自适应控制和诊断的车辆氧化催化器效率模型的制作方法

文档序号:5262534阅读:260来源:国知局
专利名称:自适应控制和诊断的车辆氧化催化器效率模型的制作方法
技术领域
本发明涉及在车辆上使用的氧化催化器系统。
背景技术
微粒过滤器能捕获且保持其他在车辆的燃料燃烧过程中产生的烟灰、灰烬、金属和悬浮物质的微观微粒。但是,随着时间推移,所述微粒物质在过滤器介质中累积,这逐渐增加了遍及过滤器的压差。为了延长过滤器的使用寿命并优化发动机的功能性,可用热量使一些微粒过滤器再生,可通过在过滤器上游经由向排气流中注入燃料而将温度暂时提升至450摄氏度或更高。将该热量的峰值用于与合适的催化剂相结合,诸如钯或钼,其中所述催化剂经由简单的放热氧化过程将累积和悬浮的物质分解成相对惰性的副产品。

发明内容
本文公开的一种车辆包括具有排气口的内燃发动机、与发动机经由排气口流体连通的氧化催化器、微粒过滤器和主机。氧化催化器接收由排气口而来的排气流。微粒过滤器与氧化催化器的出口侧流体连通,且可使用来自氧化催化器的热量而选择性地再生。主机计算微粒过滤器下游的排气流内的实际碳氢化合物水平以作为氧化催化器的实际能量输入和输出值的函数,以及随后使用实际碳氢化合物水平来实施控制措施。可使用燃料注入设备选择性地将燃料注入氧化催化器内,其中所述控制措施包括对所述燃料注入设备的运行启用反馈控制。主机可使用温度模型确定比热的值,以及使用由多个温度传感器传来的温度信号来确定车辆内不同位置上的排气的温度。主机可将该实际转换效率和经校准的阈值进行比较,且可产生诊断代码,作为控制措施的至少一部分,其中该诊断代码表示实际能量转换效率是否超过了所述阈值。还提供了一种在上述车辆上使用的系统。该系统包括氧化催化器和微粒过滤器。 氧化催化器与发动机的排气口流体连通,且适于经由排气口接收来自发动机的排气流。微粒过滤器与氧化催化器的出口侧流体连通,且可使用来自氧化催化器的热量而再生。主机计算微粒过滤器下游的排气流内的实际碳氢化合物水平以作为氧化催化器的实际能量输入和输出值的函数,以随后使用所述实际碳氢化合物水平来实施控制措施,诸如将该实际碳氢化合物水平与阈值进行比较,并产生诊断代码和/或执行对氧化过程的闭环或开环控制。还提供了一种在上述车辆上使用的方法。该方法包括使用主机计算微粒过滤器下游的排气流内的实际碳氢化合物水平,这部分地通过求解氧化催化器的实际能量输入和输出值的函数而达成。额外地,该方法包括使用实际碳氢化合物水平经由主机而在车辆上实施控制措施。在下文结合附图进行的对实施本发明的较佳模式做出的详尽描述中能容易地理解上述的本发明的特征和优点以及其他的特征和优点。


图1是具有内燃发动机和氧化催化器系统的车辆的示意图;且图2是描述使用图1中示出的氧化催化器系统的方法的流程图。具体实施方法参见附图,其中这几幅附图中相同的附图标记对应着相同或类似的构件,图1中示意性地示出了车辆10。车辆10包括主机40和诊断算法100,该算法100由主机40选择性地执行,以计算车辆10载有的氧化控制(OC)系统13的实际转换效率。主机40因此可以用来计算、评估和控制由车辆10最终排入周围大气中的实际碳氢化合物水平,这可通过使用参考附图2更详尽地说明的温度模型50而部分地完成。车辆10包括诸如柴油发动机或直喷式汽油发动机这样的内燃发动机12、OC系统 13和传动装置14。发动机12将由燃料箱18中取出的燃料16燃烧。在一个可能的实施例中,该燃料16是柴油,且氧化催化器系统13是柴油氧化催化器(DOC :diesel oxidation catalyst)系统,但也可根据发动机12的设计使用其他类型的燃料。油门(throttle) 20按照需要选择性地允许使预定量的燃料16和空气进入发动机 12。燃料16的燃烧产生排气流22,该排气流最终从车辆10排放入周围大气中。由燃料16 的燃烧释放的能量在传动装置14的输入部件M上产生扭矩。该传动装置14随后将由发动机12传来的扭矩传输至输出部件26,以经由一组轮子观推进车辆10,出于简明的目的在图1中仅示出了一个所述的轮子。OC系统13和发动机12的排放口 17流体连通,使得该OC系统对在以气态或蒸汽流体状态从发动机12的排气口 17经过车辆排气系统时呈气体排气流22形式的流体进行接收和调节。OC系统13包括氧化催化器30、可选的选择性催化还原(SCR selective catalytic reduction)设备32、和微粒过滤器;34。可将微粒过滤器;34配置为陶瓷泡沫 (ceramic foam)、金属网、粒状氧化铝、或任何其他温度和用途合适的材料。以上使用的术语“调节”指的是OC系统13内多个位置上对排气流22的温度的控制和/或调整。为了达成这个目的,将微粒过滤器34连接至氧化催化器30或将其整体地和该氧化催化器30 —起制成。燃料注入设备36与主机40经由控制信号15电子连通,且与燃料箱18流体连通。燃料注入设备36选择性地将燃料16注入氧化催化器30,这由主机 40确定。将注入氧化催化器30的燃料16以受控的方式在其中燃烧,以产生足以使微粒过滤器34再生的热量。S卩,氧化催化器30在存在排气流22的受控温度的情况下起作用,以氧化或燃烧任何被引入排气流的碳氢化合物。这在微粒过滤器34内提供了足够的温度水平,以氧化由该氧化催化器30下游的过滤器捕获的微粒状物质。因此将该微粒过滤器34保持为相对没有可能会导致阻塞的微粒状物质。仍参见图1,在一些实施例中,可将可选的选择性催化还原(SCR)设备32设置在氧化催化器30和微粒过滤器34之间。SCR设备32是使用活性催化剂将氮氧化物(NOx)气体转化为水和氮气作为副产品的选择性催化还原设备或单元。可将SCR设备32配置为陶瓷砖或陶瓷蜂窝结构(ceramic honeycomb structure)、板状结构或任何其他合适的设计。车辆10包括主机40,其监测OC系统13正在进行的运行,以确保高效的碳氢化合物转换。主机40计算OC系统13的实际转换效率,并使用该结果来计算来自OC系统的实际碳氢化合物排放。主机40可随后将该结果和校准过的调整阈值或其他阈值进行比较,并执行控制措施以反映所述结果。可将主机40配置成用作车辆控制器的数字计算机,和/或比例-积分-微分(PID) 控制器设备,所述设备具有微处理器或中央处理单元(CPU)、只读存储器(ROM)、随机存取存储器(RAM)、电子可擦式可编程只读存储器(EEPROM)、高速时钟、模-数(A/D)和/或数-模(D/A)电路、和任何所需的输入/输出电路和相关的设备、以及任何所需的信号调节和/或信号缓冲电路。算法100和任何所需的参考标准(reference calibration)可被主机40存储或方便地访问,以提供下文中参照图2所描述的功能。主机40接收由多个温度传感器42传来的温度信号11,所述传感器被定位为在OC 系统13内的不同位置处测量排气温度,这些位置包括直接在氧化催化器30的下游和直接在微粒过滤器34的上游。在一个实施例中,将温度传感器42定位在氧化催化器30的入口侧或发动机12附近,且适于测量或探测进入氧化催化器30的进气温度。额外的温度传感器42探测来自氧化催化器30的相应出口温度,到微粒过滤器34的进气温度和来自微粒过滤器34的出口温度。将来自温度传感器42的每一所述温度信号11传送或转送到主机40。 主机40还和发动机12通信,以接收表明发动机12的工作点的反馈信号44,诸如油门位置、 发送机速度、加速度器踏板位置、给油量(fueling quantity)、请求的发动机扭矩等。如将参照图2在下文中立刻进行的描述一样,可由主机40执行算法100,以计算上述的OC系统13的转换效率。主机40使用由主机40存储或可存取的温度模型50以及燃料注入设备36处的碳氢化合物注入速率来提供总的能量输入,即,热能和化学能能量输入。通过测量实际能量输出,例如通过测量离开DOC的热量,并结合由温度模型50提供的信息,主机40计算经转换的燃料能量,且由该结果计算排气流22中离开车辆10的未转换的燃料量。主机40随后可将实际的碳氢化合物值和经校准的阈值(例如调节标准限)进行比较,随后可执行适合该结果的控制措施。参见图2,算法100由步骤102和步骤104同时开始,其中在步骤102,主机40计算质量流量(mass flow rate),该质量流率可通过包括排气流22的蒸汽的已知密度(P)、 其速度(V)、和流动的横截面积(A)相乘来计算,或是通过将该密度(P )和体积流量(Q)相乘来计算。在步骤104,温度传感器42测量氧化催化器30的出口温度,并将该值作为温度信号11中的一个通讯至主机40。主机40可由温度模型50获取排气比热值,并将该值暂时记录在存储器中。在步骤104,将燃料16的流量通讯至主机40,例如作为反馈信号44的一部分。例如通过访问温度模型50或查询表确定该燃料16的已知能量含量。一旦在步骤102和步骤104确定了所有需要的值,则算法100进行到步骤106和108。在步骤106,主机40使用在步骤102确定的值来计算从氧化催化器30输出的能量率(energy rate)。将该值对时间进行积分,且将该值存储在存储器中。算法100随后进行到步骤110。在步骤108,主机40使用在步骤104上确定的值来计算输入氧化催化器30的能量率。如以上的步骤106所述,将该值对于时间进行积分,且将该值存储在存储器中。算法 100随后进行到步骤110。在步骤110,主机40使用来自步骤106和108的值来计算氧化催化器30的总体转换效率。随后将计算出的效率存储在存储器中,用于步骤112,算法100随后进行到步骤 112。在步骤112,主机40使用在步骤110确定的实际效率来计算排气流22中碳氢化合物的实际水平。即,主机40执行步骤102-110以确定实际效率值,这可用来计算未转换的能量。获知氧化催化器30的输入侧的能量含量后,能便利地计算出包含在排气流22中的碳氢化合物的质量输出。算法100随后进行到步骤114。在步骤114,由主机响应于在步骤102-112中计算出的任何值中来采取恰当的控制措施。举例来说,可将在步骤112计算出的碳氢化合物的实际水平和经校准的设计阈值进行比较。当该碳氢化合物水平比所述阈值相对较高时,采取修正措施。在一个实施例中,该控制措施可为经由由主机40通讯至图1中示出的燃料注入设备36的控制信号15来开启对进入氧化催化器30的碳氢化合物注入率进行反馈控制,以及由此对在其中的燃料的随后燃烧所产生的温度进行反馈控制。其他的控制措施可包括记录 “通过/失败”诊断码、指示器灯(未示出)的激活、或消息的产生、或任何其他措施,它们能传达对氧化催化器30更换或修复需求和/或对OC系统13进行维护和/或控制改变的需求。相应地,主机40使用输入至氧化催化器30的热能和化学能量率且通过将诸如使用温度模型50计算出的预期排放热能的增加与存在的热能含量进行比较,从而计算OC系统13的实际转换效率。实际能量输入和实际能量输出的比值决定了效率,且可将该值用来触发前文所述的一个或多个控制措施。尽管已经对执行本发明的较佳模式进行了详尽的描述,但是本领域技术人员可得知在所附的权利要求的范围内的用来实施本发明的许多替换设计和实施例。
权利要求
1.一种车辆,其包括 内燃发动机,包括排气口 ;氧化催化器,经由排气口与所述发动机流体连通,且适于经由排气口接收来自所述发动机的排气流;微粒过滤器,与所述氧化催化器的出口侧流体连通,其中,所述微粒过滤器能使用来自所述氧化催化器的热量而再生;和主机,能操作为计算所述微粒过滤器下游的所述排气流内的实际碳氢化合物水平以作为所述氧化催化器的实际能量输入值和实际输出值的函数,以及能操作为随后使用所述实际碳氢化合物水平来实施控制措施。
2.如权利要求1所述的车辆,其中,所述主机能操作为用来计算进入所述氧化催化器的实际能量输入值,作为所述燃料的流量和能量含量的函数; 来自所述氧化催化器输出的实际能量输出值,作为所述氧化催化器的出口温度、所述排气流的比热值和所述排气流的质量流量的函数;和所述氧化催化器的实际能量转换效率,作为所述实际能量输入值和所述实际能量输出值的比。
3.如权利要求2所述的车辆,其中,所述主机使用温度模型确定所述比热值。
4.如权利要求2所述的车辆,还包括燃料注入设备,该设备适于选择性地将燃料注入到所述氧化催化器中,以提升其中的再生温度,所述控制措施包括对所述燃料注入设备的运行启用反馈控制。
5.如权利要求1所述的车辆,还包括多个用来在所述车辆内不同位置测量所述排气流的温度的温度传感器,其中,所述主机使用来自所述多个温度传感器的温度值来计算所述实际能量输入值和所述实际能量输出值。
6.如权利要求1所述的车辆,其中,所述主机将所述实际能量转换效率和经校准的阈值进行比较,并产生诊断代码以作为所述控制措施的至少一部分,所述诊断码代的值对应于所述实际转换效率的值。
7.—种用在车辆上的方法,该车辆包括内燃发动机和与发动机的排气口流体连通的氧化催化器系统,所述氧化催化器系统包括接收来自发动机排气口的排气流的氧化催化器、 能使用来自所述氧化催化器的热量而再生的微粒过滤器、和主机,所述方法包括使用主机计算所述微粒过滤器下游的所述排气流内的实际碳氢化合物水平,包括求解所述氧化催化器的实际能量输入值和实际能量输出值的函数;和使用所述实际碳氢化合物水平经由所述主机在所述车辆上实施控制措施。
8.如权利要求7所述的方法,其还包括将所述实际碳氢化合物水平与阈值进行比较;和当所述碳氢化合物水平超过所述阈值时以一种方式实施所述控制措施。
9.如权利要求7所述的方法,其还包括计算进入所述氧化催化器的实际能量输入值,作为燃料的流量和能量含量的函数; 计算来自所述氧化催化器的实际能量输出值,作为所述氧化催化器的出口温度、所述排气流的比热值和所述排气流的质量流量的函数;和计算所述氧化催化器的实际能量转换效率,作为所述实际能量输入值和所述实际能量输出值的比。
10.如权利要求7所述的方法,其中,所述车辆包括适于选择性地在所述氧化催化器中注入燃料的燃料注入设备,所述方法还包括对所述燃料注入设备的运行启用反馈控制,作为所述控制措施的至少一部分。
全文摘要
一种车辆,包括燃料箱、内燃发动机、氧化催化器、和所述氧化催化器的出口侧流体连通的可再生微粒过滤器、以及主机。所述主机计算所述微粒过滤器下游的所述排气流内的实际碳氢化合物水平以作为所述氧化催化器的实际能量输入值和实际输出值的函数,以及能操作为随后使用所述实际碳氢化合物水平来实施控制措施。一种在车辆上使用的方法,其包括使用主机计算微粒过滤器下游的排气流内的实际碳氢化合物水平,这包括求解氧化催化器的实际能量输入值和实际能量输出值的函数和使用实际碳氢化合物水平经由主机在车辆上实施控制措施。
文档编号F01N9/00GK102374000SQ20111022645
公开日2012年3月14日 申请日期2011年8月9日 优先权日2010年8月10日
发明者J.D.马林斯, P.巴拉萨, S.A.道格拉斯 申请人:通用汽车环球科技运作有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1