参考发动机停止位置的发动机曲柄起动转矩的控制方法

文档序号:5155848阅读:327来源:国知局
参考发动机停止位置的发动机曲柄起动转矩的控制方法
【专利摘要】一种参考发动机停止位置的发动机曲柄起动转矩的控制方法,该发动机以已知的曲柄角度停止,该方法包括:在重新启动时,利用与已知的曲柄角度相关的期望压力驱动位于起动马达和发动机之间的转矩路径中的离合器;在重新启动时,使用起动马达来驱动发动机。
【专利说明】参考发动机停止位置的发动机曲柄起动转矩的控制方法

【技术领域】
[0001]本发明总体上涉及一种通过从起动马达经由离合器和阻尼器将转矩传输至发动机来启动混合动力电动车辆(hybrid electric vehicle, HEV)的发动机的方法。

【背景技术】
[0002]模块化的混合传动装置(modular hybrid transmiss1n,MHT)是动力系统组件的一种配置,该配置包括在自动变速箱之前串联排列的内燃机、转矩阻尼器、分离离合器、马达/发电机和转矩变换器。在启动时,电机作为马达运转,使用高压电池作为马达的动力源来曲柄起动发动机。
[0003]在MHT系统中,关键目标是使用最少数量的起动马达储备转矩平稳并快速地启动发动机。使用均一值匹配所有分离离合器的压力分布可以产生发动机以不同的加速度启动,这造成了例如燃料/空气曲柄起动校准、可能的无启动等的问题。增加的启动转矩需要更多起动马达中的储备启动转矩。
[0004]基于转速改变分离离合器的操作压力分布,这可能难以控制,这是由于,对于标准应用来说,它所依靠的信息不能及时被发动机启动程序获得。而且,车辆系统控制器(vehicle system controller,VSC)控制电机转矩以及可能地控制速度。分离离合器压力控制器基于发动机转速或者加速度来调整离合器的驱动压力,因此产生了发动机速度控制困难的可能。VSC从车辆驾驶员处接受输入信号,协调发动机和电机、以及可以分离离合器和变速箱。


【发明内容】

[0005]一种用于重启以已知曲柄角度停止的车辆发动机的方法,包括:在重新启动时,利用与已知的曲柄角度相关的期望压力来驱动位于起动马达和发动机之间的转矩路径中的离合器;并且在重启时使用起动马达来驱动发动机。
[0006]该方法基于停止时的发动机的位置,使用用于分离离合器压力控制的不同开环压力分布。
[0007]分离离合器压力分布规定有多少电机转矩将被引导向曲柄起动发动机。如果分离离合器压力分布基于发动机的停止位置改变,可以实现并预料到减少曲柄起动发动机所需的转矩。
[0008]通过以下的【具体实施方式】、权利要求书和附图,优选实施例的适用范围将变得显而易见。可以理解的是,虽然指出了本发明的优选实施例,说明书和【具体实施方式】仅仅以例示的方式给出。对于所描述的实施例和示例的不同改变和修改,对于本领域的技术人员来说是显而易见的。

【专利附图】

【附图说明】
[0009]通过参考下述的说明书、附图,本发明将会被更容易地理解,其中:图1是示出与用于HEV的与动力系统有关的组件排布的示意图;
[0010]图2是示出在利用低和高启动扭矩来启动已经停在60度位置的发动机时的发动机速度和时间之间关系的曲线图;
[0011]图3是示出在利用低和高启动扭矩来启动已经停在10度位置的发动机时的发动机速度和时间之间关系的曲线图;
[0012]图4是示出最初曲柄位置与发动机到达300rpm转速的时间之间关系的曲线图,要求的转矩=88ft-1bf ;
[0013]图5示出的是在发动机重启时的不同分离离合器的压力分布以及相应的发动机转速变化;以及
[0014]图6示出的是在发动机重启时的图5中一个压力分布的变化以及相应的发动机转速变化。

【具体实施方式】
[0015]图1举例说明了的动力系统10组件的MHT配置,它包括内燃机12、发动机分离离合器14、高电压电池16、高电压至低电压直流/直流转换器18、低电压电池20、低电压起动机22、扭振阻尼器24、电机26、转矩变换器28、转矩转换器旁路离合器30、变速齿轮箱32、传动轴34、最终传动装置36、半轴38、40以及从动轮42、44。
[0016]扭振阻尼器24由螺旋弹簧或者包括多个螺旋弹簧的机构组成,其中应用于阻尼器的扭转引起弹簧机构的位移。由于在移动的弹簧和容纳弹簧的阻尼器外壳的侧壁之间的摩擦接触,阻尼器24耗散扭转能量。
[0017]由发动机12驱动的主输送泵46向变速箱32和转矩转换器28的液压系统输送加压的液压流体。在关闭发动机时,由电动马达(未示出)驱动的辅助油泵向变速箱32和转矩转换器28的液压系统输送加压的液压流体。
[0018]内燃机(ICE) 12通过分离离合器14连接至电机26和变速箱32,分离离合器可以将发动机和动力系统接合和解离以满足混合动力车辆在不同模式下的操作需要。
[0019]高压电机26固定在转矩转换器28的叶轮轴50上。电机26由高压电池16供电。
[0020]HEV的动力系统10可以与传统车辆共享相同的传动硬件但是使用不同的控制算法,例如常规级比变速器(step rat1 transmiss1n)可以用于动力系统来驱动车辆。
[0021]用于这种配置的转矩转换器28优选地与用于传统自动变速装置的转矩转换器相同。当旁路离合器30断开时,在变速器输入轴52和叶轮轴50之间可能存在差异速度。当旁路离合器30闭合时,转矩变换器叶轮和涡轮机械地连接,这样,电机26和变速器输入轴52的速度大体上相同。
[0022]可选择地,其他类型的自动变速装置可以用于动力系统10之中,例如具有与两个皮带轮接合的传动皮带的无极变速器(continuously variable transmiss1n, CVT),或者手自排变速器、或者其他HEV的技术。总体的混合运行是相似的,但是将马达与变速器相分离的机制的细节是不同的。
[0023]扭振阻尼器24具有调整或消除动力系统10的高频扭转振动的主要功能的机械组件。通过高压马达26曲柄起动发动机12。
[0024]起动发动机所需的发动机曲柄起动转矩主要基于发动机的曲柄位置而改变。与发动机远离于上止点但是向上止点趋进时相比,当发动机活塞70在其气缸中升高到接近上止点时,需要较小的转矩来启动发动机。
[0025]在发动机转速低并且压缩能量丢失时,即在膨胀冲程中不驱动发动机曲柄时,克服第一和第二发动机压缩冲程所需的转矩将会基于发动机停止时的曲柄角度而改变。在四冲程发动机中曲柄角度在O度到720度之间变化。
[0026]图2示出了,对于停止在上止点前(BTDC)60度的发动机,起动发动机的前几个压缩冲程消耗能量并在膨胀冲程中不提供压缩帮助。当启动转矩低82时,发动机转速达到300rpm的时间段要长于当起动转矩较高84时。
[0027]图3示出了,对于停止在上止点前10度的发动机,在第二压缩冲程之后,在膨胀冲程中来自压缩空气燃料混合物的能量的增加,减少发动机转速到达300rpm所需的时间段。
[0028]图4示出在使用相对小的曲柄起动转矩时的发动机曲柄位置范围中,发动机可能不能加速。
[0029]图5示出当发动机12停止在上止点前60度时,分离离合器14的压力分布90,由传感器91产生的表示发动机曲柄角度的电子信号所确定。当提供给离合器14的液压力为56.5psi时,离合器的转矩传输能力是731b-ft (磅-英尺)。曲线92示出了在应用离合器压力分布90使发动机转速达到300rpm所需时间段102期间的发动机转速相应的增加。
[0030]相同地,图5示出了,当发动机12停止在上止点前10度时,分离离合器14的压力分布94。当提供给离合器14的液压力为52.5psi时,离合器的转矩传输能力为651b_ft。曲线96示出了在应用离合器压力分布94使发动机转速达到300rpm所需时间段102期间的发动机转速相应的增加。
[0031]当发动机12停止在上止点前60度并且向离合器14提供的液压力为62.5时,分离离合器14的离合器压力分布98产生851b-ft的离合器转矩传输能力。曲线104示出了与离合器压力分布98对应的发动机转速快速上升至300rpm。
[0032]由压力分布98产生的发动机启动是过早的,即在对于操作条件或者车辆驾驶员的期望来说过短的时间段106中发生,并且浪费了由起动马达26提供的能量。
[0033]曲线108示出由压力分布98产生的可选的发动机启动被延迟,即需要对于发动机速度达到300rpm来说过长的时间段110,,当车辆驾驶员踩踏油门踏板引起发动机启动时尤其如此,发动机转速达到300rpm所需的时间段110过长。优选地,发动机达到300rpm转速的时间段102是恒定的时间长度。
[0034]每个分离离合器压力分布90、94、98都决定被引导至曲柄起动发动机12的电机转矩有多大。如果分离离合器的压力分布基于发动机停止位置而改变,可以实现或预料到曲柄起动发动机所需转矩的减小。
[0035]图6不出图5中分尚尚合器压力分布90的变化112,以及在发动机重启时,相应发动机转速变化114。当114处需要时,发动机12在上止点前60度停止时适用的预期的压力分布11提供了离合器压力阶梯式的增长,它替代了为离合器14提供峰值大小为56.5psi的压力分布90的线性增长。曲线114示出在发动机转速达到300rpm所需的时间段112内发动机转速相应的增长。
[0036]选择并应用分离离合器压力控制的开路压力分布,以参考发动机的角位置一即停止发动机的曲柄角度一以及命令重启发动机的基础来曲柄起动和启动发动机12。
[0037]例如,如果车辆在发动机停止情况下在电动模式下运行,并且电池16的电量状态低,动力系统控制器会发出指令以使用电机26重启发动机。在这种情况下的发动机重启优选为平稳的、高质量的并且在恒定的时长102中发生。利用期望的分离离合器压力分布90或94,基于停止时发动机12的曲柄角度位置,发动机的重启在相对低的曲柄起动转矩下发生。
[0038]但是如果车辆驾驶员开始发动机重启,例如通过踩踏油门踏板124,以相对高的曲柄起动转矩在相对短的时间段106内发生发动机重启。在这种运行条件下,发动机的重启将会不太平稳并且具有较短持续时间,并且预期的分离离合器压力分布98取决于发动机12停止时的曲柄角度位置。
[0039]为了促进在发动机曲柄起动后的持续的发动机燃烧,应用于离合器14的压力大小减小。在发动机12中燃烧变得持续后,将应用于离合器14的压力大小增加到能够将发动机的转矩通过电机26、转矩变换器28、传动装置32以及最终传动装置36传递至从动轮42>44的大小。
[0040]为符合专利法的规定,描述了优选实施例。然而,应该注意的是除非另有明确的说明和描述,可以使用替换的实施例。
【权利要求】
1.一种参考发动机停止位置的发动机曲柄起动转矩的控制方法,所述发动机以已知的曲柄角度停止,其特征在于,包括: (a)在重新启动时,利用与已知的曲柄角度相关的期望压力驱动位于起动马达和发动机之间的转矩路径中的离合器; (b)在重新启动时,使用起动马达来驱动发动机。
2.根据权利要求1所述的方法,其特征在于,在重新启动时,所述期望压力能够改变所述离合器从起动马达向发动机传输转矩的能力。
3.根据权利要求1所述的方法,其特征在于,进一步包括,在重新启动的第一时间段减少施加在所述离合器上的压力。
4.根据权利要求3所述的方法,其特征在于,进一步包括,在第一时间段之后的第二时间段中,增加施加在所述离合器上的压力。
5.根据权利要求1所述的方法,其特征在于,在步骤(a)中,在重新启动时,响应于重新启动发动机的指令来施加驱动离合器的所述期望压力。
6.根据权利要求5所述的方法,其特征在于,在重新启动时,用于驱动离合器的所述期望压力的大小取决于踩踏油门踏板和增加电力蓄电池的电量状态的需要其中之一。
7.—种参考发动机停止位置的发动机曲柄起动转矩的控制方法,所述发动机以已知的曲柄角度停止,其特征在于,包括: (a)定位在起动马达和发动机之间的转矩路径中的离合器; (b)响应于重新启动发动机的指令,利用与已知的曲柄角度相关的期望压力来驱动离合器; (C)在重新启动时,使用起动马达来驱动发动机。
8.根据权利要求7所述的方法,其特征在于,在重新启动时,所述期望压力能够改变所述离合器从起动马达向发动机传输转矩的能力。
9.根据权利要求7所述的方法,其特征在于,进一步包括,在重新启动的第一时间段中减少施加在所述离合器上的期望压力。
10.根据权利要求9所述的方法,其特征在于,进一步包括,在第一时间段之后的第二时间段中增加施加在所述离合器上的期望压力。
【文档编号】F02N11/00GK104234903SQ201410274310
【公开日】2014年12月24日 申请日期:2014年6月19日 优先权日:2013年6月19日
【发明者】伯纳德·D·奈夫西, 马文·P·卡拉斯卡, 布莱恩·T·苏 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1