催化剂活化方法及催化剂活化装置与流程

文档序号:13079130阅读:283来源:国知局
催化剂活化方法及催化剂活化装置与流程

本发明涉及对净化来自内燃机的排出气体的选择催化剂还原型nox催化剂进行活化的催化剂活化方法及催化剂活化装置。



背景技术:

作为使排出气体升温的控制,已知节流进气节气门的方法。

根据上述方法,能够减少气缸内过剩的空气,能够提高燃烧温度,并且,还能够使排出气体升温。

现有技术文献

专利文献

专利文献1:日本特开2010-168972号公报

专利文献2:日本特开2015-007422号公报

专利文献3:日本特开2005-299513号公报

专利文献4:日本特开2002-276401号公报



技术实现要素:

发明要解决的课题

需要说明的是,选择催化剂还原型nox催化剂(以下,称为nox催化剂)通过升温到预定的催化剂活性温度以上从而活化。虽然即使用上述方法来升温排出气体也能够使nox催化剂活化,但是需求能够更高效可靠地活化nox催化剂的装置。

因此,本发明的目的在于,提供能够高效可靠地活化nox催化剂的催化剂活化方法及催化剂活化装置。

用于解决课题的手段

为了达成上述目的,本发明提供一种对用于净化来自内燃机的排出气体的选择催化剂还原型nox催化剂进行活化的催化剂活化方法,在上述内燃机上连接有多个辅机,并且,针对上述辅机的每一个设置有调节因上述辅机的驱动而施加于上述内燃机的负荷的调节机构,取得上述nox催化剂的温度,在所取得的上述nox催化剂的温度比催化剂活性温度低时,为了补充地驱动与它们温度差相应的台数的上述辅机,而将与要驱动的辅机对应的上述调节机构控制到辅机驱动侧从而使上述内燃机的负荷増加。

附图的简要说明

图1是本发明的一个实施方式的催化剂活化装置的概述图。

图2是说明催化剂活化方法的流程图。

图3是在图2的催化剂活化方法中使用的图表的图。

图4是表示其它的实施方式的图表的图。

具体实施方式

以下,按照附图说明本发明的优选实施方式。

如图1所示,活化选择催化剂还原型nox催化剂1的催化剂活化装置2包括:多个辅机4,其被连接于内燃机3;调节机构5,其针对辅机4的每一个而被设置,并调节由于辅机4的驱动而施加于内燃机3的负荷;以及控制装置6,其取得nox催化剂的温度,在取得的nox催化剂的温度比催化剂活性温度低时,为了补充地驱动与其温度差相应的台数的辅机4,而将与该要驱动的辅机4对应的调节机构5控制到辅机驱动侧从而使内燃机3的负荷増加。

内燃机3由柴油引擎构成,被装载于车辆。内燃机3具有多个气缸7,在每个气缸7上设有喷射轻油等柴油燃料的喷射器8。在喷射器8上连接有共轨(commonrail)9。共轨9将柴油燃料供给到喷射器8中。此外,喷射器8被电连接于控制装置6上,通过从控制装置6接受命令从而在预定的定时喷射燃料。

此外,内燃机3具有进气岐管10及排气岐管11,在进气岐管10上连接有进气系统12,在排气岐管11上连接有排气系统13。

在进气系统12中,设置有涡轮增压机14的压缩机15。压缩机15被来自后述的涡轮增压机14的涡轮16的旋转力驱动。

在排气系统13中,设置有涡轮增压机14的涡轮16,并且,还设置有排气净化装置17。涡轮16由排出气体旋转驱动。

排气净化装置17被设置于比涡轮16靠下游的排气系统13中。排气净化装置17包括:氧化催化剂18;dpf(dieselparticulatefilter:柴油微粒过滤器)19,其被配置于氧化催化剂18的下游侧;以及nox催化剂1,其被配置于dpf19的下游侧。

氧化催化剂18例如是在由陶瓷构成的承载体表面承载催化剂成分而形成的。氧化催化剂18氧化排出气体中的hc而使排气温度上升。

dpf19具有多孔质性的分隔壁(未图示),并在分隔壁的细孔或表面捕集排出气体中的pm(particulatematter:颗粒状物质)。

nox催化剂1利用从作为还原剂而被供给的尿素水生成的nh3(氨)来还原净化排气中的nox。nox催化剂1在为催化剂活性温度(例如200℃)以上时被活化。

此外,在dpf19与nox催化剂1之间的排气系统13中,设置有尿素水喷射装置20,并且,还设置有温度传感器21。

尿素水喷射装置20被连接于未图示的尿素水箱上,通过从后述的控制装置6接收信号从而喷射来自尿素水箱的尿素水。尿素水喷射装置20通过向排气系统13内喷射尿素水从而在高温下使尿素水水解,产生nh3。

温度传感器21被电连接于控制装置6上,以预定的周期检测nox催化剂1入口的温度。由温度传感器21检测到的温度作为电信号被输入到控制装置6中。

多个辅机4包括冷却风扇4a、动力转向用泵4b、交流发电机4c、空调用压缩机4d、以及油泵4e。

冷却风扇4a、动力转向用泵4b、交流发电机4c、以及空调用压缩机4d分别经由皮带轮23、皮带24、以及作为调节机构5的离合器25而与内燃机3的曲轴22连接。针对冷却风扇4a、动力转向用泵4b、交流发电机4c、以及空调用压缩机4d这些各辅机4的每一个上设置离合器25,使得各辅机4分别独立被驱动。离合器25分别被形成为能够在半离合状态下传递动力。在此,半离合状态是指,动力传递的程度即连接率为大于0%并且小于100%的范围的状态。此外,各离合器25分别被电连接于控制装置6上,通过从控制装置6接收信号从而能够将来自内燃机3的动力以任意的连接率传递给辅机4。冷却风扇4a、动力转向用泵4b、交流发电机4c、以及空调用压缩机4d通过对应的离合器25的连接率升高,从而由内燃机3以更高的驱动力来驱动,并且,内燃机3的负荷由于其反作用力而増加。此外,冷却风扇4a、动力转向用泵4b、交流发电机4c、以及空调用压缩机4d通过对应的离合器25的连接率下降,从而被以更低的驱动力驱动,并且,内燃机3的负荷由于其反作用力而减少。另外,离合器25也可以能够仅选择完全断开及完全连接。

油泵4e例如由可变容量叶轮泵构成。在可变容量叶轮泵中,设置有作为调节机构5的执行器26。执行器26是用于增减泵容量的装置,并被电连接于控制装置6上。执行器26能够根据来自控制装置6的信号,以任意的调节率增减泵容量。在此,调节率是指,以油泵4e的泵容量最大(内燃机的负荷最大)时为100%,以油泵4e停止时(内燃机的负荷为0)为0%时的百分比。可变容量叶轮泵通过执行器26的调节率升高,从而由内燃机3以更高的驱动力驱动,并且,内燃机3的负荷由于其反作用力而増加。可变容量叶轮泵通过执行器26的调节率下降,从而被以更低的驱动力驱动,并且,内燃机3的负荷由于其反作用力而减少。

另外,执行器所能够应对的调节率限于从100%到与最小泵容量对应的调节率的范围内。控制装置6可以在此调节率的范围内控制执行器。

此外,辅机4及调节机构5不限于此。

控制装置6由ecu(enginecontrolunit:引擎控制单元)构成。在控制装置6中,预先存储有内燃机3的怠速转速、nox催化剂1的催化剂活性温度、以及图3所示的图表27。如图3所示,图表27表示催化剂活性温度和催化剂温度之差(温度差)与应补充地驱动的辅机的台数(増加台数)的关系。换言之,图表27表示在调节由辅机4产生的内燃机3的负荷时的上述温度差与离合器连接率(执行器26的调节率)的关系。

如图2所示,控制装置6在步骤s1中的判定为“是”的期间,重复步骤s1至步骤s4。在步骤s1中,比较催化剂温度tc与催化剂活性温度tsc,在催化剂温度tc为催化剂活性温度tsc以下时(是),进入步骤s2,在其以外时结束。在步骤s1中使用的催化剂温度tc通过控制装置6基于来自温度传感器21的检测值进行推定从而被取得。

在步骤s2中,控制装置6利用公式δt=tsc-tc来算出催化剂活性温度tsc与催化剂温度tc的温度差δt,并进入步骤s3。

在步骤s3中控制装置6基于温度差δt与图表27(参照图3)取得要工作的辅机4的増加台数,并具体地选择该増加台数量的辅机4。具体而言,控制装置6在温度差δt=0时设増加台数为0台,在0<δt≦δt1时设増加台数为大于0台且1台以下(例如与在图3中的横轴的值δt对应的纵轴的值为0.5的情况下,0.5台),在δt1<δt≦δt2时设増加台数为2台,在δt2<δt≦δt3时设増加台数为3台,在δt3<δt≦δt4时设増加台数为4台,在δt4<δt时设増加台数为5台。

在步骤s3中选择要工作的辅机4时,选择没有因其它的控制等而已在工作的辅机。例如在空调由于用户的操作而正在被使用的情况下,不选择该空调的空调用压缩机4d。

另外,也可以在控制装置6中预先设定要选择的辅机4的优先顺序,以该优先顺序来选择辅机4。此外,也可以不对要选择的辅机4设定优先顺序而是随机选择。

此后,控制装置6进入步骤s4,使所选择的辅机4全部工作。例如,在控制装置6在步骤s3中确定要増加的辅机4的台数为2台,并选择了冷却风扇4a和动力转向用泵4b作为要工作的辅机4的情况下,将与冷却风扇4a对应的离合器25以连接率100%连接,并且,将与动力转向用泵4b对应的离合器25以连接率100%连接。此外,在控制装置6在步骤s3中确定要増加的辅机4的台数为0.3台,并选择了冷却风扇4a作为要工作的辅机4的情况下,将与冷却风扇4a对应的离合器25以连接率30%连接。

此外,控制装置6具有如下怠速速度控制功能:未图示的油门踏板未被踩下时,为了将引擎转速一直维持为上述怠速转速,而增减来自喷射器8的燃料喷射量。怠速速度控制功能与上述的催化剂活化的功能被并行执行。

接下来,叙述本实施方式的作用。

若内燃机3被冷起动,则控制装置6进行怠速运转,到油门踏板被踩下为止。怠速运转通过控制燃料喷射量使得引擎转速成为怠速转速从而进行。

此外,如图2所示,控制装置6与怠速运转并行地执行步骤s1。此时,控制装置6取得催化剂温度tc的推定值,并比较催化剂温度tc与催化剂活性温度tsc。因为内燃机3刚被起动后的催化剂温度tc为常温,所以催化剂温度tc比催化剂活性温度tsc低。因此,在步骤s1中为“是”,控制装置6执行步骤s2。控制装置6在步骤s2中算出催化剂温度tc与催化剂活性温度tsc的温度差δt。此后,控制装置6执行步骤s3。控制装置6在步骤s3中基于温度差δt和图表27(参照图3)而取得要増加驱动的辅机4的台数。

在此,例如在温度差δt大于δt3且在δt4以下的情况下,控制装置6从图表27中取得増加台数=4。此后,控制装置6搜索尚未工作的辅机4,从那些辅机4中具体地选择4台辅机4,并将与这些辅机4对应的离合器25的连接率设为100%。

此后,控制装置6执行步骤s4。例如在步骤s3中选择了冷却风扇4a、动力转向用泵4b、交流发电机4c、以及空调用压缩机4d作为要工作的4台辅机4的情况下,控制装置6将与这些辅机4对应的离合器25分别设为100%连接。由此,使冷却风扇4a、动力转向用泵4b、交流发电机4c以及空调用压缩机4d工作,内燃机3的负荷増加。此外,与此同时控制装置6为了将引擎转速维持为怠速转速而使燃料喷射量増加。由此,来自内燃机3的排出气体温度上升,nox催化剂1的温度也上升。

控制装置6重复步骤s1~s4,到催化剂温度tc变得比催化剂活性温度tsc高为止。此外,在温度差δt处于与执行上个步骤s4时相同的范围内时,维持相同的辅机4的工作。

伴随时间的经过催化剂温度tc上升,在温度差δt变成了大于δt2且在δt3以下时,控制装置6从图表27中取得増加台数=3。此后,控制装置6从已经工作的4台辅机4中具体地选择要维持工作的3台辅机4。例如在步骤3中选择了冷却风扇4a、动力转向用泵4b、以及交流发电机4c的情况下,控制装置6将与未选择的空调用压缩机4d对应的离合器25的连接率设为0%。

控制装置6重复同样的处理,伴随催化剂温度tc的上升使辅机4逐台停止。而且,例如若维持工作的辅机4为1台,从图表27中取得増加台数=0.3,则控制装置6将与该1台辅机4对应的离合器25以连接率30%连接而设为半离合状态。

此后,若催化剂温度tc变得与催化剂活性温度tsc相等,则控制装置6在步骤s3中从图表27中取得増加台数=0,并将与维持工作的辅机4对应的离合器25的连接率设为0%,使该辅机4停止。

另外,虽然在上述的说明中叙述了催化剂活化的控制在空闲运转中被进行的情况,但是即使在油门踏板被踩下的情况下同样的催化剂活化的控制也被进行。

如此,因为在催化剂温度tc比催化剂活性温度tsc低时,为了补充地驱动与它们的温度差δt相应的台数的辅机4,而将与该要驱动的辅机4对应的调节机构5控制到辅机驱动侧而使内燃机3的负荷増加,所以能够在温度差δt较大时对内燃机3施加较大的负荷而使催化剂温度tc迅速上升,并且,能够随着温度差δt减小而减少维持工作的辅机4的台数,能够高效可靠地活化nox催化剂1。此外,即使在用户打盹等未进行油门操作的状态下,也能够增加内燃机3的负荷,并能够使nox催化剂1的温度迅速上升到催化剂活性温度。

此外,因为在多个调节机构5中至少1个由离合器25构成,在将离合器25控制到辅机驱动侧时,将离合器25设为半离合状态,所以能够更精密地控制内燃机3的负荷,并且,能够抑制因过度施加负荷而导致的燃料经济性的恶化。

另外,图表不限于上述的图表。例如如图4所示,也可以是即使在増加台数大于1台时,与温度差δt对应的増加台数也包含小数的图表28。在此情况下,划分连接率等,以使増加台数与要连接的全部的离合器25的连接率(或者执行器26的调节率)的总和相等,并控制各离合器25等即可。例如将与1台辅机4对应的离合器25设为小于100%的连接率而设为半离合状态,将与其它的辅机4对应的离合器25或者执行器26设为100%的连接率或者调节率即可。此外,也可以将与多个辅机4对应的离合器25或者执行器26设为小于100%的连接率或者调节率。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1