分开循环往复活塞式发动机的制作方法

文档序号:5177946阅读:150来源:国知局
专利名称:分开循环往复活塞式发动机的制作方法
技术领域
本发明涉及分开循环往复活塞式发动机并与被称为等温压缩等压燃烧的发动机 (isoengine)类型有关。更具体而言,本发明涉及一种操作分开循环往复活塞式发动机的方法,该发动机包括容纳压缩活塞的压缩缸、容纳膨胀活塞的膨胀缸,压缩缸具有用于允许空气进入的入口和与换热器的第一路径连通的出口,膨胀缸具有与换热器的第一路径连通的入口和与换热器的第二路径连通的出口,第二路径与第一路径为热交换关系,该方法包括将液体喷入压缩缸。
背景技术
这种发动机是已知的并且在例如WO 07/081445中已公开。在使用柴油循环或汽油循环的传统内燃机中,空气被绝热压缩。由于在压缩过程中的能量输入,进气压缩会引起温度相应升高。任何情况下,发动机的每个缸用于在发动机循环的不同冲程时交替实现压缩和膨胀,即燃烧。然而,等温压缩等压燃烧发动机基本上与此不同地运行,即压缩和燃烧/膨胀发生在不同缸内。当空气在压缩缸被压缩时,液体,通常为雾化的水被喷到缸内并且吸收所产生的热量,因而压缩至少是准等温的。由于温度没有显著上升,实施压缩所需的功大幅减少。然后,冷压缩空气经由压缩缸的出口流到换热器或蓄热器的一条路径中,其中,空气在流入膨胀缸前被加热到一相当高的温度。随后,燃料,通常为柴油燃料或天然气,被喷到加热压缩空气中并燃烧。由于膨胀缸的进气阀通常保持为开着,当活塞靠近上止点中心位置时,膨胀缸内的压缩主要由膨胀缸入口处的压力来决定,该入口可连接到蓄压器或压力贮存器。燃烧在膨胀缸的进气阀还开着时进行,且燃烧和膨胀同时发生,从而导致在燃烧时几乎恒定的压力。入口阀的关闭调节成可提供最大总体膨胀效率。因此,燃烧过程基本上是等压的。在燃烧气体膨胀后,膨胀缸的排气阀被打开,且高温废气经由排气口流到换热器中, 因而向膨胀缸提供升高高压进气温度的热源。两个活塞有效率地在两个冲程模式运行,且这结合基本上等温的压缩和废气热能回收意味着发动机具有非常高的制动热效率。然而,已知类型的发动机的确有一些缺点,尤其是如果这种发动机用于汽车用途的话。利用水的热容量以保持压缩基本上等温。因此,有必要喷入大量水并且通常直接在压缩缸的下游可收集到许多这些水。然而,一部分的水经过换热器和膨胀缸,并且为了确保发动机消耗的水量最小(如果发动机是汽车发动机和因此安装在车辆上的话这特别重要), 废气经过包括冷却风扇的冷凝器,该冷凝器使水凝结,然后这些凝结的水返回到储水装置。 水的收集和循环是复杂的和昂贵的,且使用冷却冷凝器降低发动机的效率。此外,为了确保有效的热传递,压缩缸和膨胀缸之间的换热器要求有较大的表面积且因此包含相当大量的高压气体。这会显著减少发动机功率输出可增加的速率,诸如当要求加速车辆时,这是因为其引入从压缩缸到膨胀缸体积供给与充入空气压力变化的相当大的延迟。此外,尽管换热器储存有限量的高压压缩空气,但这太少以至于不能提供在车辆制动或减速时期望的能量储存或回收的方法。

发明内容
因此,本发明的目的是提供一种上述类型的、尤其用于汽车用途的发动机,这种发动机克服或至少减轻上述问题。更具体来说,本发明的目的是消除水的使用和/或增加发动机的效率和比输出功率。根据本发明,喷射的液体是液化的、非氧化性的不可燃烧的气体。尽管气体可以是诸如氦气或氩气的惰性气体,但较佳地使用氮气,特别是因为氮气容易从大气中获得。用液态气体来替代如在这种类型的传统发动机中使用的水具有许多优点。首先, 气体的热容量相对于其蒸发的潜热来说重要性不大,当气体在压缩缸中蒸发时这些潜量被吸收。气体蒸发的潜热如此高以至于需要喷入以实现期望结果的气体体积远远小于在已知发动机中必须喷入的水的体积。其次,如果使用氮气,则不必回收压缩缸下游的气体,也不必在膨胀缸下游设置冷凝器,这是因为氮气可简单地排出到大气。第三,压缩气体中的膨胀液化气体增加气体质量并在燃烧过程中用作惰性物质,并因此本质上用于增加发动机的比功率输出。因此,与使用水有关的问题消除了,并且增加了发动机的功率输出,这首先由于参与到燃烧/膨胀过程中的附加气体,其次是由于消除之前必要的水冷凝器。尽管可从加压储气箱中供给液化气体,这尤其在汽车发动机的情况下可能不太行得通,因此,较佳的是发动机包括连接成由发动机的输出功率驱动的液态氮发生器,且方法包括使液态氮发生器运行以从大气中产生液态氮并将产生的液态氮喷射到压缩缸中。液态氮发生器较佳地设置成以选择性可变的速度来驱动,且在本发明的一个实施例中,当发动机减速时,即当如果发动机是汽车发动机且发动机减速时,液态氮发生器较佳地以增大的速度来运行,以产生超过即刻要求的液态氮量。这种过量液态氮可储存在储存装置中并在随后喷入压缩缸。由于进一步降低进入压缩缸的压缩气体的温度和由于增加参与压缩和膨胀过程的气体质量,将附加量的液态氮喷入压缩缸将使得发动机功率输出的增大。因此,过量液态氮的产生实际上等同于用于后续使用的能力的储存,且液态氮发生器可因此用于包含发动机的车辆的再生制动,车辆的动能在制动时转换成增大体积的液态氮, 其能量通过在要求发动机的能量输出增大的时刻将液态氮喷入压缩缸中而相继释放。在实践中,液态氮发生器还可能产生液体氧气,且方法较佳地包括使用产生的液体氧气来冷却允许进入压缩缸的空气。这将进一步增大发动机的效率和/或功率输出。液态氧较佳地用于间接地,即在换热器中冷却流入的空气。在流经换热器后,氧气可直接排放到大气或涡轮增压器的废气涡轮上游的排气管,这将意味着不仅废气被冷却,而且更大量的气体将流经涡轮,由此允许提取更大量的能量用于涡轮增压。压缩活塞和膨胀活塞通常联接到发动机的整体式曲轴,并因此必然以相同速度运动。这意味着在任何发动机的给定速度下,产生压缩空气的速率是固定的。然而,可期望与发动机的速度无关地控制产生压缩空气的速率,并且因此较佳地压缩活塞和膨胀活塞联接到曲轴的各个对应部分,这些部分通过可变传动比的齿轮传动机构连接到一起,且方法包括选择性变化传动比,因而,压缩活塞和膨胀活塞以不同速度运动。因此,如果例如发动机以低速运行,这将通常意味着由压缩缸低速率地产生压缩空气,则可增大齿轮传动机构的传动比,例如2 1、3 1或更大,由此,压缩空气的产生速率将增大。如果期望发动机从低速骤然加速,这将是所期望的,且这可与如上所述将附加量的液态氮喷入压缩缸结合使用,由此使发动机能够从低速非常快地加速。发动机的性能可通过加入增压器或更具体地说涡轮增压器来附加地增强,如结合内燃机已知的那样。本发明还包含设置成执行上述方法的分开循环往复活塞式发动机。


本发明的其它特征和细节将从根据本发明的发动机的一个特定实施例的下述说明中显现出来,这仅参见高度示意的附图以示例的方式给出。
具体实施例方式如图所示,发动机包括容纳压缩活塞4的压缩缸2,该压缩活塞通过连接杆6连接到曲轴的一部分10上的对应的曲柄8。发动机还包括容纳膨胀活塞14的膨胀缸12,该膨胀活塞通过连接杆16连接到曲轴的另一部分20上的对应的曲柄18。尽管仅示出一个压缩缸2和一个膨胀缸12,但应当理解,可以有任何期望数目的这种缸,且此外压缩缸的数目不必与膨胀缸的数目相同,且两种类型的缸的尺寸也不必相同。曲轴的两个部分10、20并不一体连接在一起以如传统那样以相同速度旋转,而是由可选择变化传动比的传动系统或变速箱22来连接。曲轴10、20还连接到车辆的牵引传动系统24,且这可以是传统类型且并不构成本发明的部分,因此将不作更详细地描述。压缩缸2在其侧壁或缸盖中包括任何数目的喷嘴,在本例中为两个喷嘴沈,这些喷嘴设置成将液态氮喷入缸内部。如将如下所述那样,喷嘴26与液态氮储存装置观连通。 压缩缸2包括进气管30,该进气管由进气阀31控制,并且包括换热器32的一条路径,涡轮增压器的鼓风机叶轮33或涡轮位于其内。压缩缸2还包括由排气阀38控制的排气管36。 由于在这种类型的发动机中产生的较高的压差,排气阀38为所谓的压力补偿类型。为此, 阀杆支承可往复运动地安装在腔室42中并将腔室分成两部分的活塞40。腔室离开压缩缸最远的那部分经由通道44与压缩缸的内部连通,而腔室离压缩缸最近的那部分经由通道 46与排气管36连通。因此,在压缩缸2内产生的相当大的压力不仅在一个方向上作用于排气阀38,而且在另一方向上作用于活塞40,由此可以不必在排气阀上施加非常大的力而使排气阀38打开。压缩缸2中的排气管36与经过换热器或蓄热器50的一条路径的一端连通。经过换热器的那条路径的另一端与膨胀缸12的进气管52连通。进气管52经由进气阀M与膨胀缸内部连通,该进气阀又是压力补偿类型,且燃料喷射器57与缸12内部连通。膨胀缸12 还与由排气阀58控制的排气管56连通。排气管56包括涡轮增压器的废气涡轮59,并且与换热器50中与第一路径呈热交换关系的第二路径的一端连通。第二路径的另一端与直接排放到大气中的排气管60连通。换热器还包括由选择性打开阀64控制的旁路通道62。 当发动机将被启动时打开阀64,由此使与经过换热器的气流有关的压力不受损失。当启动发动机时,换热器当然是冷的,这意味着流经发动机的压缩空气是无用途的。在冷启动状态下,喷嘴沈不运行,由此使压缩终温可以升高且在膨胀缸中可以稳定燃烧。一旦换热器热起来,阀64被关闭,且喷嘴沈开始常规运行。液态氮储存装置观形成已知的布雷顿/焦耳/汤姆逊(Brayton/Joule/ Thompson)类型的液态氮发生器的一部分。这种发生器包括旋转式压缩机70,该压缩机的轴连接到涡轮膨胀机72和可变比传动系统的输出端74,而可变比传动系统的输入端连接到发动机曲轴。液态氮发生器还包括两个换热器76、78和一个风扇冷却的后冷器80。使用时,空气由压缩机70经由入口 82被吸入液态氮发生器,并在压缩后膨胀并流经换热器,产生液态氮且液态氮流到储存装置观,且还产生液态氧并使液态氧排放到导管84,该导管与换热器32的第二路径连接。当用于发动机车辆上时,发动机以如上方式启动。一旦开始常规运行,进气在压缩缸2中基本上等温压缩。经由管30流入压缩缸2的进气由涡轮增压器的涡轮33来加压,并且通过在换热器32内与由液态氮发生器作为副产品产生的液态氧交换热量来进行冷却。 压缩空气离开压缩缸2并在蓄热器50中被加热到一相当高的温度,随后,空气进入膨胀缸 12。由燃料喷射器57喷射完燃料之后,燃烧燃料并且通过使活塞14运动来做功,由此使曲轴旋转。来自膨胀缸12的废气流经涡轮增压器的废气涡轮59并使其旋转,随后流经蓄热器50以对进入的压缩空气进行加热,然后经由排气管60排放到大气。由喷射器沈喷射的液态氮在压缩缸2中蒸发,由此主要由于吸收液态氮蒸发的潜热而保持空气冷却。随后,氮气参与到后续的燃烧/膨胀过程,并且增加参与此过程的气体质量,并由此增大发动机的功率输出。随后,氮气被排放到从中最初获得氮气的大气中去。液态氮发生器将以由压缩机70被驱动的速度来确定的速率产生液态氮。该速度又由传动系统74的传动比和变速箱 22的传动比来确定,这两个传动比实际上由构成或形成现在大多数现代车辆都装备有的发动机管理系统的一部分的控制器来确定。控制器确保产生液态氮的速率足以维持储存装置 28中液态氮的适当储存。如果控制器检测到车辆正在制动,压缩机70的速度将通过增大传动系统74和/或变速箱22的传动比来增加,由此使产生液态氮的速率增加到超过立即消耗所需的程度。这将引起增加储存装置观中的液态氮量,且其在当需要加大功率输出时的后一阶段时如上所述喷入压缩缸2。如果当车辆被制动时变速箱22的传动比增大,这将使压缩活塞4的速度相对于膨胀活塞14的速度增大。这将导致产生超出目前要求的压缩空气量,但当要求从发动机的功率输出增大时,这种过量的压缩空气可以储存在压力储存装置中并在后一阶段中使用。这表示为了再生制动而进行能量储存的附加方法。此外,如果发动机以低速运行且随后期望发动机快速加速,则可增大变速箱22的传动比以增加由压缩缸2压缩的空气的产生速率,且尤其当与增大储存装置观中的液态氮的喷射速率相关联时,这将引起发动机的功率输出更快的增加。
权利要求
1.一种操作分开循环往复活塞式发动机的方法,所述发动机包括容纳压缩活塞的压缩缸、容纳膨胀活塞的膨胀缸,所述压缩缸具有用于允许空气进入的入口和与换热器的第一路径连通的出口,所述膨胀缸具有与所述换热器的所述第一路径连通的入口和与所述换热器的第二路径连通的出口,所述第二路径与所述第一路径呈热交换关系,所述方法包括将液体喷入所述压缩缸,其特征在于,所述液体是液化的、非氧化性的不可燃烧的气体。
2.如权利要求1所述的方法,其特征在于,所述液化气体是液态氮。
3.如权利要求2所述的方法,其特征在于,所述发动机包括连接成由所述发动机的输出功率驱动的液态氮发生器,且所述方法包括使所述液态氮发生器运行以从大气中产生液态氮并将所述产生的液态氮喷入所述压缩缸。
4.如权利要求3所述的方法,其特征在于,所述方法包括当所述发动机减速时,使所述液态氮发生器较佳地以增大的速度运行,以产生超出即刻要求的液态氮量。
5.如权利要求4所述的方法,其特征在于,所述液态氮发生器还产生液态氧,且所述方法包括使用所述液态氧来冷却允许进入所述压缩缸的所述空气。
6.如前述权利要求中任一项所述的方法,其特征在于,所述压缩活塞和所述膨胀活塞连接到曲轴的各对应部分,所述部分通过可变传动比的齿轮传动机构连接到一起,且所述方法包括选择性地变化传动比,以使得所述压缩活塞和所述膨胀活塞以不同速度运行。
7.一种分开循环往复活塞式发动机,所述发动机包括容纳压缩活塞的压缩缸、容纳膨胀活塞的膨胀缸、用于将液体喷入所述压缩缸的液体喷射器和用于储存待喷射的所述液体、与所述液体喷射器连通的液体储存装置,所述压缩缸具有用于允许空气进入的入口和与换热器的第一路径连通的出口,所述膨胀缸具有与所述换热器的所述第一路径连通的入口和与所述换热器的第二路径连通的出口,所述第二路径与所述第一路径呈热交换关系, 其特征在于,所述液体储存装置是液化气体储存装置。
8.如权利要求7所述的发动机,其特征在于,包括液态氮发生器,所述液态氮发生器连接成由所述发动机的输出功率驱动并设置成从所述大气中产生液态氮并且将所述液态氮供给到所述气体储存装置。
9.如权利要求8所述的发动机,其特征在于,包括控制系统和连接到所述控制系统的驱动单元,所述控制系统和所述驱动单元连接在所述发动机输出端和所述液态氮发生器之间,所述控制系统编程成在所述发动机减速时检测并使驱动单元运行,较佳地以增大的速度,以使得所述液态氮发生器产生超出即刻要求的液态氮量。
10.如权利要求8所述的发动机,其特征在于,所述液态氮发生器还设置成在液态氧出口处产生液态氧并且所述液态氧出口与所述压缩缸的所述入口连通。
11.如权利要求中7至10中任一项所述的方法,其特征在于,所述压缩活塞和所述膨胀活塞连接到曲轴的各对应部分,所述部分通过可变传动比的齿轮传动机构连接到一起,且所述方法包括选择性变化传动比,以使得所述压缩活塞和所述膨胀活塞以不同速度运行。
全文摘要
一种分开循环往复活塞式发动机包括容纳压缩活塞(4)的压缩缸(2)和容纳膨胀活塞(14)的膨胀缸(12)。压缩缸(2)具有用于允许空气进入的入口(30)和与换热器(5)的第一路径连通的出口(36)。膨胀缸(12)具有与换热器(5)的第一路径连通的入口(52)和与换热器(5)的第二路径连通的出口(56),第二路径与第一路径呈热交换关系。使发动机运行的方法包括将液化的、非氧化性的不可燃烧气体,诸如氮气,喷射到压缩缸(2)中。
文档编号F02M25/00GK102308063SQ200980154821
公开日2012年1月4日 申请日期2009年12月11日 优先权日2008年12月12日
发明者A·F·阿特金, N·S·杰克逊 申请人:里卡多英国有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1