用于动力传递装置的控制系统的制作方法

文档序号:10540591阅读:416来源:国知局
用于动力传递装置的控制系统的制作方法
【专利摘要】本发明涉及一种用于动力传递装置的控制系统,即使接合元件之一不能接合或者脱开,所述控制系统也通过电机起动发动机。如果即使发出用于脱开接合元件中的一个接合元件同时接合另一个接合元件的初始指令,发动机的转速在拖动期间也不能升高到预定速度,则控制系统发出用于接合所述接合元件中的所述一个接合元件同时脱开所述另一个接合元件的备选指令以使发动机进入要起动的容许状态(步骤S1?S9)。
【专利说明】
用于动力传递装置的控制系统
技术领域
[0001]本发明涉及一种用于动力传递装置的控制系统,更具体地,涉及一种用于控制具有至少两个用于切换档位级(gear stage)的接合元件的变速器的控制系统,该变速器连接到发动机的输出轴。
【背景技术】
[0002]日本特开JPN0.2011-255889中说明了这种动力传递装置的示例。日本特开JPN0.2011-255889所教导的混合动力驱动系统包括适于在低速级(低速档)与高速级(高速档)之间切换档位级的变速器、用于切换档位级的切换机构、用于将变速器的转矩分配至第一电机和输出轴的动力分配机构,以及布置在输出轴上的第二电机。由第一电机产生的电力供给至第二电机,并且第二电机的转矩供给至输出轴。双小齿轮式行星齿轮单元用作变速器。在行星齿轮单元中,齿圈与发动机相连以用作输入元件,行星架用作输出元件以将转矩传送至动力分配机构,并且太阳齿轮能够经由切换机构选择性地与齿圈相连或者固定至壳体。如果太阳齿轮经由切换机构与齿圈相连以建立低速级,则变速器一体地转动,从而发动机转矩直接传递。相反,如果太阳齿轮与壳体固定在一起以建立高速级,则行星架的转速由于差动作用而升高至大于齿圈的转速。另外,切换机构容许切换至其中太阳齿轮既不与齿圈相连也不与壳体相连的空档位置。也即,如果切换机构位于空档位置,则容许太阳齿轮自由地转动以便不建立任何变速比。另一方面,单小齿轮式行星齿轮单元用作动力分配机构。在动力分配机构中,太阳齿轮与第一电机相连,行星架与变速器的行星架相连,齿圈与输出轴相连。
[0003]如上所述,变速器的太阳齿轮在切换机构切换至空档位置的情况下容许自由地转动。如果因而容许太阳齿轮自由地转动,则太阳齿轮不会建立相对于从发动机传送至变速器的齿圈的驱动力的反作用力,并且转矩将被太阳齿轮消耗掉。在这种情况下,即使第一电机被驱动,第一电机的转矩也不会传送至动力分配机构的行星架和变速器的行星架。因此,在日本特开JP N0.2011-255889所教导的混合动力驱动系统中,如果切换机构由于某些原因卡在空档位置,则很难通过第一电机起动发动机。
[0004]本发明寻求解决上述技术问题,目的是提供一种即使变速器的任何接合元件出现故障也容许发动机由电机转动的用于动力传递装置的控制系统。

【发明内容】

[0005]本发明的控制系统应用于动力传递装置,其中,变速器与发动机的输出轴相连,并且变速器设置有至少两个接合元件。在变速器中,发动机的输出轴通过接合所述接合元件中的两个而锁止,并且发动机通过脱开所述接合元件中的两个而与变速器断开。为了实现上述目的,所述控制系统构造成,在即使发出用于脱开所述接合元件中的一个接合元件同时接合另一个接合元件的初始指令以使所述发动机进入要通过电机起动的容许状态所述发动机的转速在拖动(motoring)期间也不能升高到预定速度的情况下,发出用于接合所述接合元件中的所述一个接合元件同时脱开所述另一个接合元件的备选指令以使所述发动机进入要通过电机起动的容许状态。
[0006]所述控制系统进一步构造成,在即使发出所述备选指令来代替所述初始指令所述发动机的转速在拖动期间也不能升高到所述预定速度的情况下,不通过电机起动所述发动机。
[0007]本发明的控制系统所适用的动力传递装置包括适于将转矩传送至驱动轮的输出部件,和适于将发动机转矩分配至所述电机和所述输出部件的差动机构。在所述动力传递装置中,所述变速器置于所述发动机与所述差动机构之间,所述电机的转矩传送至所述输出部件。
[0008]因而,假定即使发出用于脱开接合元件中的一个接合元件同时接合另一个接合元件的初始指令以将发动机与变速器相连或者解锁发动机的输出轴但发动机的转速在拖动期间也不能升高到预定速度,本发明的控制系统发出用于接合所述接合元件中的所述一个接合元件同时脱开所述另一个接合元件的备选指令以将发动机与变速器相连或者解锁发动机的输出轴。例如,如果所述接合元件中的一个接合元件处于不能接合的状态下从而接合元件两者都脱开,则电机的转矩不能经由变速器传送至发动机,从而发动机I的转速不能升高。相反,如果所述接合元件中的一个接合元件处于不能脱开的状态下从而接合元件两者都接合,则发动机的输出轴被变速器锁止。在这些情况下,本发明的控制系统发出备选指令至接合元件,以便将发动机与变速器相连或者解锁发动机的输出轴。因此,即使接合元件中的一个接合元件不能接合或者脱开,电机的用以转动发动机的转矩也容许经由变速器传送至发动机。为此,发动机能够确定地通过电机的转矩起动。
[0009]假定即使发出备选信号但两个接合元件仍然接合或脱开,使得转速不能升高到预定速度,则本发明的控制系统终止发动机的起动操作。在这种情况下,电能不会通过发动机的拖动而被消耗,并且因而节省的电能可以用于推动车辆。
[0010]如上所述,本发明的控制系统应用于其中发动机经由变速器和差动机构与电机相连的动力传递装置。在如此构造的动力传递装置中,如果即使发出上述初始指令但发动机的转速在拖动期间也不能升高到预定速度,则本发明的控制系统发出备选指令以将发动机与变速器相连或者解锁发动机的转动轴。因此,电机的转矩能够经由变速器传送至发动机,从而即使接合元件中的一个接合元件不能接合或者脱开也能确定地通过电机的转矩起动发动机。
【附图说明】
[0011]图1是示出由本发明的控制系统执行的控制的一个示例的流程图;
[0012]图2是示出在驱动模式从EV模式向HV模式切换并且设定变速器的低速级的状况下执行图1所示程序时变速器和动力分配装置的状态的共线图;
[0013]图3是在驱动模式从EV模式向HV模式切换并且设定变速器的高速级的状况下在执行图1所示程序时变速器和动力分配装置的状态的共线图;
[0014]图4是示意性地示出本发明所应用的混合动力车辆的传动系的一个示例的略图;
[0015]图5是示意性地示出根据本发明的一个示例的框图;和
[0016]图6是示出图4所示传动系的各驱动模式下离合器、制动器和电动发电机的操作状态的表格。
【具体实施方式】
[0017]现在详细地参照附图,图4示出混合动力车辆的传动系的优选示例。如图4所示,混合动力车辆的原动机包括发动机(ENG)I,和两个电动发电机(MGl,MG2)2、3。在优选示例中,由发动机I产生的驱动力选择性地传递至动力传递机构5,由此将驱动力传送至驱动轮4。
[0018]动力传递机构5包括:变速器6,该变速器6适于在至少高速级与低速级之间切换其档位级;和动力分配装置7,该动力分配装置7经由变速器6将从发动机I传递的动力分配至第一电动发电机2侧和输出侧。例如,齿轮式变速器、滚柱式变速器、带传动式变速器等可以用作变速器6,并且,在图4示出的示例中,单小齿轮式行星齿轮单元用作变速器6。与常规的单小齿轮式行星齿轮单元一样,变速器6包括太阳齿轮8、与太阳齿轮8同心地布置的作为内齿轮的齿圈9、与太阳齿轮8和齿圈9两者啮合的小齿轮,以及以容许小齿轮围绕太阳齿轮8公转和自转的方式保持小齿轮的行星架10。行星架10与发动机I的输出轴11相连以用作输入部件,太阳齿轮8用作反作用部件,齿圈9用作输出部件。
[0019]离合器CO布置成将太阳齿轮8与行星架10选择性地相连,制动器BO布置成通过将太阳齿轮8与预定的固定部件12例如壳体相连来选择性地停止太阳齿轮8。因而,这些离合器CO和制动器BO各自用作本发明的接合机构,为此,液压式摩擦接合装置、电磁式摩擦接合装置、牙嵌式离合器等可以用作离合器CO和制动器B0。具体地,在图4所示的示例中,液压式摩擦接合装置各自用作离合器CO和制动器B0。因此,太阳齿轮8通过接合离合器CO与行星架1相连以一体地转动,因此,变速器6整体一体地转动。相反,通过接合制动器BO停止太阳齿轮8,在这种情况下,行星架1转动,使得齿圈9以比行星架1的速度高的速度转动。也即,在变速器6中,通过接合离合器CO建立直接档(S卩,低速级),通过接合制动器BO建立其中变速比比直接档的变速比小的高速级。假定离合器CO和制动器BO两者都脱开,则太阳齿轮8容许自由地转动。在这种情况下,因此,发动机I的驱动力传递至行星架10,但是由于太阳齿轮8的转矩下降(torque drop)所以并不会传递至动力传递机构5。因而,离合器CO和制动器BO用于将发动机I选择性地与动力传递机构5相连。
[0020]具有三个旋转元件的差动机构可以用作动力分配装置7。在图4所示的示例中,具体地,单小齿轮式行星齿轮单元用作动力分配装置7,并且与发动机I同轴地布置。第一电动发电机2与发动机I分别布置在动力分配装置7的两侧,动力分配装置7的太阳齿轮13与第一电动发电机2的转子相连。在动力分配装置7中,齿圈14与太阳齿轮13同心地布置,插置于太阳齿轮13与齿圈14之间同时与之啮合的小齿轮由行星架15支承同时容许围绕太阳齿轮13回转和自转。行星架15与用作变速器6的输出部件的齿圈9相连,齿圈14与布置在变速器6与动力分配装置7之间的主动齿轮16相连。
[0021]中间轴17与动力分配装置7和第一电动发动机2的同一转动中心轴线平行地布置,与主动齿轮16啮合的中间轴从动齿轮18配合在中间轴17上以与之一体地转动。中间轴从动齿轮18的直径大于主动齿轮16的直径以使得转速减小,也即,在将转矩从动力分配装置7传递到中间轴17期间转矩放大。
[0022]第二电动发电机3与中间轴17平行地布置,从而第二电动发电机3的转矩能够增加到从动力分配装置7传递到驱动轮4的转矩上。为此,与第二电动发电机3的转子相连的减速齿轮19与中间轴从动齿轮18相啮合。减速齿轮19的直径小于中间轴从动齿轮18的直径,从而第二电动发电机3的转矩在被放大的同时传递到中间轴从动齿轮18或中间轴17。
[0023]另外,中间轴主动齿轮20以与之一体地转动的方式配合在中间轴17上,中间轴主动齿轮20与用作最终减速装置的差动齿轮单元21的齿圈22相啮合。应注意,为了便于说明,差动齿轮单元21的位置位于图4的右侧。
[0024]在图4所示的传动系中,每个电动发电机2和3各自经由未示出的控制器例如逆变器与蓄电装置例如电池相连。因此,电动发电机2和3各自通过控制施加至其上的电流而在电动机和发电机之间切换。同时,发动机I的点火正时和节气门的开度被电动控制,发动机I自动停止和重新起动。
[0025]通过电子控制单元执行那些控制,优选示例的控制系统在图5中示出。控制系统包括用于控制整个车辆的混合动力控制单元(下文称为HV-ECU)23,用于控制电动发电机2和3的电动发电机控制单元(下文称为MG-ECU) 24,和用于控制发动机I的发动机控制单元(下文称为发动机ECU)25。每个控制单元23、24和25各自主要包括构造成基于输入数据和预设数据执行计算并且以指令信号的形式输出计算结果的微型计算机。例如,车速、加速器的开度、第一电动发动机2的速度、第二电动发电机3的速度、油(S卩,ATF)的温度、电池的荷电状态(下文简称为“S0C” )、发动机I的冷却剂的温度、发动机I的速度等输入至HV-E⑶23。同时,HV-ECU 24构造成输出用于第一电动发动机2的转矩指令、用于第二电动发电机3的转矩指令、用于发动机I的转矩指令、用于离合器CO的液压指令PC0、用于制动器BO的液压指令ΡΒ0、用于未示出的油栗的指令等。
[0026]用于第一电动发动机2的转矩指令和用于第二电动发电机3的转矩指令发送至MG-E⑶24,MG-E⑶24使用那些输入数据计算要分别发送至第一电动发动机2和第二电动发电机3的电流指令。同时,用于发动机I的转矩指令发送至发动机ECU 25,发动机ECU 25使用那些输入数据计算用以控制节气门的开度的指令和用以控制点火正时的指令,所计算的指令分别发送至电子节气门和点火装置(未示出)。
[0027]在如此构造的混合动力车辆中,能够从多个驱动模式中选择驱动模式。混合动力车辆的驱动模式可以总体上归类为混合动力模式(下文简称为“HV模式”)和电机模式(下文简称为“EV模式”)。基本上,在HV模式下,发动机I被驱动,并且发动机I的动力分配到第一电动发动机2侧和输出侧。分配到第一电动发动机2的动力通过第一电动发动机2转变成电能并且传送到第二电动发电机3。然后,传送到第二电动发电机3的电能通过第二电动发电机3再次转变成要传送到驱动轮4的机械能。相反,在EV模式下,通过电动发电机2和3的任意一个使发动机I停止和为车辆提供动力。
[0028]在HV模式下,发动机I通过接合离合器CO或制动器BO而与动力传递机构5相连。离合器CO和制动器BO在HV模式下的操作状态示出在图6中。在HV模式下,具体地,能够从低速级(Low)或高速级(Hi)选择变速器6的档位级以沿前进方向推动车辆。在两种情况下,第一电动发动机2作为发电机工作,第二电动发电机3作为电动机工作。此外,当向后推动车辆时,制动器BO接合并且在变速器6中选择高速级。在这种情况下,第一电动发动机2也作为发电机工作,并且第二电动发电机3也作为电动机工作。
[0029]如上所述,如果制动器BO接合,则太阳齿轮8停止以便建立高速级。在高速级下,作为变速器6的输出部件的齿圈9以比发动机I的速度高的速度转动,并且作为动力分配装置7的输入部件的行星架15以与齿圈9的速度相同的速度转动。在这种情况下,如果第一电动发动机2作为发电机工作以将转矩沿与作用在行星架15上的转矩相反的方向施加到太阳齿轮13上,则转矩在根据动力分配装置7的变速比被放大的同时施加到作为输出部件的齿圈14和与齿圈14一体的主动齿轮16上。因而放大的转矩进一步传递到中间轴17。由第一电动发动机2产生的电能被传送以操作作为电动机的第二电动发电机3,并且第二电动发电机3的转矩也传递到中间轴17。另外,假定第一电动发动机2的转速是零,发动机I的动力在途中未转变成电能的情况下仅通过机械方式整体上传递到驱动轮4。这种运转状态可以称为动力传递效率增强的“机械点”。
[0030]相反,如果离合器CO代替制动器BO接合,则太阳齿轮8与行星架10相连,由此建立低速级。在低速级下,齿圈9以与发动机I相同的速度转动,并且动力分配装置7的行星架15以与齿圈9相同的速度转动。如果第一电动发动机2的转速减小到零,则发动机I的动力也在途中未转变成电能的情况下仅通过机械方式整个传递到驱动轮4。换句话说,在优选示例的传动系中,动力传递效率增强的上述机械点不但能够在高速级下实现而且在低速级下也能够实现。
[0031]在EV模式下,驱动模式可以从其中车辆仅通过第二电动发电机3提供动力的“单电机模式”和其中车辆通过第一和第二电动发电机2和3两者提供动力的“双电机模式”中选择。为此,发动机I可以不保持连接到动力传递机构5,而是与动力传递机构5断开连接。在此,术语“连接”的定义是其中转矩能够在发动机I与动力传递机构5之间传递的状态,术语“断开连接”的定义是其中转矩不能在发动机I与动力传递机构5之间传递的状态。换句话说,在单电机模式下,驱动模式可以从图6中以“I”表示的其中离合器CO和制动器BO两者脱开的第一单电机模式,和从图6中以“2”表示的其中离合器CO和制动器BO中至少任意一个接合的第二单电机模式中选择。
[0032]假设离合器CO和制动器BO两者在第一单电机模式下脱开,则变速器6的太阳齿轮8容许自由转动,换句话说,不会建立反作用力。因此,即使第一电动发动机2被驱动,第一电动发动机2的转矩也不会施加到齿圈14和与之一体的主动齿轮16。亦即,转矩由太阳齿轮8消耗,从而车辆仅通过第二电动发电机3提供动力。在这种情况下,第一电动发动机2可以空转。或者,第一电动发动机2的转速可以减小到预定速度例如零。为此,例如,第一电动发动机2的转速可以利用齿槽转矩(cogging torque)减小。或者,第一电动发动机2的转动可以通过将电流供给到第一电动发动机2(也即,通过d轴锁止控制)而停止。假设在第一单电机模式下沿前进方向推动车辆,则能够通过接合离合器CO和制动器BO中任意一个来建立制动力。
[0033]在EV模式下,第二单电机模式通过接合离合器CO和制动器BO中至少任意一个而建立,双电机模式通过接合离合器CO和制动器BO两者而建立。在双电机模式下,第一和第二电动发电机2和3两者作为电动机工作。在这种情况下,太阳齿轮8在被制动器BO固定的同时与行星架10相连以与变速器6—体。因此,变速器6整个被固定,发动机I的转动通过如此固定的变速器停止。
[0034]同时,动力分配装置7的行星架15与变速器6的齿圈6固定在一起。在这种情况下,通过沿与车辆沿前进方向驱动的情况下齿圈14的转动方向相反的方向转动第一电动发动机2,作为行星齿轮单元的动力分配装置7容许用作变速器以根据其变速比改变速度。因此,第一电动发动机2的转矩在其转动方向反转的同时被根据通过动力分配装置7建立的变速比改变,并施加到齿圈14。在反转的同时如此改变的第一电动发动机2的转矩和第二电动发电机3的转矩传递到中间轴17,并且进一步传送到驱动轮4。那些作用即使在反转行驶下也不会改变。具体地,当车辆沿后退方向驱动时,第一和第二电动发电机2和3的转动方向相对于前进行驶下反转。
[0035]如果要求仅通过第二电动发电机3能够实现的小驱动力,则不必控制和被动地转动第一电动发动机2。
[0036]接下来,说明通过仅接合制动器BO建立第二单电机模式的情况。在这种情况下,以动力分配装置7的太阳齿轮13减小到零并且通过第二电动发电机3的转矩沿前进方向转动齿圈14的方式控制第一电动发动机2。因此,行星架15以比齿圈14的速度低的速度转动。在这种情况下,在变速器6中,与行星架15相连以一体转动的齿圈9也沿前进方向转动,并且太阳齿轮8通过制动器BO停止。因此,行星架10和与其相连的发动机I以比齿圈9的速度低的速度转动。换句话说,高速级通过变速器6建立,并且发动机I被动地转动。或者,第二单电机模式也可以通过代替制动器BO而接合离合器CO来实现。在这种情况下,低速级(也即,直接档)通过变速器6建立,以便变速器6—体地转动。在这种情况下,因此,发动机I也被动地转动。
[0037]因而,单电机模式和双电机模式可以在EV模式下选择,并且停止的发动机I可以选择性地与动力传递机构5相连。在实现要求的驱动力的同时以最佳燃料和电力有效方式选择那些驱动模式和接合状态。例如,假设加速器的开度大以要求大驱动力,则选择双电机模式。相反,假设要求小驱动力,则选择单电机模式。在单电机模式下,当要求发动机制动力时,接合离合器CO和制动器BO中的任意一个。与此相比,当有必要减少动力损失时,离合器CO和制动器BO中的两者都脱开,以将发动机I从动力传递机构5断开连接。
[0038]驱动模式根据驱动要求例如加速器的开度、车辆速度、电池的SOC等在EV模式与HV模式之间切换。例如,如果驱动要求或车辆速度增大或者如果在EV模式下电池的SOC低,则通过接合离合器CO和制动器BO中的任意一个而将驱动模式切换到HV模式。因此,发动机I与动力传递机构5相连并且开始向其传送转矩。在上述混合动力车辆中,发动机I通过第一电动发动机2起动。也即,在发动机I拖动期间,发动机I通过外力例如第一电动发动机2的转矩驱动,直到发动机I进入自持状态(自转动状态)。发动机的这种起动操作也可以称为“曲轴起动(cranking)”。另外,在发动机I在EV模式下拖动期间,变速器6的变速比根据车辆速度改变。因此,在发动机I的拖动完成之后,即在切换到HV模式之后,发动机转速不会过度升高,从而动力损失不会增大。
[0039]本发明的控制系统构造成在驱动模式从EV模式到HV模式切换操作期间控制离合器CO和制动器B0。下面参照附图1说明优选控制示例,HV-ECU 24构造成以预定的短时间间隔重复在此示出的程序。
[0040]根据图1所示的控制示例,首先,判定车辆是否在EV模式并且变速器6的低速级下驱动(步骤SI)。如上所述,变速器6的低速级通过接合离合器CO同时脱开制动器BO建立。因此,低速级能够基于用于接合离合器CO的液压指令PCO和用于脱开制动器BO的液压指令PBO来确定。同样如上所述,在不要求大驱动力并且电池的SOC充足的条件下选择EV模式。相应地,EV模式可以基于驱动要求和电池的SOC来确定。或者,EV模式可以基于用于发动机I的转矩指令和用于电子节气门的开度指令来确定。
[0041]如果在变速器6中没有建立低速级,或者如果车辆不是在EV模式下驱动,从而步骤SI的答案为否,则不执行任何具体控制返回程序。相反,如果车辆在EV模式下驱动并且通过变速器6建立低速级从而步骤SI的答案为是,则判定是否要求驱动模式切换到HV模式(步骤S2)。例如,可以基于在EV模式下不能实现要求的驱动力的事实,以及电力消耗由于辅助设施而增大使得SOC降低的事实,来作出步骤S2的判定。也即,在步骤S2,判定重新起动发动机I的条件是否满足。或者,还可以基于用于拖动发动机I的指令的传递来作出步骤S2的判定。如果驱动模式不要求切换到HV模式,从而步骤S2的答案为否,则不执行任何具体控制返回程序。
[0042]相反,如果要求通过重新起动发动机I而将驱动模式切换到HV模式,从而步骤S2的答案为是,则通过第一电动发电机2的转矩转动发动机1(步骤S3)。如果在发动机I的拖动期间通过第一电动发电机2的转矩改变驱动转矩,则通过第二电动发电机3的输出转矩调整驱动转矩的这种改变。为此,根据发动机I的排量和温度、车辆速度、起动发动机I所需的时间等等预设第一和第二电动发电机的输出转矩的改变。或者,还可以使用车辆的运动方程式单独计算电动发动机的输出转矩。
[0043]在步骤S3的发动机I拖动期间或者之后,判定发动机I是否已起动(步骤S4)。假定汽油机用作发动机I,当发动机的转速升高到点火速度时在给火花塞通电的同时开始发动机I的燃料供给。因此,燃料燃烧以便实现发动机I的自持状态。相应地,如果即使在从发动机I的拖动开始经过预定时间段之后发动机转速还没有达到预定目标速度例如点火速度或者自持速度,则能够推定发动机I的拖动不成功。相反,如果发动机转速高于目标速度,则控制系统判定发动机I已经起动,从而步骤S4的答案为是。在这种情况下,驱动模式切换到HV模式(步骤S5),然后返回程序。
[0044]如上所述,如果在拖动期间发动机转速仍然低于目标速度,则控制系统判定发动机I还没有起动,从而步骤S4的答案为否。在这种情况下,发动机I的起动的这种故障可以归结于制动器BO在接合状态下卡死。因此,用于转动发动机I的第一和第二电动发电机2、3的转矩减小到零(步骤S6)。例如,如果处于正常状态下的离合器CO接合并且制动器BO在接合状态下卡死,则变速器6的太阳齿轮8与行星架10相连,使得变速器6进入一体地转动的状态。在这种情况下,因为太阳齿轮8被制动器BO停止,所以变速器6整体锁止或者受限,由此停止发动机I的转动。因此,很难通过第一和第二电动发电机2和3的转矩的转动起动发动机
1
[0045]在步骤S6的电动发电机2和3的转矩减小期间或者之后,传递用于脱开离合器CO的液压指令PCO(步骤S7)。如上所述,在这种情况下制动器BO在接合状态下卡死。因此,通过脱开离合器CO在变速器6中建立高速级。作为脱开离合器CO的结果,被锁止的变速器6解锁,使得发动机I与动力传递机构5相连,由此容许在变速器6与动力传递机构5之间传递转矩。
[0046]在用于脱开离合器CO的液压指令PCO传递期间或者之后,第一电动发电机2和第二电动发电机3的转矩升高以转动发动机1(步骤8)。然后,如步骤S4所述,判定发动机I是否起动(步骤S9)。
[0047]如果发动机转速升高到高于目标速度,则控制系统判定发动机I已经起动,从而步骤S9的答案为是,并且驱动模式切换到HV模式。在这种情况下,由于在步骤S6判定制动器BO卡死,所以禁止档位级切换到低速级,并返回程序(步骤S10)。
[0048]相反,如果发动机转速仍然低于目标速度,控制系统判定发动机I还没有起动,从而步骤S9的答案为否。在这种情况下,离合器CO也被视为在接合状态下卡死。因此,用于转动发动机I的第一和第二电动发电机2和3的转矩减小为零(步骤Sll)。也即,在步骤S6,控制系统判定为变速器6锁止的事实。
[0049]然后,由于变速器6因而锁止,所以禁止驱动模式切换到HV模式,并且EV模式继续推动车辆。另外,电动油栗的出口压力减小(步骤S12)。在这种状况下,由于制动器BO和离合器CO两者均在接合状态下卡死,油栗没有必要建立用于接合那些元件的液压压力。因此,驱动电动油栗消耗的电能可以减小,由此节省存储在电池中的电能。然后,图1所示的程序返回。
[0050]图2是示出在执行图1所示程序的状况下在驱动模式从EV模式切换到HV模式并且设定变速器6的低速级时变速器6和动力分配装置7的状态的共线图。为了建立低速级,用于接合离合器CO的液压指令PCO传递到离合器CO,用于脱开制动器BO的液压指令PBO传递到制动器BO ο如果离合器CO和制动器BO两者均处于正常状态,因此,离合器CO接合并且制动器BO脱开以建立图2中细虚线所示的低速级。在这种状况下,发动机I容许被第一电动发电机2转动并起动。然后,如果制动器BO在接合状态下卡死,则在建立低速级的过程期间离合器CO和制动器BO两者均接合。在这种情况下,变速器6如图2中实线所示锁止。因此,动力分配装置7的行星架15固定成使得其转动减少为零。因此,很难通过第一电动发电机2转动发动机I。
[0051]在这种情况下,因此,代替低速级而建立高速级。也即,即使制动器BO如图2中粗虚线所示在接合状态下卡死,也能够通过脱开离合器CO而建立高速级。因此,在高速级下发动机I容许通过第一电动发电机2起动。但是,如果即使传递用于脱开离合器CO的液压指令PCO但高速级在这种情况下也不能建立,则控制系统判定离合器CO也在接合状态下卡死。也即,控制系统判定变速器6锁止。在这种情况下,禁止档位级切换到HV模式,并且继续EV模式。另外,油栗停止或者油栗的出口压力减小。
[0052]接下来,在此简短说明其中离合器CO和制动器BO两者在脱开状态下卡死的情况。如上所述,为了建立低速级,将用于接合离合器CO的液压指令PCO传递到离合器CO,并且将用于脱开制动器BO的液压指令PBO传递到制动器B0。例如,如果离合器CO在脱开状态下卡死但是制动器BO处于正常状态,则在建立低速级的过程期间离合器CO和制动器BO两者均脱开。在这种情况下,太阳齿轮8容许自由转动并且不能用作反作用元件。另外,发动机I从动力传递机构5断开连接。在这种状况下,因此,很难通过第一电动发电机2的转矩转动发动机
I。但是,如果制动器BO处于正常状态,则能够通过接合制动器BO建立高速级来代替低速级,以便在高速级下容许发动机I通过第一电动发电机2转动并起动。相反,如果即使传递用于接合制动器BO的液压指令PB但发动机I也不能起动,则控制系统判定制动器BO也在脱开状态下卡死。如上所述,在这种情况下离合器CO和制动器BO两者均脱开,从而发动机I从动力传递机构5断开连接。因此,禁止档位级切换到HV模式,并且继续EV模式。另外,油栗停止或者油栗的出口压力减小。
[0053]接下来,在此说明在变速器6的高速级下驱动模式从EV模式向HV模式切换时执行图1所示程序的情况。这种情况下变速器6和动力分配装置7的状态示出在图3中。为了建立高速级,将用于脱开离合器CO的液压指令PCO传递到离合器CO,将用于接合制动器BO的液压指令PBO传递到制动器B0。如果离合器CO和制动器BO两者均处于正常状态,因此,离合器CO脱开并且制动器BO接合以建立高速级,如图3中细虚线所示。在这种状况下,齿轮9以比发动机I的速度高的速度转动,并且动力分配装置7的行星架15的速度与齿轮9的速度相同。因此,发动机I容许通过第一电动发电机2转动并起动。但是,如果离合器CO在接合状态下卡死,则在建立高速级的过程期间离合器CO和制动器BO两者均接合。在这种情况下,变速器6锁止,如图3中实线所示。因此,很难通过第一电动发电机2转动发动机I。
[0054]在这种情况下,因此,代替高速级而建立低速级。也即,即使离合器CO如图3中粗虚线所示在接合状态下卡死,也能够通过脱开制动器BO而建立低速级。因此,在低速级下发动机I容许通过第一电动发电机2起动。但是,如果即使传递用于脱开制动器BO的液压指令PBO但低速级在这种情况下也不能建立,则控制系统判定制动器BO也在接合状态下卡死。也即,控制系统判定变速器6锁止。在这种情况下,禁止档位级切换到HV模式,并且继续EV模式。另外,油栗停止或者油栗的出口压力减小。
[0055]接下来,在此简短说明其中离合器CO和制动器BO两者均在脱开状态下卡死的情况。如上所述,为了建立高速级,将用于脱开离合器CO的液压指令PCO传递到离合器CO,并且将用于接合制动器BO的液压指令PBO传递到制动器B0。例如,如果制动器BO在脱开状态下卡死但是离合器CO处于正常状态,则在建立高速级的过程期间离合器CO和制动器BO两者均脱开。在这种情况下,发动机I从动力传递机构5断开连接,因此很难通过第一电动发电机2的转矩转动发动机I。但是,如果离合器CO处于正常状态,则能够通过接合离合器CO建立低速级来代替高速级,从而容许发动机I在低速级下通过第一电动发电机2转动并且起动。相反,如果即使传递用于接合离合器CO的液压指令PCO但发动机I也不能起动,则控制系统判定离合器CO也在脱开状态下卡死。如上所述,在这种情况下离合器CO和制动器BO两者均脱开,从而发动机I从动力传递机构5断开连接。因此,禁止档位级切换到HV模式,并且继续EV模式。另外,油栗停止或者油栗的出口压力减小。
[0056]因而,本发明的控制系统配置成,如果在低速级下驱动模式不能从EV模式切换到HV模式,则选择变速器6的高速级代替低速级。为此,具体地,将用于脱开离合器CO的液压指令PCO传递到离合器CO,并且将用于接合制动器BO的液压指令PBO传递到制动器B0,代替用于接合离合器CO的液压指令PCO和用于脱开制动器BO的液压指令ΡΒ0。作为结果,发动机I能够与动力传递机构5相连以在两者间传递转矩,从而容许发动机I通过第一电动发电机2转动并起动。
[0057]也即,根据本发明,即使接合元件中的任意一个出现故障,驱动模式也能够从EV模式切换到HV模式。因此,能够在HV模式下通过使第一电动发电机2作为发电机操作而为电池充电。这样,不会由于EV模式的不希望的连续性导致电池的过放电,从而容许车辆行驶而不会停止。另外,也可以防止由于过放电引起的电池的恶化。而且,如果在EV模式下由于接合元件的故障导致发动机I不能转动,则禁止驱动模式切换到HV模式。在这种情况下,建立用于接合元件的接合压力的油栗停止,或者油栗的出口压力减小。因此,能够节省电池的电能,从而容许车辆行驶较长的距离。
[0058]本发明的控制系统也可以应用于具有用于起动发动机的起动机的车辆。如果在这种车辆中接合元件中的任意一个变得卡死,则变速器也锁止。在这种状况下,发动机的输出轴不能转动,或者输出轴的惯性质量增大。因此,用以转动发动机的起动机上的负荷增大。在这种情况下,控制系统发出指令信号以改变接合元件的接合状态以便解锁变速器。结果,容许发动机转动,或者发动机的输出轴的惯性质量减小。因此,用以转动发动机的起动机上的负荷减轻,从而能够通过起动机起动发动机。也即,能够实现HV模式以便容许车辆行驶而不会由于电池的过放电而停止。
【主权项】
1.一种用于动力传递装置的控制系统,其中,与发动机的输出轴相连的变速器设置有至少两个接合元件,其中,所述发动机的所述输出轴通过接合两个接合元件而锁止,并且其中,所述发动机通过脱开所述两个接合元件而与所述变速器断开连接, 其特征在于: 所述控制系统构造成,在即使发出用于脱开所述接合元件中的一个接合元件同时接合另一个元件的初始指令以使所述发动机进入要由电机起动的容许状态所述发动机的转速在拖动期间也不能升高到预定速度的情况下,发出用于接合所述接合元件中的所述一个接合元件同时脱开所述另一个接合元件的备选指令以使所述发动机进入要由电机起动的容许状态。2.根据权利要求1所述的用于动力传动装置的控制系统, 其中,所述控制系统进一步构造成,在即使发出所述备选指令来代替所述初始指令所述发动机的转速在拖动期间也不能升高到所述预定速度的情况下,不通过所述电机起动所述发动机。3.根据权利要求1或2所述的用于动力传递装置的控制系统, 其中,所述动力传递装置包括适于将转矩传送至驱动轮的输出部件,和适于将发动机转矩分配至所述电机和所述输出部件的差动机构; 其中,所述电机适于将其转矩施加给所述输出部件;并且 其中,所述变速器置于所述发动机与所述差动机构之间。
【文档编号】F02N15/04GK105899798SQ201480070840
【公开日】2016年8月24日
【申请日】2014年9月16日
【发明人】加藤春哉, 田川洋辅, 今村达也, 田端淳
【申请人】丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1