具有分开式压力补偿器的液压控制阀系统的制作方法

文档序号:5390025阅读:196来源:国知局
专利名称:具有分开式压力补偿器的液压控制阀系统的制作方法
技术领域
本发明涉及可控制液压驱动机械的阀组件;具体地涉及压力补偿阀,其中保持一固定压差以获得一均匀流速。
背景技术
一机器中的液压驱动工作件的速度取决于液压系统主要窄小节流口的横截面积和贯穿那些口的压降。为便于控制,已经采用压力补偿液压控制系统来设定和保持压降。这些先前的控制系统包括感应线路,它可将阀工作口的压力传送到一可变排量的液压泵的输入端,该液压泵在此系统中供应加压的液压流体。最后形成泵输出的自我调节作用可在横贯控制节流口处产生一近似恒定的压降,该节流口的横截面积可由机器操作者控制。因为压降是保持恒定的,所以工作件的运动速度仅由节流口横截面积来决定,控制很方便。这样的一个系统揭示在名为“后压力补偿整体式液压阀”的美国专利4,693,272中,所揭示内容引用在本文中。
由于这样一个系统中的控制阀和液压泵一般不是相互紧邻的,所以变化的负荷压力信息必须经过软管或其它可以是相当长的导管传送到远距离的泵输入。当机器处于停止的自然状态时,一些液流将会流出这些导管。当操作者又需要使机器运行时,这些导管必须在压力补偿系统完全有效之前再次充满。鉴于这些导管的长度,泵的响应可能滞后,而会发生载荷略下降,这些特性可称为“滞后时间”和“起动下降”问题。
在某些类型的液压系统中,驱动负载的活塞的“触底”会使整个系统“中止(操作)”。在采用最大的工作口压力来驱动压力补偿系统的系统中会发生这一现象。在此情况下,触底负载具有最大工作口压力,但泵不能提供一较大压力;因而,在控制节流口中不再存在一压降。作为一种补救措施,这种系统可在液压控制系统的负载感应回路中设置一减压阀。在触底情况下,减压阀打开,使所感应的压力下降到负载感应的释放压力,从而使泵能够提供贯穿控制节流口的压降。
虽然这一方案是有效的,但在采用一压力补偿检测阀作为将贯穿控制节流口的压降基本保持恒定的装置一部分的系统这可能具有不必要的副作用。当一工作口压力超过负载感应减压阀的设定值时,该减压阀即使在没有活塞触底时也会打开。在此情况下,一些流体会从工作口向后经过压力补偿检测阀流人泵腔室。结果,负载会下降,这种情况可称为“回流”问题。
鉴于前述原因,需要一种装置来减少或避免某些液压系统中存在的滞后时间、起动下降和回流问题。
发明概述本发明可以满足这些需求。
用于将液压流体输入到至少一个负载中的一液压阀总成包括一个泵,该泵可产生一变量输出压力,在任何时间,该压力是泵控制输入口的输入压力和一恒定极限压力的总和。控制液压流体从泵流到一液压执行机构的一分离阀组连接到负载之一上,并且受到一负载力作用,从而产生一负载压力。阀组是这样的其中可感应最大负载压力以提供一负载感应压力,该压力可传送到泵控制输入口。
各阀组具有一测量节流口,液压流体可从泵经过其流到各执行机构中。因而,泵输出压力作用到测量节流口的一侧上。在各阀组中的压力补偿阀可在测量节流口另一侧提供负载感应压力,这样贯穿测量节流口的压力降基本上等于恒定的压力极限。压力补偿器具有一阀柱和一可在一孔中滑动的活塞,两者由一弹簧分离。阀柱和活塞将孔分成第一和第二腔室。第一腔室与测量节流口的另一侧连通,第二腔室与负载感应压力连通。因此,第一和第二腔室之间的压力差变化可使阀柱和活塞运动,而该压力差的大小和方向决定了阀柱和活塞在孔中的位置。
该孔具有一输出口,流体可通过其输送到各液压执行机构中。孔中的阀柱位置可控制输出口的尺寸,从而控制贯穿测量节流口的压力差。当第一腔室中的压力大于第二腔室中的压力时可实现液体的流动,当第二腔室中的压力显著大于第一腔室中的压力时则不能流动。虽然活塞和阀柱由一弹簧分隔,但除了腔室中的压力之外,是不能使其各自相对第一和第二腔室的壁偏置。
附图的简述

图1是一具有多阀总成的液压系统的原理图,它根据本发明含有一新颖分开式补偿器;图2是一多阀总成的横截面图,图中示意地示出其连接到一泵和一油箱上;图3是图2中多阀总成一个截面的垂直向截面图,并且示意地示出了与液压缸体的连接;图4,5和6都是图3的部分剖切截面的放大横截面图,示出了第一种型式的补偿器处于三种不同的操作状态下;图7,8和9是与图4-6类似的放大横截面图,示出了第二种型式的补偿器处于三种不同的操作状态下;以及图10,11和12是与图4-6类似的放大横截面图,示出了第三种型式的补偿器处于三种不同的操作状态下。
发明的详细描述图1示意地描述了具有一多阀总成12的液压系统10,该阀总成可控制一机器,例如反铲挖土机的吊臂和铲斗的液压驱动工作件的所有运动。阀总成12的机械结构,如图2所示,包括在两个端部16和17之间边靠边地相互连接的多个单独阀组13,14和15。某一规定的阀组13,14或15可控制液压流体从泵18向连接到工作件上的几个执行机构20之一的流动,并且可控制流体返回到贮液槽或油箱19。泵18的输出由一溢流阀11保护。各执行机构20具有一缸体22,其中有一活塞24,该活塞可将缸体内部分隔成一下腔室26和一上腔室28。本文中对方向关系和运动的名称,如顶和底或上或下,是指部件在附图所示方向上的关系和运动,并不是部件在一具体应用情况下的方向。
泵18一般远离阀总成12并且由一输送管或软管30连接到从阀总成12延伸的输送通道31上。泵18是一可变排量式泵,其输出压力设计成是在排量控制输人口32处的压力加一恒定的压力的总和即“极限压力”。控制口32连接到一传递通道34上,该传递通道延伸过阀总成12的组13-15。一贮液槽通道36也延伸过阀总成12并且连接到油箱19上。阀总成12的端部16包括用于将输送通道31连接到泵18上以及将贮液槽通道36连接到箱19上的人口。此端部16还包括一减压阀35,其可减少通到箱19的泵控制传递通道34中的多余压力。另一端部17具有一出口,通过其传递通道34连接到泵18的控制输入口。
为便于理解本文所要求的发明,有必须参照所示实施例中的阀组之一14来描述基本的流体流动路径。在总成12中的各阀组13-15操作情况是类似的,并且以下的描述对它们都适用。
另外参见图3,阀组14具有一本体40和控制轴42,通过操作一安装于控制轴上的控制件(图中未示),一机械操作者可将控制轴在本体中的一个孔中沿任一往复方向运动。根据控制轴42的运动方式,液压流体或油被引到一缸体22的下或上腔室26和28中,从而分别驱动活塞24向上或向下。机械操作者使控制轴42移动的范围可决定连接到活塞24上的一工作件的速度。
为了使活塞24下降,机械操作者可使控制轴42向右移入图3所示的位置上。这可打开通道,该通道可使泵18(在下文中所述的负载感应网络控制下)将液压流体从箱19中吸出,并且迫使流体经过泵输出管30进入本体40中的一输送通道31中。从输送通道31中,液压流体经过由控制轴42的一组槽口44所形成的一测量节流口,经过输入通道43和一由压力补偿检测阀48和本体40中的一开口之间的相对位置所形成的变量节流口46(见图2)而进入过桥通道50。在压力补偿检测阀48的打开状态下,液压流体流过过桥通道50,控制轴42的通道53,然后经过工作口通道52,流出工作口54,进入缸体22的上腔室28。因而,活塞24顶部所受到的压力使之向下运动,而使液压流体流出缸体22的下腔室26。此流出液压流体流入另一工作口56,经过工作口通道58,再经通道59到控制轴42和贮液通道36,它和液体箱19相连,为了使活塞24向上运动,机械操作者可控制轴42向左移动,这可打开相应的一组通道,这样泵18可迫使液压流体进入下腔室26,并且将流体推出缸体22的上腔室28,而使活塞24向上运动。
在没有压力补偿机构的情况下,机械操作者将难以控制活塞24的速度。这困难是由活塞运动速度直接与液压流体流速有关而造成的,其基本上由两个变量决定一流动路径中的大多数限制节流口的横截面积和贯穿那些节流口的压降。大多数限制孔之一是控制轴42的测量槽口44,并且机械操作者能够通过移动控制轴而控制该节流口的横截面积。虽然这可控制一个有助于决定流速的变量,但由于流速还直接与系统中的总压力降的平方根成正比,这主要上贯穿控制轴42的测量槽口44发生,所以这恰好可提供最佳控制。例如,将材料加入一反向铲的料斗中可增加下缸体腔室26中的压力,这将减少负载压力和由泵18所提供的压力之间的差值。即使当机械操作者将测量槽口44保持成一恒定的横截面积,没有压力补偿,总压力降的减少将减小流速,从而减小活塞24的速度。
本发明涉及一压力补偿机械,它是靠各阀组13-15中分离的检测阀48。参见图2和4,压力补偿检测阀48具有一阀柱60和一活塞64,这两者密封地在阀本体40的一个孔62中往复滑动。阀柱60和活塞64可将孔62分隔成在孔相对端的体积变化的第一和第二腔室65和66。第一腔室65与输入通道43连通,而第二腔室66与连接到泵控制口32上的传递通道34连通。阀柱60相对孔62的端部不加偏置而构成第一腔室65,活塞64相对孔端不加偏置而构成第二腔室66。在本文中,“不偏置”指没有一机械装置、如一弹簧,其可将作用力施加在阀柱或活塞上而将该部件从孔的有关端部推离。如下将述,没有这种偏置装置可使仅有第一腔室65中的压力将阀柱60推离孔62的相邻端,仅第二腔室66中的压力将活塞64推离相对孔端。
阀柱60具有一带开口端和一封闭端的管状段68,一直径减小的止动轴70从其上伸出。管状段68具有一横向孔72,它可在过桥通道50和管状段68内部之间提供连续的连通,而不论阀柱60的位置如何。活塞64具有一管状部分74该管状部分具有一开口端,可容纳在阀柱60的管状段68中滑动。管状部分74中的一个较弱的弹簧76可将阀柱60和活塞64推开。活塞管状部分74在阀柱60中的滑动可引导其运动,并且防止活塞在孔62中倾斜和卡住。活塞64的管状部分74具有一横向孔79和一带外凸缘78的封闭端,该凸缘配合阀本体40中的孔62可将其封闭或在其中滑动。活塞管状部分74的封闭端具有一外部凹槽80,在图4所示的压力补偿检测阀48的状态下,传递通道34经过该槽与第二腔室66连通。
再参见图1,压力补偿机构可感应多阀总成12中的每个阀组13-15的各被驱动工作口处的压力,并且选择出这些工作口压力的最大值以作用到液压泵18的排量控制口32上。此项选择是由一连串往复滑阀84来执行,这些阀各自处在不同的阀组13和14中。再参见图1和2所示的示例阀组14,对其滑阀84的输入是(a)过桥通道50(经梭动通道86)和(b)经过上游阀组15的通道88,该阀组具有从中间阀组14上游的各阀组中的被驱动工作口的压力。当控制轴42处于自然状态时,过桥通道50可感受到无论哪个工作口54或56被驱动处的压力,或贮液槽通道36的压力。滑阀84的运行是将在输入(a)和(b)处的较大压力经其阀组通道88传送到相邻的下游阀组13的滑阀上。应当注意,一连串中的最上游阀组15不需要具有一滑阀,因为仅其负载压力将经通道88送到下一阀组14上。然而,为了制造经济,所有阀组13-15都是相同的。
如图1和2所示,滑阀84链中的最下游阀组13的通道88通向一隔离器92的输入口90。所以,以刚描述的方式,阀总成12中的所有被驱动工作口压力的最大值被传递到隔离器92的输入口90,其可在其输出口94处产生最大工作口压力。传送到隔离器92的压力是第一与负载有关的压力,从隔离器出口94传递出的压力是第二与负载有关的压力。隔离器出口94处的压力经过传送通道34施加到泵18的控制输入32上并且通过该通道与各压力补偿检测阀48的第二腔室66连接,从而将隔离器输出压力施加在检测阀活塞64的封闭端上。
为了使液压流体从泵18流到被驱动的工作口54或56上,经过压力补偿检测阀48的变量节流口46必须至少局部打开。为实现此情况,阀柱60必须向下运动以打开第一腔室65和过桥通道50之间的连通,如图4所示。当有关的阀组是仅有的一个由机械操作者启动的阀组,或者是具有最大负载压力的阀组时,出现所示的阀柱位置。在此情况下,在输入通道43中的泵压力略大于传送通道34中的负载感应压力,从而将阀柱60迫压在活塞64上,该活塞再被驱动而靠在孔62的相邻端上。此动作可将变量节流口46全部打开。
参见图5,当某一阀组13,14或15不是一个最大负载压力的阀组时,变量节流口46将小于完全打开状态。当输人通道43中的泵压力小于传递通道34中的负载感应压力,出现此情况。因此,由于压力补偿检测阀48的第二腔室66中的压力大于第一腔室65中的压力时,从而可将阀柱60和活塞64如图中向上运动而减小节流口46的尺寸。
因为活塞66底部具有与阀柱60顶部相同的表面积,液流在节流口46处节流,这样补偿阀48的第一腔室65中的压力近似等于第二腔室66中的最大工作口压力。此压力经图3中的输入通道43而连通到测量槽口44的一侧。测量槽口44的另一侧与输送通道31连通,其所接纳泵输出的压力,等于最大工作口压力加以恒定极限压力。因此,贯穿测量槽口44的压降等于极限压力。在测量槽口44的输送侧(通道31)和压力补偿检测阀的第二腔室66两处可见最大工作口压力的变化。对这些变化的反作用,阀柱60和活塞64可找到在孔62中的平衡位置,这样贯穿测量槽口44将维持极限压力。
图6示出了压力补偿检测阀48的另一状态,它将在以下两种状态之一发生。第一种状态是,当所有控制轴42处于中立(中心)位置并且当阀关闭时。第二状态发生在当工作口压力在此阀组(例如14)大于输入通道43中的输送压力时,如当一重负载施加到有关执行机构20时发生,一般提到如有关路外设备的“起重”。此后一种状态可导致液压流体被迫从执行机构20向后经过相应的阀组进人泵出口。然而,分开的压力补偿检测阀48通过关闭此流动路径可防止由此发生的逆流。在此后一种情况下,多余的负载压力出现在过桥50中,并且通过阀柱60中的横向孔72连通到阀柱和活塞64中的中间腔96中。因为中间腔96中所产生的压力大于输入通道43和传送通道34两处的压力,矩管60和活塞64被迫分开,而使可变体积的中间腔膨胀并且使节流口46完全关闭,这可使经过阀组的逆流阻断。在此状态下,活塞可贴紧孔65的相邻端,阀柱60的止动轴70可抵触孔的相反端,在该位置,管状段68完全使变量节流口46封闭。起重状态可通过使产生此现象的过程逆转而消除。
图7,8和9分别示出了图4,5和6所示的三种不同操作状态下的补偿器48的第二种型式100。在此型式下,阀柱102和活塞104不是象第一种型式那样套在一起相互滑动。阀柱和活塞装置可将阀孔62分成与输入通道43连通的第一腔室65和与连接到泵控制口32上的传送通道34连通的第二腔室66。
阀柱102是杯形的,其开口端与输入通道43连通。阀柱102具有一中心孔107,在一侧壁上具有横向孔108,当阀处于图7所示状态时,它们一起在输人通道43和过桥50之间形成经过补偿器48的路径。变量节流口46由阀柱102和与过桥通道50连通的本体40中的一个开口之间的相对位置形成。
活塞104还是杯形的,具有面向阀柱102封闭端的开口端并且构成在阀柱封闭端和活塞之间的中间腔109。阀柱102封闭端的外角112是斜角,这样中间腔109总是与过桥50连通的,即使当活塞靠着阀柱102时,如图7和8所示。位于中间腔109中的一个弹簧110可施加一较弱的力,当系统未加压时,它可将阀柱和活塞分离。
阀柱102和活塞104以有关图4-6中的第一种型式所述的相同的方式,和传递通道34、输入通道43和过桥通道50之间的压力差发生反应。
图10,11和12分别示出了图4,5和6中第一种型式所述的三种不同操作状态中的压力补偿检测阀的第三种型式200。与第一种型式48相同,第三种型式具有一阀柱202和活塞204,它们套在一起相互滑动。阀柱和活塞装置可将阀孔62分成与输入通道43连通的第一腔65和与连接到泵控制口32上的传递通道34连通的第二腔室66。
阀柱202具有一管状段206,具有一开口端和一封闭端,一直经减小的止动轴208从其上伸出。管状段206具有一横向孔210,其可在过桥通道50和管状段206内部之间提供连续的连通,而无论阀柱202位置如何。活塞204是杯形的,具有一管状部分212,它具有一开口端,阀柱202的管状段206可在其中滑动。位于阀柱管状段206中的一中间腔215中的较弱弹簧214可将阀柱202和活塞204推开。阀柱管状段206中活塞204在的滑动可引导其运动并且防止活塞在孔62中倾斜和卡住。活塞204的管状部212具有一横向孔216,其与阀柱孔210结合可在过桥50和中间腔室215之间提供一流体路径。
阀柱202和活塞204以有关图4-6中的第一种型式所述的相同的方式,和传递通道34、输入通道43和过桥通道50之间的压力差发生反应。
权利要求
1.在一液压系统中具有一排阀组用于控制来自一泵的液压流体向多个执行机构的流动,各阀组具有一工作口,一执行机构连接于其上并且具有一测量节流口,液压流体从所述泵经过其流到一个执行机构,所述泵可产生一输出压力,所述压力比一控制输入处的压力大一恒定量,这种型式的阀组排中各工作口的最大压力能被感应出,从而提供一负载感应压力,并将其传递到控制输入处;所述改进包括在至少一个阀组中,一压力补偿阀具有一阀柱和一活塞,它们位于一孔中可以滑动,从而在所述孔的相对端处构成第一和第二腔室,所述阀柱和活塞之间具有一中间腔室并且由中间腔室中的一个弹簧推开,所述阀柱和活塞相对所述孔的相对端部未加偏压,所述第一腔室与测量节流口连通,第二腔室与负载感应压力连通,其中,所述第一和第二腔室之间的压力差和由所述弹簧所施加的作用力决定了阀柱在孔中的位置,所述孔和阀柱构成一变量节流口,经过其流体可从所述第一腔室输送到连接到一个执行机构的一导管中,阀柱的位置可决定变量节流口的尺寸,如果第一腔室中的压力大于所述第二腔室中的压力可使变量节流口尺寸变大,所述第二腔室中的压力大于所述第一腔室中的压力可减小变量节流口的尺寸,而且,阀柱和活塞之一具有一通道,经过该通道中间腔与所述导管连通,这样当由一个执行机构所施加的液压力大于所述第一和第二腔室中的压力时,所述活塞和阀柱被迫分开使该执行机构和所述第一腔室之间的液压流体断流。
2.如权利要求1所述的液压系统,其特征在于,所述阀柱具有一管状段,具有一开口端和一封闭端;以及所述活塞具有一管状部分,具有一封闭端和一可滑动容纳于所述阀柱的管状段中的开口端,其中管状部分和管状段可构成中间腔。
3.如权利要求2所述的液压系统,其特征在于,所述阀柱具有从所述管状段的封闭端向外伸出的止动轴。
4.如权利要求2所述的液压系统,其特征在于,所述阀柱的管状段具有一横向孔,用以在导管和中间腔之间提供连续连通,而与阀柱在所述孔中的位置无关。
5.如权利要求1所述的液压系统,其特征在于,所述阀柱呈管形,具有一封闭端和一面对所述第一腔室的开口端;以及所述活塞呈管形,具有一封闭端和一面对所述阀柱的开口端,其中所述中间腔形成在所述阀柱的封闭端和所述活塞的封闭端之间形成。
6.如权利要求5所述的液压系统,其特征在于,所述孔具有一连接到所述导管上的开口,所述阀柱具有一横向孔,其与所述开口结合而构成变量节流口的尺寸。
7.如权利要求1所述的液压系统,其特征在于,还包括连接到各阀组中的导管上的滑阀链,用于在所述液压系统的工作口之中选择最大压力。
8.如权利要求7所述的液压系统,其特征在于,各阀组还包括一滑阀,它具有一输出口,一连接到所述第一腔室的第一输入口,以及连接到液压系统的另一阀组中的一个滑阀输出上的第二输入口。
9.如权利要求7所述的液压系统,其特征在于,还包括一隔离器,连接到滑阀链上以接纳各工作口中的最大压力,当来自滑阀链的流体向泵的控制输入流动被阻断时,该隔离器可用于将该最大压力传递到泵的控制输入上。
10.如权利要求1所述的液压系统,其特征在于,所述活塞具有一管状部分,具有一封闭端和一开口端;所述阀柱具有一管状段,具有一封闭端和一可滑动地容纳在所述活塞管状段中的开口端,其中管状部和管状段可构成所述中间腔。
11.如权利要求10所述的液压系统,其特征在于,所述阀柱具有从所述管状段的封闭端向外伸出的止动轴。
12.如权利要求10所述的液压系统,其特征在于,所述阀柱的所述管状段具有一横向孔,用以在所述导管和所述中间腔之间提供连续连通,而与阀柱在所述孔中的位置无关。
13.一种供操作者控制从可变排量液压泵流向执行机构的流体路径中的加压流体流动的液压阀机构,所述执行机构受到一负载力从而产生一负载压力,所述泵具有一控制输入,并且产生比控制输入压力大一个恒定量的输出压力,所述液压阀机构包括(a)一第一阀件和一并列的第二阀件,在其间的流体路径中具有一测量节流口,至少其中一个阀件可由操作者控制移动以改变测量节流口的尺寸,从而控制到执行机构的流体的流动;(b)用于感应负载压力并且将负载压力施加到泵的控制输入上的传感器;以及(c)用于使跨越所述测量节流口的压差保持基本等于恒定量的压力补偿器,所述压力补偿器具有一阀柱和一位于一孔中的可滑动的活塞,从而在所述孔的相对端部构成第一和第二腔室,所述阀柱和所述活塞由一中间腔中的一个弹簧推开,并且对所述孔的相对端部未加偏压,所述第一腔室与所述测量节流口连通,第二腔室可接纳由所述传感器感应到的负载压力,其中,所述第一和第二腔室之间的压力差可决定阀柱和活塞在所述孔中的位置,所述孔具有连接到一导管上的节流口,经过其流体输送到所述执行机构上,从而在所述第一腔室中比所述第二腔室中大的压力可使所述阀柱运动,这可使节流口尺寸放大,所述第二腔室中的压力大于所述第一腔室中的压力可使所述阀柱运动,这可使节流口尺寸减小,其中,阀柱和活塞之一具有一通道,中间腔经过其可与所述节流口连通,这样当由一个执行机构施加在所述节流口上的压力大于所述第一和第二腔室中的压力时,所述活塞和所述阀柱移开而阻断所述节流口和所述第一腔室之间的流体流动。
14.如权利要求13所述的液压阀系统,其特征在于,所述阀柱具有一管状段,具有一开口端和一封闭端;以及所述活塞具有一管状部分,具有一封闭端和一可滑动容纳于所述阀柱的管状段中的开口端,其中管状部分和管状段可构成中间腔。
15.如权利要求14所述的液压系统,其特征在于,所述阀柱具有从所述管状段的封闭端向外伸出的止动轴。
16.如权利要求14所述的液压系统,其特征在于,所述阀柱的管状段具有一横向孔,其可在导管和中间腔之间提供连续连通,而与阀柱在所述孔中的位置无关。
17.如权利要求13所述的液压阀系统,其特征在于,所述阀柱呈管形,具有一封闭端和一面对所述第一腔室的开口端;以及所述活塞呈管形,具有一封闭端和一面对所述阀柱的开口端,其中所述中间腔形成于所述阀柱的封闭端和所述活塞的封闭端之间。
18.如权利要求17所述的液压阀系统,其特征在于,所述孔具有一连接到所述导管上的开口,所述阀柱具有一横向孔,其与所述开口结合而构成变量节流口的尺寸。
19.如权利要求13所述的液压阀机构,其特征在于,所述活塞具有一管状部分,具有一封闭端和一开口端;所述阀柱具有一管状段,具有一封闭端和一可滑动地容纳在所述活塞管状段中的开口端,其中管状部和管状段可构成所述中间腔。
20.如权利要求13所述的液压阀机构,其特征在于,所述阀柱具有从所述管状段的封闭端向外伸出的止动轴。
21.如权利要求13所述的液压阀机构,其特征在于,所述阀柱的管状段具有一横向孔,用以在导管和中间腔之间提供连续连通,而与阀柱在所述孔中的位置无关。
全文摘要
一种改进的压力补偿液压系统,用于将液压流体输入到一个或多个液压执行机构(20)中。一远离的可变排量泵(18)提供一输出压力,该压力等于一控制输入压力加一恒定极限量。一压力补偿系统需要经过一负载感应回路向泵的输入提供与负载有关的压力。一隔离器(92)可将与负载无关的压力传送到泵控制输入,同时防止流体流出负载感应回路并流到远离的泵(18)中。可控制泵(18)和执行机构(20)之间流体流动的阀组(13,14,15)具有一压力补偿阀(48),该阀有一活塞(64)和阀柱(60),它们通过对泵输送压力和负载感应压力之间的压力差的反应,因而在孔(62)中移动,从而控制跨越主控制阀节流口(44)的压力差。当负载的背压超过泵输送压力时,活塞和阀柱会分离以阻断流体流到执行机构(20)。
文档编号E02F9/22GK1220724SQ98800339
公开日1999年6月23日 申请日期1998年2月23日 优先权日1997年3月27日
发明者M·C·雷尼, R·A·维尔克, L·比德森, M·J·派克 申请人:胡斯可国际股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1