包括轴向压缩机和离心式压缩机的LNG设备的制作方法

文档序号:14011742阅读:245来源:国知局

本文中公开的主题的实施例对应于lng[=液化天然气]设备,其包括轴向压缩机和离心式压缩机。



背景技术:

在“石油&天然气”(即,用于石油和/或天然气的勘探、生产、储存、精制以及分销的机器和设备)的领域中,总是寻求改进的解决方案。

改进可源自例如机器的结构和/或操作、机器的连接,或机器的组合(例如,机器的系)。

改进可包括例如增加的效率和/或减少的损失、增加的产量和/或减少的浪费、增加的功能、降低的成本、减小的大小和/或占地面积。

在“石油&天然气”的领域中已知两种主要的lng过程:

-由airproducts&chemicalsinc.设计的c3-mr过程,因此有时简称为“apci”;该过程使用纯制冷剂(“c3”)(即,丙烷)和混合制冷剂(“mr”)(即,典型的丙烷、乙烯以及甲烷的混合物);该过程为2循环的(一种)纯制冷剂和(一种)混合制冷剂液化技术;

-由conocophillips设计的级联过程,因此有时简称为“cpoc”;该过程使用三种纯制冷剂(即,典型为丙烷、乙烯或乙烷,以及甲烷);该过程为3循环的(三种)纯制冷剂液化技术。

又一种lng过程在“石油&天然气”的领域中已知为“ap-x”;该过程使用两种纯制冷剂(即,丙烷和氮)和混合制冷剂(即,典型的丙烷、乙烯以及甲烷的混合物);该过程为3循环的(两种)纯制冷剂和(一种)混合制冷剂液化技术;该过程为“apci”过程的演变。

将注意的是,表述“纯制冷剂”实际上是指一种物质在制冷剂中占优势(例如,至少90%或95%或98%);该物质可为化学化合物(例如,丙烷、乙烷、乙烯、甲烷)或化学元素(例如,氮)。

这些已知的过程已经在过程方面进行了优化,但是仍寻求改进(特别是在lng设备中使用的机器的数量和/或机器的占地面积方面)。



技术实现要素:

本文中公开的主题的实施例涉及lng设备。

根据此类实施例,lng设备包括压缩系和又一压缩系。压缩系包括发动机和由发动机驱动的压缩机;压缩机为轴向压缩机,并且包括第一组轴向压缩级和布置在第一组轴向压缩级下游的第二组轴向压缩级;至少第一组轴向压缩级和第二组轴向压缩级收纳在一个壳体内;压缩机具有:一个主入口,其布置在第一组轴向压缩级上游、一个主出口,其布置在第二组轴向压缩级下游、至少一个辅助入口和/或至少一个出口,其布置在第一组轴向压缩级下游和第二组轴向压缩级上游;压缩机构造成以使通过辅助入口进入压缩机的流体从大致径向方向重新引导至大致轴向方向,并且/或者通过辅助出口离开压缩机的流体从大致轴向方向重新引导至大致径向方向。又一压缩系包括又一发动机和由又一发动机驱动的又一压缩机;又一压缩机为离心式压缩机并且包括第一组叶轮和布置在第一组叶轮下游或上游的第二组叶轮;第一组叶轮为离心且无护罩的;第二组叶轮为离心且带护罩的;至少第一组叶轮和第二组叶轮收纳在一个壳体内;第一组叶轮和第二组叶轮通过机械连接件联接于彼此。

这种轴向压缩机为高流量压缩机,并且在下文中也称为“高流量轴向压缩机”。

以上提及的“大致轴向方向”为平行于压缩机轴线的方向的方向或与压缩流动路径大致上相切的方向,压缩流动路径为由流体在其压缩期间的流限定的路径。

此类lng设备可有利地实施例如3循环的纯制冷剂液化技术或多循环的纯制冷剂和混合制冷剂液化技术。

附图说明

并入在本文中并且构成本说明书的集成部分的附图示出了本发明的示例性实施例,并且连同详细描述阐释这些实施例。在图中:

图1示出了压缩系的第一实施例的示意图;

图2示出了压缩系的第二实施例的示意图;

图3示出了可为图1的压缩系的构件的压缩机的第一实施例的示意图;

图4示出了可为图2的压缩系的构件的压缩机的第二实施例的示意图;

图5示出了lng设备的第一实施例的示意图;以及

图6示出了lng设备的第二实施例的示意图。

具体实施方式

示例性实施例的以下描述参照附图。

以下描述不限制本发明。相反,本发明的范围由所附权利要求限定。

遍及说明书对“一个实施例”或“实施例”的提及意味着结合实施例描述的特定特征、结构或特性包括在公开的主题的至少一个实施例中。因此,短语“在一个实施例中”或“在实施例中”在遍及说明书的各个地方的出现不一定是指相同的实施例。此外,特定特征、结构或特性可在一个或更多个实施例中以任何合适的方式组合。

在下文中(并且根据其数学含义),用语“组”是指一群一个或更多个物件。

图1示出了压缩系100,其包括发动机110和由发动机110驱动的压缩机130。压缩机130为轴向(即,轴流式)压缩机,并且包括至少第一组轴向压缩级(即,一个或更多个级)和布置在第一组轴向压缩级下游的至少第二组轴向压缩级(即,一个或更多个级)。根据图3的实施例,第一组包括两个级311和312,但是从1至例如20的任何数量的级为合适的。根据图3的实施例,第二组包括三个级321和322和323,但是从1至例如20的任何数量的级为合适的。至少第一组和第二组轴向压缩级收纳在一个壳体300内;典型地,所有组的级收纳在该壳体内。压缩机130具有:

-一个主入口301,其用于接收用以压缩的流体(在图1中标记为131),布置在第一组轴向压缩级上游,入口可直接(即,在中间没有东西)布置在这些级上游,

-一个主出口302,其用于提供压缩的流体(在图1中标记为132),布置在第二组轴向压缩级下游,出口可直接(即,在中间没有东西)布置在这些级下游,

-至少一个辅助入口和/或至少一个出口,其根据图3的实施例,布置在第一组轴向压缩级下游和第二组轴向压缩级上游,存在仅一个辅助入口303,其直接布置在级311和312下游,并且直接布置在级321和322和323上游。

第一组和第二组轴向压缩级可布置成压缩相同类型的工作流体或不同类型的工作流体。

当工作流体的类型为相同的时,例如,第一组的轴向压缩级处理工作流体的第一流(见例如图3中的箭头301),而第二组的轴向压缩级处理工作流体的第一流(在其由第一组的级处理之后)(见例如图3中的箭头304),并且工作流体的第二流(见例如图3中的箭头303c)进入辅助入口中(见例如图3中的箭头303)。

当工作流体的类型为不同的时,例如,第一工作流体进入主入口(例如,图3中的入口301)中,并且从辅助出口(图3并未示出辅助出口)离开,同时第二工作流体进入辅助入口(例如,图3中的入口303)中,并且从主出口(例如,图3中的出口302)离开。

在图3的实施例中,主入口301用于接收待压缩的第一流体流,并且辅助入口303用于接收待压缩的第二流体流;辅助入口303在外侧303a上大致上(或完全)沿径向定向,并且提供在内侧303c上大致上(或完全)沿轴向取向的流体流的喷射;已经由级311和312部分地压缩并且沿轴向流动的第一流体流(304)以及仍未被压缩并且沿轴向流动的第二流体流(303c)会合,并且由级321和322和323压缩;第二流体流从外侧303a至内侧303c沿着中间路径303b从径向方向至轴向方向重新引导,即,弯曲。

轴向压缩级的组可多于两个,例如,三个或四个。

可存在一个或更多个辅助入口。

可存在一个或更多个辅助出口。

根据以上限定的轴向压缩机的构造,机器结果非常紧凑,并且需要仅一个壳体,用于处理多于一个的流体流。

此外,由压缩机处理的工作流体的主流中的一个或更多个工作流体侧流的轴向喷射可提高压缩机的整体效率。

轴向压缩机为一类压缩机,其可在平等的意义上处理比其它类型的压缩机更高的流率。

大体上,轴向压缩机比离心式压缩机更有效,因此,在相同的功率下,它们可压缩更多的流体,即,较高流率的流体。因此,对于丙烷而言使用轴向压缩机为有利的,因为产生的液化天然气的量与丙烷的流率成正比。

大体上,轴向压缩机在相同的功率下比离心式压缩机小。因此,对于丙烷而言使用轴向压缩机为有利的,因为设备(特别是lng设备)中的压缩机的大小和/或数量减少。

辅助(多个)入口和/或辅助(多个)出口使得压缩机能够更加灵活并且使机器的操作条件适于其中使用压缩机的过程。例如,辅助(多个)入口和辅助(多个)出口可用于将工作流体从压缩机抽取并且使其在重新喷射之前冷冻。

发动机110可为电动机或蒸汽涡轮或燃气涡轮,特别是航改型燃气涡轮。将注意的是,除了主发动机之外,可存在辅助发动机,其连接于压缩系(特别是lng设备)的轴,以在由压缩机吸收的功率超过某些阈值时帮助主发动机;此类辅助发动机有时被称为“帮手”。

发动机110和压缩机130可直接地或通过齿轮系120(通常为齿轮箱的部分)连接,如图1中示出的。

与图1(和图3)中示出的系相同或类似的系在布置成提供压缩的丙烷时,为特别有利的。例如,这为利用三种纯制冷剂的3个循环来实施液化技术(例如,“cpoc”)的lng设备、利用一种纯制冷剂和一种混合制冷剂的2个循环来实施液化技术(例如,“apci”)的lng设备,以及利用两种纯制冷剂和一种混合制冷剂的3个循环来实施液化技术(例如,“ap-x”)的lng设备的情况。

图2示出了压缩系200,其包括发动机210和由发动机210驱动的高压缩比压缩机230。高压缩比压缩机230为离心式(即,离心流)压缩机,并且包括第一组叶轮(即,一个或更多个叶轮)以及布置在第一组叶轮下游或上游的第二组叶轮(即,一个或更多个叶轮)。根据图4的实施例,第一组包括两个叶轮411和412,但是从1至例如20的任何数量的叶轮为合适的。根据图4的实施例,第二组包括三个叶轮421和422和423,但是从1至例如20的任何数量的叶轮为合适的。第一组的叶轮411和412为离心且无护罩的。第二组的叶轮421和422和423为离心且带护罩的。至少第一组的叶轮411和412以及第二组的叶轮421和422和423收纳在一个壳体400内。第一组的叶轮411和412以及第二组的叶轮421和422和423通过机械连接联接于彼此。

轴向压缩级的组可为多于两个,例如,三个或四个。

可存在一个或更多个辅助入口。

可存在一个或更多个辅助出口。

有利地,如在图4的实施例中,所述高压缩比离心式压缩机的叶轮中的至少一些堆叠在彼此上,并且借助hirth接头机械地联接。堆叠和联接的叶轮借助于连结杆紧固在一起,以该方式,实现非常稳定且可靠的机械连接。各个叶轮在其旋转轴线处具有例如通孔,并且构造成以使连结杆可穿过其。转子在叶轮堆叠和紧固在一起时实现。

在图4的实施例中,两组的所有叶轮411,412,421,422,423堆叠,由hirth接头440a,440b,440c,440d联接,并且由连结杆430紧固在一起。

压缩机230具有主入口401(在图2中标记为231)、主出口402(在图2中标记为232),以及在沿着从主入口401至主出口402的流动路径的中间位置处的至少一个辅助入口和/或至少一个辅助出口;图4示出了一个中间分接头(tap)403的大体情况,其在一些实施例中为辅助入口(见向上箭头)并且在一些实施例中为辅助出口(见向下箭头)。

有利地,如在图4的实施例中,第二组叶轮(421和422和423)在第一组叶轮(411和412)下游,并且第二组叶轮(421和422和423)可具有比第一组叶轮(411和412)小的直径。

根据图4的实施例,第一组叶轮(411和412)的叶轮为无护罩的并且具有比第二组叶轮(421和422和423)的直径大的直径。

无护罩的叶轮可由于护罩不存在而旋转得比带护罩的叶轮快;实际上,当叶轮旋转时,护罩由作用在其上的离心力向外拉动,并且在某一旋转速度下,护罩有从叶轮拉出的风险。

由于以上限定的高压缩比离心式压缩机的转子构造,压缩机可旋转得比传统的离心式压缩机快,因此实现更大的压缩比。

将注意的是,无护罩的叶轮和带护罩的叶轮可在彼此之间交替;特别地,这在存在一个或更多个辅助入口和/或出口时发生。

发动机210可为电动机或蒸汽涡轮或燃气涡轮,特别是航改型燃气涡轮。将注意的是,除了主发动机之外,可存在辅助发动机,其连接于压缩系(特别是lng设备)的轴,以在由压缩机吸收的功率超过某些阈值时帮助主发动机;此类辅助发动机有时被称为“帮手”。

发动机210和压缩机230可直接地或通过齿轮系120(通常为齿轮箱的部分)连接,如图1中示出的。

与图2(和图4)中示出的离心式压缩机相同或类似的离心式压缩机可非常快速地旋转,并且因此它们可达到非常高的压缩比。因此,单个(且小)壳体中的单个创新型离心式压缩机可替换不同壳体中的两个或更多个传统的离心式压缩机。

此外,由于叶轮的高旋转速度,可获得高流系数。

与图2(和图4)中示出的系相同或类似的系在布置成提供压缩的甲烷时,为特别有利的。例如,这为利用三种纯制冷剂的3个循环来实施液化技术(例如,“cpoc”)的lng设备的情况。

与图2(和图4)中示出的系相同或类似的系在布置成提供压缩的混合制冷剂时,为特别有利的。例如,这为利用一种纯制冷剂和一种混合制冷剂的2个循环来实施液化技术(例如,“apci”)的lng设备,以及利用两种纯制冷剂和一种混合制冷剂的3个循环来实施液化技术(例如,“ap-x”)的lng设备的情况。

与图2(和图4)中示出的系相同或类似的系在布置成提供压缩的氮时,为特别有利的。例如,这为利用两种纯制冷剂和一种混合制冷剂的3个循环来实施液化技术(例如,“ap-x”)的lng设备的情况。

与图1(和图3)中示出的系相同或类似的一个或更多个系和/或与图2(和图4)中示出的系相同或类似的一个或更多个系可包括到lng设备中。

通过将此类组与此类压缩机一起使用,较高的lng产量可以以较小的空间和/或较小的占地面积且利用较少数量的机器获得。

将注意的是,从许多角度来看,具有仅一个壳体而不是两个或更多个壳体为有利的:

-其简化了安装和维护,

-其减少了维护时间,

-其增加了可靠性(较少的构件和较小的故障可能性),

-其减少了机器的占地面积和重量,

-其减少了气体的泄漏,

-其降低了润滑油系统的复杂性和大小。

图5和图6示出了lng设备的lng液化线500和600的实施例。标号501和601指示气态天然气入口,并且标号502和602指示液化天然气出口。标号540和640指示处理天然气,将其冷却并且将其液化的生产线的装备。线的其它构件将加压的制冷剂气体提供至此类装备。

例如,装备540实施2循环的纯制冷剂和混合制冷剂液化技术(例如,“apci”);因此,其使用加压的丙烷和加压的混合制冷剂。

例如,装备640实施3循环的纯制冷剂液化技术(例如,“cpoc”);因此,其使用加压的丙烷、加压的甲烷以及加压的乙烷或乙烯。

在图5的lng液化线中,存在单一壳体中的至少一个高流量的轴向压缩机510(由图中未示出的发动机驱动),用于将丙烷从至少两个不同的较低压力压缩到较高压力。低压丙烷入口可典型地为两个或三个或四个。

在图5的lng液化线中,存在单一壳体中的至少一个高压缩比离心式压缩机520(由图中未示出的发动机驱动),用于将混合制冷剂从至少两个不同的较低压力压缩到至少两个不同的较高压力。压缩机520借助于压缩机520的对应辅助入口和对应辅助出口流体地连接于中间冷却器550,以提供对内制冷步骤。在此类lng液化线中,可存在多于一个对内制冷步骤,例如,两个或三个。

在图5的lng液化线中,可存在单一壳体中的至少一个压缩机(未示出)(由图中未示出的发动机驱动),用于将氮从较低压力压缩到较高压力。

在图6的lng液化线中,存在单一壳体中的至少一个高流量的轴向压缩机610(由图中未示出的发动机驱动),用于将丙烷从至少两个不同的较低压力压缩到较高压力。低压丙烷入口可典型地为两个或三个或四个。

在图6的lng液化线中,存在单一壳体中的至少一个高压缩比离心式压缩机620(由图中未示出的发动机驱动),用于将甲烷从至少两个不同的较低压力压缩到较高压力。低压甲烷入口可典型地为两个或三个或四个。

在图6的lng液化线中,存在单一壳体中的至少一个压缩机630(由图中未示出的发动机驱动),用于将乙烷或乙烯从至少两个不同的较低压力压缩到较高压力。低压乙烷或乙烯入口可典型地为两个或三个或四个。

将注意的是,取决于使用的发动机的功率和使用的压缩机的功率,单个发动机可驱动一个或更多个压缩机。

当单个发动机驱动例如两个压缩机时,齿轮系(通常为齿轮箱的部分)可用于使两个压缩机以两种不同的速度旋转。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1