中捕获和除去,水中的细菌和其它微生物通过与纱线层的抗菌表面接触而消除,从而基本上净化了含有细菌和其它微生物的水流。
在如图3和4所示的又一实施例中,打孔的塑料核芯12(图1)由一个突出的活性碳核芯12’(图2和图3)代替,活性碳经抗菌剂处理。活性碳通常用于水处理,用来除去令人讨厌的味道、气味、氯、溶解的有机物并和特定的媒质一起除去某些重金属。然而,活性碳也是非自养细菌的营养源,这就导致过滤器内细菌繁殖生长和活动的增加,使活性碳淤塞,导致水流中高的水压降低,最糟的是传染细菌的繁殖和传播。然而,在本发明中活性碳核芯12’经抗菌剂浸泡,这将杀死和抑制细菌的生长。
经抗菌处理的活性碳核芯12’是这样形成的首先均匀混合抗菌剂和热塑性粘结剂,该粘结剂当加热时与碳颗粒黏结。抗菌剂最好与处理过滤器的纱线的抗菌剂相同,典型的是通常使用的由北卡罗莱纳州Huntersville的米克罗本公司生产的商标为MICROBANB的2,4,4′-三氯-2′-羟基二苯酚或5-氯-2-苯酚(2,4-二氯苯氧基)化合物,或者溶于水的相当的抗菌剂。这一点是很重要的在过滤过程中抗菌剂不泻入被过滤的水中,因此,上述溶于水的抗菌剂或相当物,在按照本发明的水处理过程中使用是安全的。
与抗菌剂混合在一起的粘结剂通常是低密度的聚乙烯粉末或相似的粘结剂材料,比如聚丙烯、聚酯、氟聚合物、尼龙或芳族聚酰胺,它们能够容易地和相当完全地熔化和与碳颗粒结合。典型地,基于被处理的活性碳的重量,与粘结剂混合的MICROBANB抗菌剂的浓度在大约50-10,000ppm(百万分之一)之间。最好基于被处理的活性碳的重量,与粘结剂混合的MICROBANB抗菌剂的浓度为5,000ppm。经抗菌处理的粘结剂加到颗粒状的活性碳中,与之均匀混合。然后将整个混合物加热到大约250°到350°F。也应该理解到,当采用其它聚合物粘结剂时,化合物加热到每个聚合物的熔点温度之上。通常,整个混合物包括5%-30%的粘结剂,典型的是20%,剩余部分是活性碳颗粒。在混合物被加热到熔点之后,将混合物挤压成所期望的形状以形成如图3和4所示的经抗菌处理的活性碳核芯。
对本发明采用活性碳核芯的过滤筒进行的测试表明在测量敏感度50ppm的条件下,在过滤后的水中没有检测到抗菌剂。而且,即使将水在过滤筒中保持72小时,也只检测到98ppm的抗菌剂。这样,使用本发明抗菌剂看起来已经被碳不可逆转地吸收,抗菌剂可以安全地用于过滤水,包括饮用水在内。
如图3和4所示,本发明的又一实施例的经抗菌处理的活性碳核芯12’上至少捆绕有第一微孔薄膜17’,比如具有孔径大约为0.75微米或更大的聚砜薄膜BTS-16、BTS-10或BTS-5。典型地,在第一微孔薄膜层17’和碳核芯12’的上面捆绕第二和第三微孔薄膜层18’和19’(图3),如图3所示。在一些应用中还可以采用一个微孔薄膜层17”(图4),该微孔薄膜如图4所示具有用于一些用途的直径更小的孔。然后,微孔薄膜和碳核芯用抗菌处理的纱线21’捆绕,该纱线典型地用诸如MICROBANB或相似材料的抗菌剂处理。纱线通常捆绕成十字交叉或菱形的式样(图3和4),并捆绕到足够的厚度使过滤筒达到足够的厚度从而紧密地安装到流体过滤系统的过滤筒壳中。在过滤器捆绕到期望的厚度之后,切断纱线并固定它的端部以防纱线开结,比如用端盖。
此外,如果流经过滤筒的水流反向流动,从过滤筒的内部流到过滤筒的边部,核芯上的抗菌纱线/无纺布材料及微孔薄膜反向安装。这样,核芯首先捆绕一层抗菌纱线/无纺布垫子,然后在上面捆绕微孔薄膜。结果,水首先与抗菌纱线接触杀死水中的细菌,然后与微孔薄膜接触,从水流中捕获和除去污染物颗粒。通过采用这样的结构,本发明的过滤筒同样显著净化了流经过滤筒的水流,从水流中除去了污染物和细菌。
图5是本发明过滤筒25的又一实施例。在这个实施例中,过滤筒25包括一个打有孔的内部管状核芯26,该核芯可以由塑料、纸、金属、压缩活性碳或烛形陶瓷制成。在打孔内部核芯26上至少捆绕一层微孔薄膜27,每层微孔薄膜通常都是具有孔径约为0.75微米的薄膜,比如聚砜薄膜。在核芯和薄膜的外面捆绕一层抗菌纱线28。通常纱线以十字交叉或其它期望的式样捆绕在微孔薄膜上。在纱线层的上面覆盖上一个外壳29,外壳与纱线层之间形成一个空间。该外壳通常由塑料构成,比如聚乙烯、聚丙烯或PVC,而且有很多孔,其中的孔径大约是1-10微米。
在抗菌纱线和外壳之间的夹层中填入活性碳填充物或活性碳层32,在外壳和核芯之间形成一个碳层,碳层通常由经上述抗菌剂处理的活性碳颗粒组成。与图3和4中实施例的活性碳核芯一样,经抗菌处理的活性碳层杀死水流中的细菌并阻止细菌生长,除去异味、气味等等,而不向被过滤的水中释放抗菌剂。然后,在过滤筒的端部盖上端盖33用来密封过滤筒的端部和空隙。通过采用这样的结构,当细菌和颗粒污染物流经过滤器的侧边时,细菌与抗菌纱线和活性碳填充层接触和中和。此外,过滤筒还可以不采用抗菌纱线,而在薄膜和外壳之间采用经抗菌处理的活性碳填充物。图6是本发明的又一实施例,在该实施例中核芯35或者由聚丙烯或相似的具有一系列孔的塑料材料构成,或者由如上所述经抗菌剂浸泡的活性碳构成,核芯35本身就是多孔的,用微孔薄膜36覆盖。该薄膜通常是塑料或聚合物薄膜,比如聚砜聚合物,通常孔径大约为0.35微米或更大。该微孔薄膜通常捆绕在核芯上,微孔薄膜的端部交迭在核芯的端部,这样就可以很好的密封和覆盖核芯。纤维垫37捆绕在该薄膜上,该纤维垫由塑料形成的多孔材料构成,比如聚丙烯、聚乙烯、聚酯、尼龙、芳族聚酰胺纤维、人造丝、丙烯酸、醋酸纤维或经抗菌剂或抗菌化学物质比如MICROBANB处理的类似纤维材料。在微孔薄膜和核芯上捆绕一层纤维垫,纤维垫的端部折叠并密封到微孔薄膜和核芯的端部,比如用塑料溶胶端盖,此外,还可以使用多层微孔薄膜,多层微孔薄膜通常具有更大的直径,大约为0.75微米或更大。操作在使用时,过滤筒10通常安装在传统水过滤系统的筒壳中,比如图7所示的地下水槽系统40或图8所示的水龙头上安装的过滤系统41。在图7的系统中,过滤筒10紧密的安装在过滤筒筒壳42中,过滤系统40在筒壳的进水端连接水源。水以需要的流速进入过滤系统并按箭头44所示流入筒壳的入水端或上水端43。水流经过滤筒并从壳体中流出,在这一过程中,过滤筒10捕获和除去水流中的污染物颗粒和细菌,从而在水从箱体的出口部分46流出前清洁和净化水流。可以在壳体42的下水处安装另一个过滤筒壳体42′,用来进一步净化水流。
在图8所示的水净化系统中,水龙头过滤系统41包括一个壳体48,该壳体具有一个进水口9和内部水流通道51。在壳体48的底壁53上有一个出水口或出水喷口52,该出水口与水流通道51相通。壳体48通过一个连接部分56连接到水龙头54上,连接部分56连接到水龙头的出水端,并且将水流引导到壳体中。如图8所示,当水从水龙头流入过滤系统时,按箭头所示水沿着入水流通道流经过滤器并通过出水口52从出水通道流出,这时水已经被过滤筒基本上净化和清洁。
在上述的两个过滤系统中使用本发明的过滤筒10时,如图7和8所示,水流流经过滤筒的侧边并从核芯的开口端流出。然而本领域的熟练技术人员应该理解到,如果水流是反向的,即从过滤筒的端部流入而从过滤筒的侧边流出,本发明的过滤筒同样可以良好工作,不影响过滤筒在水流中捕获和抑制细菌的能力。在这种水流条件下,薄膜和抗菌纱线的顺序必需改变。
说明本发明清洁和净化液体有效性的例子在下面讨论。
例1对第一过滤器样品进行测试,该过滤器安装有一个直径大约为1/8英寸的多孔聚丙烯核芯,在核芯的上面捆绕一层BTS-30型的聚砜聚合物微孔薄膜,该薄膜的孔径通常小于0.35微米。经MICROBAN抗菌剂浸泡处理的第一聚丙烯纱线层螺旋捆绕在微孔薄膜上,然后十字交叉捆绕10微米的同样经抗菌处理的纱线。然后在十字交叉捆绕的纱线层上捆绕第二层BTS-30微孔薄膜,孔径小于0.35微米,接着是第二层螺旋捆绕的纱线和第二层十字交叉捆绕的10微米的经抗菌剂浸泡的聚丙烯纱线层。过滤筒的端部用PVC塑料溶胶的端盖密封。第一过滤器样品在市政用水管线的条件下进行了细菌学测试。
在此测试中,在流入的水中引入大约0.5百万个菌落形成单位(CFU)的大肠菌。在大约5分钟后,对经过滤的出水进行大肠菌测试。将其它的0.5百万CPU的大肠菌以不同的时间间隔引入水流中,在等待大约5分钟后对出水的细菌污染物水平和出入水间的水压下降进行四次重复测试。
结果注入样品和时间流量水压下降 总大肠菌(自来水) (每立方厘米的菌落数)每分钟加仑数1325注入10cc1.99 16(0.5百万CFU)13301.95 15 01335注入10cc1.99 16 -(0.5百万CFU)13401.95 16 01342注入10cc1.95 16 -(0.5百万CFU)13472.07 17 01348注入10cc2.03 17 -(0.5百力CFU)13532.03 17 01354注入10cc2.03 17 -(0.5百万CFU)13592.07 18 0在测试开始的时候,对过滤器外面的入水进行测试,发现大肠菌的浓度是每立方厘米(cc)49,500CFU,在测试结束的时候,对过滤器外面的入水进行测试,发现大肠菌的浓度是每立方厘米60,200CFU。
然后,在相同条件和参数下对本发明的第二个过滤器样品进行测试,整个测试过程中有10,000加仑的水流经过滤器。按照本发明构造的过滤器具有一个多孔的聚丙烯核芯,在该核芯上捆绕着三层由Veratec公司生产的DT-15型聚酯微孔薄膜,每层微孔薄膜的重量是每平方码4.3盎司,厚度为4.2毫米,平均孔径是11.2微米,最小可以检测到的孔径是1.87微米。每一个薄膜层都紧密的捆绕在聚丙烯核芯上,第三薄膜层上十字交叉的捆绕着1.0微米的聚丙烯纱线,该纱线用MICROBANB抗菌剂浸泡过。过滤器的端部用聚氯乙烯塑料溶胶端盖密封。对该过滤器流出水的细菌污染物水平和出入水间的水压下降进行了测试。
结果注入样品和时间 流量水压下降 总大肠菌(自来水)(磅) (每立方厘米的菌落数)每分钟加仑数245注入10cc 2.0 4 -(0.5百万CFU)250 2.0 4 0255注入10cc 2.0 4 -(0.5百万CFU)300 2.0 4 0305注入10cc 2.0 4 -(0.5百万CFU)312.0 4 0315注入10cc 2.0 4 -(0.5百万CFU)320 2.0 4 0325注入10cc 2.0 4 -(0.5百万CFU)330 2.0 4 0对本发明的过滤器还进行了病毒排斥测试,水流速度是每分钟0.5加仑,结果发现在入水和出水之间的水流中病毒活性降低。在入水流中检测到每毫升5.75×107PFU(噬菌斑形成单位),在出水流中检测到每毫升6.0×105PFU,通过上述过滤器水流的病毒活性降低了98.96%。
对本发明第一和第二过滤器样品所进行的测试看起来表明两个过滤器都能够相当完全地消除和/或减少被过滤水流中的污染物。然而,本发明的过滤器的确能够相当完全地消除或减少细菌污染物,而且进水水流和出水水流间只出现有限的水压下降。
例2对未经处理的活性碳核芯(样品1)和本发明的经MICROBANB抗菌剂浸泡的活性碳核芯进行细菌测试。在测试时每个样品都浸入每毫升含5,000CFU大肠菌的100毫升水中。结果样品1--未经处理的活性碳核芯测量时间 核芯重量(克)每毫升菌落数背景/开始 N/A 622024小时23.6381 838048小时24.0788 9140120小时 22.5115 11,600样品2--经5,000ppmMICROBANB抗菌剂处理的本发明的活性碳核芯。测量时间 核芯重量(克)每毫升菌落数背景/开始 N/A509024小时 28.7834381048小时 25.29154150120小时 26.1046260这样,这些测试结果表明未经处理的活性碳核芯(样品1)成为大肠菌的营养源,这样就导致细菌的繁殖和生长,从而显著增加测试中细菌的活性。相反地,经抗菌剂处理的本发明的活性碳核芯(样品2),显著降低了测试中细菌的活性。
此外,对按照本发明构造的过滤筒进行了随后的测试,采用样品2的过滤器,该过滤器捆绕有一层微孔薄膜和一层经抗菌化学物质浸泡的聚丙烯纱线层,并将该过滤器放入含2ppm氯的进水流中,水的流速是每分钟0.75加仑。测试结果表明进水和出水间的水压下降大约是1.5磅/平方英寸,被检测的氯降低了98.96%。
对于本领域的熟练技术人员可以很明白地认识到,尽管参照最佳实施例对本发明进行了描述,但本发明可以做出很多变化、修改和添加而不偏离本发明随后的权利要求所述的范围。
权利要求
1.一种抗菌过滤筒,其特征在于,它包括一个打有孔的内部核芯部件;包裹所述核芯部件的第一微孔薄膜;覆盖在所述第一薄膜上的第二微孔薄膜;覆盖在所述第二薄膜上的第三微孔薄膜;以及在所述薄膜和所述核芯周围捆绕的纱线层。
2.按照权利要求1所述的过滤筒,其特征在于所述核芯部件由从包括活性碳、塑料、纸、金属和陶瓷的组中选择的材料形成。
3.按照权利要求1所述的抗菌过滤筒,其特征在于所述微孔薄膜的标称孔径至少为0.75微米。
4.按照权利要求1所述的过滤筒,其特征在于还包括在过滤筒的相对两端上安装的端盖。
5.按照权利要求1所述的抗菌过滤筒,其特征在于所述纱线由从包括尼龙、聚丙烯、醋酸纤维、人造纤维、溶解细胞质、丙烯酸、聚酯、聚乙烯或它们的混合物的组中选择的聚合物制成。
6.按照权利要求1所述的抗菌过滤筒,其特征在于所述微孔薄膜由从包括聚酯、聚砜、聚乙烯和聚丙烯的组中选择的聚合物材料制成。
7.按照权利要求1所述的抗菌过滤筒,其特征在于所述薄膜均经抗菌剂处理。
8.按照权利要求1所述的抗菌过滤筒,其特征在于所述纱线包括由从包括2,4,4-三氯-2-羟基二苯酚和5-氯-2-苯酚(2,4-二氯苯氧基)化合物的组中选择的抗菌剂浸泡的纱线。
9.一种抗菌过滤筒,其特征在于,它包括一个打有孔的内部管状核芯部件,该核芯部件具有第一端和第二端;至少一层包裹所述核芯部件的微孔薄膜,该微孔薄膜交迭覆盖所述核芯部件的第一端和第二端,并具有至少约0.75微米的标称孔径;在所述薄膜和所述核芯部件周围捆绕的的抗菌纱线,该纱线捆绕成一定的式样并经抗菌剂处理;并且当流体流经过滤筒时,流体与抗菌纱线和微孔薄膜接触,该纱线和微孔膜捕获流体中的污染物颗粒并抑制细菌生长,从而净化了含有污染物的流体。
10.按照权利要求9所述的过滤筒和按照权利要求1所述的抗菌过滤筒,其特征在于所述抗菌纱线由从包括尼龙、聚丙烯、醋酸纤维、人造纤维、溶解细胞质、丙烯酸、聚酯、聚乙烯或它们的混合物的组中选择的聚合物制成。
11.按照权利要求9所述的过滤筒,其特征在于还包括在所述微孔薄膜上施加的第二微孔薄膜和在所述第二微孔薄膜上施加的第三微孔薄膜。
12.按照权利要求9所述的过滤筒,其特征在于所述微孔膜由从包括2,4,4-三氯-2-羟基二苯酚和5-氯-2-苯酚(2,4-二氯苯氧基)化合物的组中选择的抗菌剂处理。
13.一种抗菌过滤筒,其特征在于,它包括一个由活性碳材料形成的核芯,该活性碳材料经抗菌剂处理;至少一层捆绕所述核芯的微孔薄膜;以及在所述核芯周围捆绕的基本上成十字交叉捆绕式样的浸泡过的纱线层。
14.按照权利要求13所述的过滤筒,其特征在于所述经抗菌处理的活性碳核芯是这样形成的首先在粘结剂中使用抗菌剂,混合粘结剂和碳颗粒,然后加热粘结剂与碳颗粒的混合物并挤压出所述碳核芯。
15.按照权利要求14所述的过滤筒,其特征在于所述抗菌剂是从包括2,4,4′-三氯-2-羟基二苯酚或5-氯-2-苯酚(2,4-二氯苯氧基)化合物的组中选择的。
16.按照权利要求13所述的过滤筒,其特征在于还包括在所述第一微孔薄膜层上施加的第二微孔薄膜层和在所述第二微孔薄膜层上施加的第三微孔薄膜层。
17.按照权利要求16所述的过滤筒和按照权利要求1所述的抗菌过滤筒,其特征在于所述微孔薄膜的标称孔径至少为0.75微米。
18.按照权利要求16所述的过滤筒,其特征在于所述薄膜层均经抗菌剂处理。
19.一种抗菌过滤筒,其特征在于,它包括一个打有孔的内部核芯;至少一层捆绕所述核芯的微孔薄膜;围绕所述核芯,在所述微孔薄膜上捆绕的纤维网,该纤维网经抗菌剂浸泡;并且当流体流经所述纤维网和过滤筒的核芯时,流体中的污染物和细菌被捕获和除去,从而基本上净化了流体。
20.一种抗菌过滤筒,其特征在于,它包括一个由活性碳材料形成的核芯,该活性碳材料经抗菌剂处理;至少一层施加在所述核芯上的微孔薄膜;包裹所述薄膜和核芯的抗菌纱线层,该纱线层基本上捆绕成十字交叉的式样,中间形成孔;以及在所述核芯的相对两端安装的端盖。
21.按照权利要求所述的过滤筒,其特征在于,还包括在所述第一微孔薄膜层上施加的第二微孔薄膜层和在所述第二微孔薄膜层上施加的第三微孔薄膜层。
22.按照权利要求20所述的抗菌过滤筒,其特征在于所述微孔薄膜均经抗菌剂处理。
23.按照权利要求20所述的抗菌过滤筒,其特征在于所述微孔薄膜包括至少约为0.75微米的标称孔径的孔。
24.按照权利要求20所述的抗菌过滤筒,其特征在于所述抗菌纱线包括用浓度约为50-10,000ppm的抗菌剂浸泡的纤维状细丝。
25.一种用于水过滤系统的形成抗菌过滤筒的方法,其特征在于,它包括如下步骤把抗菌剂施加到粘结剂中;混合经抗菌处理的粘结剂和碳颗粒;加热和挤压碳颗粒和经抗菌处理的混合物以形成碳核芯部件;以及用纱线以想要的式样覆盖该核芯部件。
26.按照权利要求所述的方法,其特征在于还包括把第一微孔薄膜施加在该核芯部件周围的步骤。
27.按照权利要求25所述的方法,其特征在于还包括把第二和第三微孔薄膜施加在该核芯部件周围的步骤。
28.按照权利要求25所述的方法,其特征在于纱线均经抗菌处理。
全文摘要
一种具有打有孔的核芯部件(12)的抗菌过滤筒(10),该核芯部件上捆绕有第一微孔薄膜(17),其与第二微孔薄膜(18)和第三微孔薄膜(19)依次交迭。该薄膜上覆盖有捆绕成十字交叉式样的经抗菌处理的纱线。该过滤筒的尺寸与流体过滤系统的筒壳紧密配合。流经筒壳的流体将被该过滤筒过滤以去除过滤介质中的微生物。
文档编号B01D61/18GK1275094SQ98807583
公开日2000年11月29日 申请日期1998年2月17日 优先权日1997年6月17日
发明者吉尔伯特·帕特里克, 阿尔温德·S·帕蒂尔 申请人:米克罗本公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1